Skip to main content

Mitochondrial DNA 4,977-bp Deletion in Paired Oral Cancer and Precancerous Lesions Revealed by Laser Microdissection and Real-Time Quantitative PCR

  • Chapter
Mitochondrial Pathogenesis

Part of the book series: Annals of the New York Academy of Sciences ((ANYAS,volume 1011))

  • 264 Accesses

Abstract

Oral cancer is the fourth leading cause of cancer deaths among men in Taiwan and is closely associated with areca quid chewing habits. Recent studies showed that mitochondrial DNA (mtDNA) mutations occur in various tumors, including oral cancers, and that the accumulation of mtDNA deletions could be an important contributor to carcinogenesis. Using laser micro-dissection, we have analyzed mtDNA deletions by pairwise comparisons in oral cancer, precancerous cells, and their adjacent submucosal stoma tissues in 12 patients with areca quid chewing history. Real-time quantitative polymerase chain reaction (RTQPCR) was performed to detect and quantify mtDNA with the 4,977-bp deletion in the histologically defined specified cell groups. Quantitative analysis of 60 samples by RTQPCR revealed that the av-erage proportions of 4,977-bp deleted mtDNA over total mtDNA were 0.137%, 0.367%, and 0.001% in cancer, precancer cells, and lymphocytes of lymph node biopsies, respectively. Pairwise analysis of the proportion of mtDNA deletion in cancer, precancer, and their stroma tissues revealed a consistent trend among these patients. All of the patients (12/12) presented a higher proportion of mtDNA with 4,977-bp deletion in the lesions than in the lymphocytes, with average increases of 198-fold in cancer and 546-fold in precancer cells. A decrease in the proportion of deleted mtDNA was observed in 8 of 12 patients when the disease progressed from precancer to cancer lesions. Interestingly, 7 of 12 cancer tissues and 8 of 12 precancer lesions exhibited an average of 6.3-fold and 17.4-fold increases in the proportion of 4,977-bp deleted mtDNA in the stromal cells than in the lesion cells, respectively. The observation that the proportion of 4,977-bp deleted mtDNA in all oral lesions was higher than normal and consistently decreased during cancer progression from precancer to primary cancer suggests that accumulation and subsequent cytoplasmic segregation of the mutant mtDNA during cell division may play an important role in oral carcinogenesis. This study also demonstrates that laser microdissection combined with RTQPCR is an efficient and sensitive tool to gain insight into the role that mtDNA mutation may play in carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shiu, M.N., T.H. Chan, S.H. Chang, et al. 2000. Risk factors for leukoplakia and malignant transformation to oral carcinoma: a leukoplakia cohort in Taiwan. Br. J. Cancer 82: 1871–1874.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Nair, U.J., G. Obe, M. Friessen, et al. 1992. Role of lime in the generation of reactive oxygen species from betel-quid ingredients. Environ. Health Perspect. 98: 203–205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chen, C.L., C.W. Chi & T.Y. Liu. 2002. Hydroxyl radical formation and oxidative DNA damage induced by areca quid in vivo. J. Toxicol. Environ. Health A 65: 327–336.

    Article  CAS  PubMed  Google Scholar 

  4. Mandavilli, B.S., J.H. Santos & B. Van Houten. 2002. Mitochondrial DNA repair and aging. Mutat. Res. 509: 127–151.

    Article  CAS  PubMed  Google Scholar 

  5. Wei, Y.H. 1998. Oxidative stress and mitochondrial DNA mutations in human aging. Proc. Soc. Exp. Biol. Med. 217: 53–63.

    Article  CAS  PubMed  Google Scholar 

  6. Bianchi, N.O., M.S. Bianchi & S.M. Richard. 2001. Mitochondrial genome instability in human cancers. Mutat. Res. 488: 9–23.

    Article  CAS  PubMed  Google Scholar 

  7. Matsuyama, W., M. Nakagawa, J. Wkimoto, et al. 2003. Mitochondrial DNA mutation correlates with stage progression and prognosis in non-small cell lung cancer. Hum. Mutat. 21: 441–443.

    Article  CAS  PubMed  Google Scholar 

  8. Tong, B.C., P.K. Ha, K. Dhir, et al. 2003. Mitochondrial DNA alterations in thyroid cancer. J. Surg. Oncol. 82: 170–173.

    Article  CAS  PubMed  Google Scholar 

  9. Durham, S.E., K.J. Krishnan, J. Betts, et al. 2003. Mitochondrial DNA damage in non-melanoma skin cancer. Br. J. Cancer 88: 90–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Nagy, A., M. Wilhelm, F. Sukosd, et al. 2002. Somatic mitochondrial DNA mutations in human chromophobe renal cell carcinomas. Genes Chromosomes Cancer 35: 256–260.

    Article  CAS  PubMed  Google Scholar 

  11. Tamura, G., S. Nishizuka, C. Maesawa, et al. 1999. Mutations in mitochondrial control region DNA in gastric tumours of Japanese patients. Eur. J. Cancer 35: 316–319.

    Article  CAS  PubMed  Google Scholar 

  12. Tan, D.J., R.K. Bai & L.J. Wong. 2002. Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res. 62: 972–976.

    CAS  PubMed  Google Scholar 

  13. Lee, H.C., P.H. Yin, T.N. Yu, et al. 2001. Accumulation of mitochondrial DNA deletions in human oral tissues—effects of betel quid chewing and oral cancer. Mutat. Res. 493: 67–74.

    Article  CAS  PubMed  Google Scholar 

  14. Tan, D.J., J. Chang, W.L. Chen, et al. 2003. Novel heteroplasmic frameshift and missense somatic mitochondrial DNA mutations in oral cancer of betel quid chewers. Genes Chromosomes Cancer 37: 186–194.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Y.K., H.C. Huang, C.C. Lin, et al. 1999. Primary oral squamous cell carcinoma: an analysis of 703 cases in southern Taiwan. Oral Oncol. 35: 173–179.

    Article  CAS  PubMed  Google Scholar 

  16. Stich, H.F. & F. Anders. 1989. The involvement of reactive oxygen species in oral cancers of betel quid/tobacco chewers. Mutat. Res. 214: 47–61.

    Article  CAS  PubMed  Google Scholar 

  17. Bhat, H.K. 2002. Depletion of mitochondrial DNA and enzyme in estrogen-induced hamster kidney tumors: a rodent model of hormonal carcinogenesis. J. Biochem. Mol. Toxicol. 16: 1–9.

    Article  CAS  PubMed  Google Scholar 

  18. Rogounovitch, T.I., VA. Saenko, Y. Shimizu-Yoshida, et al. 2002. Large deletions in mitochondrial DNA in radiation-associated human thyroid tumors. Cancer Res. 62: 7031–7041.

    CAS  PubMed  Google Scholar 

  19. Wei, Y.H. 1992. Mitochondrial DNA alterations as ageing-associated molecular events. Mutat. Res. 275: 145–155.

    Article  CAS  PubMed  Google Scholar 

  20. Bandy, B. & A.J. Davison. 1990. Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radical Biol. Med. 8: 523–539.

    Article  CAS  Google Scholar 

  21. Bohr, V. & G.L. Dianov. 1998. Oxidative DNA damage processing and changes with aging. Toxicol. Lett. 102-103: 47–52.

    Article  CAS  PubMed  Google Scholar 

  22. Kawashima, S., S. Ohta, Y. Kagawa, et al. 1994. Widespread tissue distribution of multiple mitochondrial DNA deletions in familial mitochondrial myopathy. Muscle Nerve 17: 741–746.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, H.C., C.Y. Pang, H.S. Hsu, et al. 1994. Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim. Biophys. Acta 1226: 37–43.

    Article  CAS  PubMed  Google Scholar 

  24. Turker, M.S. 2000. Somatic cell mutations: can they provide a link between aging and cancer? Mech. Ageing Dev. 117: 1–19.

    Article  CAS  PubMed  Google Scholar 

  25. Polyak, K., Y. Li, H. Zhu, et al. 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat. Genet. 20: 291–293.

    Article  CAS  PubMed  Google Scholar 

  26. Fukushima, S., K. Honda, M. Awane, et al. 1995. The frequency of 4977 base pair deletion of mitochondrial DNA in various types of liver disease and in normal liver. Hepatology 21: 1547–1551.

    CAS  PubMed  Google Scholar 

  27. Turner, C., C. Killoran, N.S. Thomas, et al. 2003. Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer. Hum. Genet. 112: 303–309.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dar-Bin Shieh or Ying-Tai Jin .

Editor information

Hong Kyu Lee Salvatore DiMauro Masashi Tanaka Yau-Huei Wei

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shieh, DB., Chou, WP., Wei, YH., Wong, TY., Jin, YT. (2004). Mitochondrial DNA 4,977-bp Deletion in Paired Oral Cancer and Precancerous Lesions Revealed by Laser Microdissection and Real-Time Quantitative PCR. In: Lee, H.K., DiMauro, S., Tanaka, M., Wei, YH. (eds) Mitochondrial Pathogenesis. Annals of the New York Academy of Sciences, vol 1011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-41088-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41088-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-1-57331-491-6

  • Online ISBN: 978-3-662-41088-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics