Skip to main content
  • 1079 Accesses

Zusammenfassung

Nach einer Rötelnvirusinfektion im ersten Schwangerschaftsdrittel kommt es bei Schwangeren ohne Rötelnschutz mit großer Wahrscheinlichkeit zu einem konnatalen Rötelnsyndrom. Dies äußert sich mit schwerwiegenden Fehlbildungen an Auge, Ohr und Herzen des Kindes bzw. Abort und Totgeburt. Deshalb sollen alle Frauen im gebärfähigen Alter gegen eine Rötelninfektion geschützt sein. Die Immunitätsfeststellung soll vor der Schwangerschaft durch Kontrolle des Impfausweises erfolgen. Sind zwei Röteln- oder MMR-Impfungen dokumentiert, sind die Frauen zuverlässig gegen Röteln bzw. eine eventuelle Rötelnembryopathie in der Frühschwangerschaft geschützt. Eine Antikörperkontrolle wird in diesem Fall nicht empfohlen. Fehlende Impfungen sollen vor der Schwangerschaft entsprechend den STIKO-Empfehlungen verabreicht werden. In der Schwangerschaft soll bei fehlendem oder unklarem Impfschutz eine Antikörperkontrolle durchgeführt werden. Der Röteln-IgG Befund soll in Abhängigkeit vom Impfstatus interpretiert werden. Eine akzidentelle Rötelnimpfung in der Frühschwangerschaft hat keine negativen Konsequenzen für das Kind. Ein Röteln-IgM Befund bei Rötelnverdacht in der Frühschwangerschaft muss labordiagnostisch abgesichert werden und ist alleine nicht beweisend für eine intrauterine Infektion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Abernathy E, Cabezas C, Sun H, Zheng Q, Chen MH et al (2009) Confirmation of rubella within 4 days of rash onset: comparison of rubella virus RNA detection in oral fluid with immunoglobulin M detection in serum or oral fluid. J Clin Microbiol 47:182–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Allmendinger J, Paradies F, Kamprad M, Richter T, Pustowoit B, Liebert UG (2010) Determination of rubella virus-specific cell-mediated immunity using IFN gamma-ELISpot. J Med Virol 82:335–340

    Article  CAS  PubMed  Google Scholar 

  3. Banatvala JE, Brown DWG (2004) Rubella. Lancet 363:1127–1137

    Article  CAS  PubMed  Google Scholar 

  4. Best JM (2007) Rubella. Seminars in fetal and neonatal medicine 12:182–192

    Google Scholar 

  5. Best JM, Banatvala JE, Morgan-Capner P, Miller E (1989) Fetal infection after maternal reinfection with rubella: criteria for defining reinfection. BMJ 299:773–775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Best JM, O’Shea S, Tipples G, Davies N, Al-Khusaiby SM et al (2002) Interpretation of rubella serology in pregnancy–pitfalls and problems. BMJ 325:147–148

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bolton P, Holt E, Ross A, Hughart N, Guyer B (1998) Estimating vaccination coverage using parental recall, vaccination cards, and medical records. Public Health Rep 113:521–526

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Bosma TJ, Corbett KM, Eckstein MB, O’Shea S, Vijayalakshmi P et al (1995) Use of PCR for prenatal and postnatal diagnosis of congenital rubella. J Clin Microbiol 33:2881–2887

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Bullens D, Smets K, Vanhaesebrouck P (2000) Congenital rubella syndrome after maternal reinfection. Clin Pediatr (Phila) 39:113–116

    Article  CAS  Google Scholar 

  10. Cordoba P, Nates S, Mahony J, Zapata M (1991) Kinetics of rubella-specific IgM antibody response in postnatal rubella infection. J Virol Methods 34:37–43

    Article  CAS  PubMed  Google Scholar 

  11. Cradock-Watson JE, Miller E, Ridehalgh MK, Terry GM, Ho-Terry L (1989) Detection of rubella virus in fetal and placental tissues and in the throats of neonates after serologically confirmed rubella in pregnancy. Prenatal diagnosis 9(2):91–96

    Google Scholar 

  12. D’Amelio R, Biselli R, Fascia G, Natalicchio S (2000) Measles-mumps-rubella vaccine in the Italian armed forces. JAMA 284:2059

    Article  PubMed  Google Scholar 

  13. De Santis M, Cavaliere A F, Straface G, Caruso A (2006) Rubella infection in pregnancy. Reprod Toxicol21:390–398

    Google Scholar 

  14. Edlich RF, Winters KL, Long WB 3rd, Gubler KD (2005) Rubella and congenital rubella (German measles). J Long Term Eff Med Implants 15:319–328

    Article  PubMed  Google Scholar 

  15. Enders G (1984) [Accidental rubella vaccination in pregnancy]. Dtsch Med Wochenschr 109:1806–1809

    Article  CAS  PubMed  Google Scholar 

  16. Enders G (1983) [Viral and other infections in pregnancy: diagnosis and prevention. Rubella, cytomegalic inclusion disease, herpes simplex, varicella zoster, Epstein-Barr, measles, mumps, enteroviruses, hepatitis, toxoplasmosis, syphilis 1] Z Geburtshilfe Perinatol 187:109–116

    Google Scholar 

  17. Enders M, Bartelt U, Knotek F, Bunn K, Strobel S et al (2013) Performance of the Elecsys Rubella IgG assay in the diagnostic laboratory setting for assessment of immune status. Clin Vaccine ImmunolCVI 20:420–426

    Article  CAS  Google Scholar 

  18. Enders M, Rist B, Enders G (2005) [Frequency of spontaneous abortion and premature birth after acute mumps infection in pregnancy] Gynäkol Geburtshilfliche Rundsch 45:39–43

    Google Scholar 

  19. Fabiyi A, Sever JL, Ratner N, Caplan B (1966) Rubella virus: growth characteristics and stability of infectious virus and complement-fixing antigen. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine 122:392–396

    Google Scholar 

  20. Fogel A, Handsher R, Barnea B (1985) Subclinical rubella in pregnancy–occurrence and outcome. Isr J Med Sci 21:133–138

    CAS  PubMed  Google Scholar 

  21. Gonik B (2011) Passive immunization: the forgotten arm of immunologically based strategies for disease containment. American journal of obstetrics and gynecology 205:444 e441–446

    Google Scholar 

  22. Grayston JT, Detels R, Chen KP, Gutman L, Kim KS et al (1969) Field trial of live attenuated rubella virus vaccine during an epidemic on Taiwan. Preliminary report of efficacy of three HPV-77 strain vaccines in the prevention of clinical rubella. JAMA 207:1107–1110

    Article  CAS  PubMed  Google Scholar 

  23. Ho-Terry L, Terry GM, Londesborough P (1990) Diagnosis of foetal rubella virus infection by polymerase chain reaction. J Gen Virol 71(Pt 7):1607–1611

    Article  PubMed  Google Scholar 

  24. Hofmann J, Kortung M, Pustowoit B, Faber R, Piskazeck U, Liebert UG (2000) Persistent fetal rubella vaccine virus infection following inadvertent vaccination during early pregnancy. J Med Virol 61:155–158

    Article  CAS  PubMed  Google Scholar 

  25. Hofmann J, Liebert UG (2005) Significance of avidity and immunoblot analysis for rubella IgM-positive serum samples in pregnant women. J Virol Methods 130:66–71

    Article  CAS  PubMed  Google Scholar 

  26. Johnson CE, Kumar ML, Whitwell JK, Staehle BO, Rome LP et al (1996) Antibody persistence after primary measles-mumps-rubella vaccine and response to a second dose given at four to six vs. eleven to thirteen years. Pediatr Infect Dis J 15:687–692

    Article  CAS  PubMed  Google Scholar 

  27. LeBaron CW, Forghani B, Matter L, Reef SE, Beck C et al (2009) Persistence of rubella antibodies after 2 doses of measles-mumps-rubella vaccine. J Infect Dis 200:888–899

    Article  PubMed  Google Scholar 

  28. Lutwick LI (1996) Postexposure prophylaxis. Infectious disease clinics of North America 10:899–915

    Google Scholar 

  29. Mace M, Cointe D, Six C, Levy-Bruhl D, Parent du Chatelet I et al (2004) Diagnostic value of reverse transcription-PCR of amniotic fluid for prenatal diagnosis of congenital rubella infection in pregnant women with confirmed primary rubella infection. J Clin Microbiol 42:4818–4820

    Article  PubMed Central  PubMed  Google Scholar 

  30. McLean H, Fiebelkorn AP, Temte JL, Wallace GS (2013) Prevention of Measles, Rubella, Congenital Rubella Syndrome, and Mumps, 2013. Summary Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 14:1–34

    Google Scholar 

  31. Mendelson E, Aboudy Y, Smetana Z, Tepperberg M, Grossman Z (2006) Laboratory assessment and diagnosis of congenital viral infections: Rubella, cytomegalovirus (CMV), varicella-zoster virus (VZV), herpes simplex virus (HSV), parvovirus B19 and human immunodeficiency virus (HIV). Reprod Toxicol 21:350–382

    Article  CAS  PubMed  Google Scholar 

  32. Morgan-Capner P (1989) Diagnosing rubella. BMJ 299:338–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Morgan-Capner P, Miller E, Vurdien JE, Ramsay ME (1991) Outcome of pregnancy after maternal reinfection with rubella. CDR 1(6):R57–59

    CAS  PubMed  Google Scholar 

  34. Okamoto K, Fujii K, Komase K (2010) Development of a novel TaqMan real–time PCR assay for detecting rubella virus RNA. J Virol Methods 168:267–271

    Article  CAS  PubMed  Google Scholar 

  35. Pardon F, Vilarino M, Barbero P, Garcia G, Outon E et al (2011) Rubella vaccination of unknowingly pregnant women during 2006 mass campaign in Argentina. J Infect Dis 204(2):S745–747

    Article  PubMed  Google Scholar 

  36. Parkman PD (1965) Biological Characteristics of Rubella Virus. Arch Gesamte Virusforsch 16:401–411

    Article  CAS  PubMed  Google Scholar 

  37. Poethko-Muller C, Mankertz A (2012) Seroprevalence of measles–, mumps– and rubella–specific IgG antibodies in German children and adolescents and predictors for seronegativity. PloS One 7:e42867

    Article  PubMed Central  PubMed  Google Scholar 

  38. Pustowoit B, Liebert UG (1998) Predictive value of serological tests in rubella virus infection during pregnancy. Intervirology 41:170–177

    Article  CAS  PubMed  Google Scholar 

  39. Redd SC, King GE, Heath JL, Forghani B, Bellini WJ, Markowitz LE (2004) Comparison of vaccination with measles–mumps–rubella vaccine at 9, 12, and 15 months of age. J Infect Dis 189 Suppl 1:S116–122

    Google Scholar 

  40. Revello MG, Baldanti F, Sarasini A, Zavattoni M, Torsellini M, Gerna G (1997) Prenatal diagnosis of rubella virus infection by direct detection and semiquantitation of viral RNA in clinical samples by reverse transcription–PCR. J Clin Microbiol 35:708–713

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Robert Koch-Institut (2012) Empfehlungen der Ständigen Impfkommission (STIKO) am Robert Koch–Institut / Stand: Juli 2012. Epidemiologisches Bulletin 2012

    Google Scholar 

  42. Robert Koch-Institut (2013) Impfquoten bei der Schuleingangsuntersuchung in Deutschland 2011. Epidemiologisches Bulletin 2013

    Google Scholar 

  43. Robert Koch-Institut (2007) Liste der vom Robert Koch–Institut geprüften und anerkannten Desinfektionsmittel und –verfahren. Bundesgesundheitsbl 50:1335–1356

    Google Scholar 

  44. Robinson JL, Lee BE, Preiksaitis JK, Plitt S, Tipples GA (2006) Prevention of congenital rubella syndrome––what makes sense in 2006? Epidemiologic reviews 28:81–87

    Google Scholar 

  45. Samoilovich EO, Kapustik LA, Feldman EV, Ermolovich MA, Svirchevskaia E et al (1998) [The immunological efficacy of the combined vaccine Trimovax intended for the prevention of measles, mumps and rubella]. Zhurnal mikrobiologii, epidemiologii, i immunobiologii:36–40

    Google Scholar 

  46. Sato HK, Sanajotta AT, Moraes JC, Andrade JQ, Duarte G et al, Sao Paulo Study Group for Effects of Rubella Vaccination During Pregnancy (2011) Rubella vaccination of unknowingly pregnant women: the Sao Paulo experience, 2001. J Infect Dis 204 Suppl 2:S737–744

    Google Scholar 

  47. Skendzel LP (1996) Rubella immunity. Defining the level of protective antibody. Am J Clin Pathol 106:170–174

    CAS  PubMed  Google Scholar 

  48. Soares, RC, Siqueira MM, Toscano CM, Maia Mde L, Flannery B et al (2011) Follow–up study of unknowingly pregnant women vaccinated against rubella in Brazil, 2001–2002. J Infect Dis 204 Suppl 2:S729–736

    Google Scholar 

  49. Strassburg MA, Greenland S, Stephenson TG, Weiss BP, Auerbach D et al (1985) Clinical effectiveness of rubella vaccine in a college population. Vaccine 3:109–112

    Article  CAS  PubMed  Google Scholar 

  50. Tang JW, Aarons E, Hesketh L M, Strobel S, Schalasta G et al (2003) Prenatal diagnosis of congenital rubella infection in the second trimester of pregnancy. Prenatal diagnosis 23:509–512

    Google Scholar 

  51. Thomas HI, Barrett E, Hesketh L M, Wynne A, Morgan-Capner P (1999) Simultaneous IgM reactivity by EIA against more than one virus in measles, parvovirus B19 and rubella infection. J Clin Virol 14:107–118

    Article  CAS  PubMed  Google Scholar 

  52. Thomas HI, Morgan-Capner P, Enders G, O’Shea S, Caldicott D, Best JM (1992) Persistence of specific IgM and low avidity specific IgG1 following primary rubella. J Virol Methods 39:149–155

    Article  CAS  PubMed  Google Scholar 

  53. Thomas HI, Morgan-Capner P, Roberts A, Hesketh L (1992) Persistent rubella-specific IgM reactivity in the absence of recent primary rubella and rubella reinfection. J Med Virol 36:188–192

    Article  CAS  PubMed  Google Scholar 

  54. Tipples G, Hiebert J (2011) Detection of measles, mumps, and rubella viruses. Methods Mol Biol 665:183–193

    Article  CAS  PubMed  Google Scholar 

  55. Tipples GA (2011) Rubella diagnostic issues in Canada. J Infect Dis 204 Suppl 2:S659–663

    Google Scholar 

  56. Vauloup-Fellous C, Grangeot-Keros L (2007) Humoral immune response after primary rubella virus infection and after vaccination. CVI 14:644–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Vauloup–Fellous C, Ursulet–Diser J, Grangeot–Keros L (2007) Development of a rapid and convenient method for determination of rubella virus–specific immunoglobulin G avidity. CVI 14:1416–1419

    Article  PubMed Central  PubMed  Google Scholar 

  58. Wandinger KP, Saschenbrecker S, Steinhagen K, Scheper T, Meyer W et al (2011) Diagnosis of recent primary rubella virus infections: significance of glycoprotein–based IgM serology, IgG avidity and immunoblot analysis. J Virol Methods 174:85–93

    Article  CAS  PubMed  Google Scholar 

  59. Watson JC, Hadler SC, Dykewicz CA, Reef S, Phillips L (1998) Measles, mumps, and rubella––vaccine use and strategies for elimination of measles, rubella, and congenital rubella syndrome and control of mumps: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. Recommendations and reports : Morbidity and mortality weekly report. Recommendations and reports / Centers for Disease Control 47:1–57

    Google Scholar 

  60. Weber B, Enders G, Schlosser R, Wegerich B, Koenig R et al (1993) Congenital rubella syndrome after maternal reinfection. Infection 21:118–121

    Article  CAS  PubMed  Google Scholar 

  61. White SJ, Boldt KL, Holditch SJ, Poland A, Jacobson RM (2012) Measles, mumps, and rubella. Clin Obstet Gynecol 55:550–559

    Article  PubMed Central  PubMed  Google Scholar 

  62. WHO (2009) Immunological basis for immunization: Rubella

    Google Scholar 

  63. WHO (2007) Manual for the laboratory diagnosis of measles and rubella virus infection, 2nd edition

    Google Scholar 

  64. WHO (2011) Rubella vaccines: WHO position paper

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Mankertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 DVV, GfV

About this chapter

Cite this chapter

Mankertz, A. (2014). Röteln. In: S2k-Leitlinie - Labordiagnostik schwangerschaftsrelevanter Virusinfektionen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43481-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43481-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43480-2

  • Online ISBN: 978-3-662-43481-9

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics