Skip to main content

Vibration Communication in Vertebrates

  • Conference paper
Ecology of Sensing

Abstract

In this chapter I shall attempt to explore the ways in which several vertebrate groups utilize vibrational or seismic signals Specifically, I hope to encourage the study of animals other than those used in the standard mammalian preparations by emphasizing that an animal’s natural acoustic behavior often leads to insights concerning the underlying physiological mechanisms. Applied across a wide range of taxa, this neuroethological approach has yielded a great deal of information about vertebrate behaviors including bat echolocation, sound localization by owls, electrolocation and object avoidance in electric fishes, song learning in passerine birds, and frog acoustic and vibrational communication. Among the vertebrates, strong evidence for seismic signal detection and/or communication has been documented for only a handful of cases. These animals appear to rely on surface (Rayleigh) waves to transmit vibrational signals. In Leptodactylus and perhaps in Crotalus, the apparatus for detecting these signals resides both in the sensory epithelium of the inner ear and in its associated sensory structures and appears to take advantage of the multimodal response properties of the sensory hair cells. Methods used to explore these responses and new behavioral evidence for seismic cue detection in several animal groups are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aicher B, Tautz J (1990) Vibrational communication in the fiddler crab, Uca pugilator I. Signal transmission through the substratum. J Comp Physiol 166: 345–353

    Google Scholar 

  • Barnett KE, Cocroft RB, Fleishman LJ (1999) Possible communication by substrate vibration in a chameleon. Copeia 1999: 225–228

    Article  Google Scholar 

  • Benedix JH Jr, Pedemonte M, Velluti R, Narins PM (1994) Temperature dependence of two-tone rate suppression in the northern leopard frog Rana pipiens pipiens. J Acoust Soc Am 96: 2738–2745

    Article  PubMed  Google Scholar 

  • de Boer E, de Jongh, HR (1978) On cochlear encoding: potentialities and limitations of the reverse-correlation technique. J Acoust Soc Am 63: 115–135

    Article  PubMed  CAS  Google Scholar 

  • Brownell P (1977) Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197: 479–482

    Article  PubMed  CAS  Google Scholar 

  • Brownell P, Farley RD (1979a) Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. J Comp Physiol 131: 23–30

    Article  Google Scholar 

  • Brownell P, Farley RD (1979b) Orientation to vibrations in sand by the nocturnal scorpion, Paruroctonus mesaensis. J Comp Physiol 131: 31–38

    Article  Google Scholar 

  • Capranica RR (1976) Auditory system: morphology and physiology of the auditory system. In: R Llinas, W Precht (eds) Frog Neurobiology. Berlin, Springer-Verlag, pp 551–575

    Chapter  Google Scholar 

  • Capranica RR, Moffat, AJM (1980) Nonlinear properties of the peripheral auditory system of anurans. In: AN Popper, RR Fay (eds) Comparative Studies of Hearing in Vertebrates, New York, Springer-Verlag, pp 139–165

    Chapter  Google Scholar 

  • Christensen-Dalsgaard J, Jorgensen MB (1996) One-tone suppression in the frog auditory nerve. J Acoust Soc Am 100: 451–457

    Article  PubMed  CAS  Google Scholar 

  • Christensen-Dalsgaard, J, Narins, PM (1993) Sound and vibration sensitivity of VIIIth nerve fibers in the frogs Leptodactylus albilabris and Rana pipiens pipiens. J Comp Physiol A 172: 653–662

    Article  PubMed  CAS  Google Scholar 

  • Cooper FC (1928) On the ear region of certain of the Chrysochloridae. Phil Trans R Soc [Biol] 216: 265–283

    Article  Google Scholar 

  • van Dijk P, Wit HP, Segenhout JM (1997a) Dissecting the frog inner ear with Gaussian noise I Application of high-order Wiener kernel analysis. Hearing Res 114: 229–242

    Article  Google Scholar 

  • van Dijk P, Wit HP, Segenhout JM (1997b) Dissecting the frog inner ear with Gaussian noise II Temperature dependence of inner-ear function. Hearing Res 114: 243–251

    Article  Google Scholar 

  • van Dijk P, Wit HP, Segenhout JM, Tubis A (1994) Wiener kernel analysis of inner ear function in the American bullfrog. J Acoust Soc Am 95: 904–919

    Article  PubMed  Google Scholar 

  • Dimmit MA, Ruibal R (1980) Environmental correlates of emergences in spadefoot toads (Scaphiopus). J Herpetol 14: 21–29

    Article  Google Scholar 

  • DuBost G (1968) Les mammiferes souterrains 1 L’adaptation morphologique à la vie souterrain. Rev Écol Biol Sol 5: 99–133

    Google Scholar 

  • Dunia R, Narins PM (1989) Temporal integration in an anuran auditory nerve. Hearing Res 39: 287–298

    Article  CAS  Google Scholar 

  • DuToit JT, Jarvis JUM, Louw GN (1985) Nutrition and burrowing energetics of the Cape mole-rat Georychus capensis. Oecologia 66: 81–87

    Article  Google Scholar 

  • Evans EF (1977) Frequency selectivity at high signal levels of single units in cochlear nerve and cochlear nucleus. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London, Academic Press, pp 185–192

    Google Scholar 

  • Feng AS (1980) Directional characteristics of the acoustic receiver of the leopard frog (Rana pipiens): A study of eighth nerve auditory responses. J Acoust Soc Am 68: 1107–1114

    Article  PubMed  CAS  Google Scholar 

  • Feng AS (1982) Quantitative analysis of intensity-rate and intensity-latency functions in peripheral auditory nerve fibers of northern leopard frogs (Rana pipiens). Hearing Res 6: 241–246

    Article  CAS  Google Scholar 

  • Feng AS, Narins PM, Capranica RR (1975) Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): their peripheral origins and frequency selectivities. J Comp Physiol 100: 221–229

    Article  Google Scholar 

  • Fielden U, Hickman GC, Perrin MR (1992) Locomotory activity in the Namib Desert golden mole, Eremitalpa granti namibensis ( Chrysochloridae ). J Zool Lond 226: 329–344

    Google Scholar 

  • Fielden LJ, Perrin MR, Hickman GC (1990) Feeding ecology and foraging behaviour of the Namib Desert golden mole, Eremitalpa granti namibensis ( Chrysochloridae ). J Zool Lond 220: 367–389

    Google Scholar 

  • Findlay GH (1944) The development of the auditory ossicles in the elephant shrew, the tenrec and the golden mole. Proc Zool Soc Lond 114: 91–99

    Google Scholar 

  • Frishkopf LS, Capranica RR, Goldstein MH Jr (1968) Neural coding in the bullfrog’s auditory system-a teleological approach. Proc IEEE 56: 969–980

    Article  Google Scholar 

  • Glaw F, Vences M (1994) A Field Guide to the Amphibians and Reptiles of Madagascar. Moos Druck, Leverkusen and FARBO, Köln, Germany

    Google Scholar 

  • Hartline PH (1971) Physiological basis for detection of sound and vibration in snakes. J Exp Biol 54: 349–371

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1992) Hearing and sound localization in blind mole rats (Spalax ehrenbergi). Hearing Res 62: 206–216

    Article  CAS  Google Scholar 

  • Hetherington TE (1989) The use of vibratory cues for detection of insect prey by the sandswimming lizard Scincus scincus. Anim Behav 37: 290–297

    Article  Google Scholar 

  • Holm E (1969) Contribution to the knowledge of biology of the Namib Desert golden mole, Eremitalpa granti namibensis Bauer and Niethammer 1959. Sci Pap Namib Des Res 41: 37–42

    Google Scholar 

  • Lee YW, Schetzen M (1965) Measurement of the Wiener kernels of a nonlinear system by cross-correlation. Int J Control 2: 237–254

    Article  Google Scholar 

  • Lewis ER, Narins PM (1985) Do frogs communicate with seismic signals? Science 227: 187–189

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Narins PM (1999) The acoustic periphery of amphibians: anatomy and physiology. In: RR Fay, AN Popper (eds) Comparative Hearing: Fish and Amphibians, New York, Springer-Verlag, pp 101–154

    Chapter  Google Scholar 

  • Liff HJ, Goldstein MH Jr (1970) Peripheral inhibition in auditory fibers in the frog. J Acoust Soc Am 47: 1538–1547

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis PZ, Marmarelis VZ (1978) Analysis of Physiological Systems. The white-noise Approach. Plenum Press, New York, London

    Google Scholar 

  • Martin J (1992) Chameleons-Nature ‘s Masters of Disguise. Blandford, London.

    Google Scholar 

  • Mason M (1998) Functional anatomy of the middle ear of insectivores. J Acoust Soc Am 103: 2827

    Article  Google Scholar 

  • Mayer Av, O’Brien G, Sarmiento EE (1995) Functional and systematic implications of the ear in golden moles ( Chrysochloridae ). J Zool London 236: 417–430

    Google Scholar 

  • Megela AL (1984) Diversity of adaptation patterns in responses of eighth nerve fibers in the bullfrog, Rana catesbeiana. J Acoust Soc Am 75: 1155–1162

    Article  PubMed  CAS  Google Scholar 

  • Megela AL, Capranica RR (1981) Response patterns to tone bursts in peripheral auditory systems of anurans. J Neurophysiol 46: 465–478

    PubMed  CAS  Google Scholar 

  • Minter LR (1998) Aspects of the reproductive biology of Breviceps. Doctoral thesis, Johannesburg, Republic of South Africa, University of the Witwatersrand, 281 p

    Google Scholar 

  • Narins PM (1987) Coding of signals in noise by amphibian auditory nerve fibers. Hearing Res 26: 145–154

    Article  CAS  Google Scholar 

  • Narins PM (1990) Seismic communication in anuran amphibians. Bioscience 40: 268–274

    Article  Google Scholar 

  • Narins PM, Feng AS, Yong H-S, Christensen-Dalsgaard J (1998) Morphological, behavioral, and genetic divergence of sympatric morphotypes of the treefrog Polypedates leucomystax in Peninsular Malaysia. Herpetologica 54: 129–142

    Google Scholar 

  • Narins PM, Lewis ER, Jarvis JUM, O’Riain J (1997) The use of seismic signals by fossorial southern African mammals: a neuroethological gold mine. Brain Res Bull 44: 641–646

    Article  PubMed  CAS  Google Scholar 

  • Narins PM, Lewis ER, Lopez PT, Moore SW (1985) Acoustic behavior of a vibration-sensitive frog. J Acoust Soc Am 77: Suppl no 1, S52

    Article  Google Scholar 

  • Nevo E (1961) Observations on Israeli populations of the mole rat Spalax E. ehrenbergiNehring 1898. Mammalia 25: 127–144

    Article  Google Scholar 

  • Nevo E, Heth G, Pratt H (1991) Seismic communication in a blind subterranean mammal: a major somatosensory mechanism in adaptive evolution underground. Proc Natl Acad Sci USA 88: 1256–1260

    Article  PubMed  CAS  Google Scholar 

  • O’Connell CE, Amason BT., Hart LA (1997) Seismic transmission of elephant vocalizations and movement. J Acoust Soc Am 102: 3124

    Article  Google Scholar 

  • O’Connell CE, Hart LA, Amason BT (1999). Comments on “Elephant hearing” [Reuter T, J Acoust Soc Am 104, 1122–1123 (1998)]. J Acoust Soc Am 105: 2051–2052

    PubMed  Google Scholar 

  • Rado R, Himelfarb M, Arensburg B, Terkel J, Wollberg Z (1989) Are seismic communication signals transmitted by bone conduction in the blind mole rat? Hearing Res 41: 23–30

    Article  CAS  Google Scholar 

  • Rado R, Levi N, Hauser H, Witcher J, Adler N, Intrator N, Wollberg Z, Terkel J (1987) Seismic signalling as a means of communication in a subterranean mammal. Anim Behav 35: 1249–1251

    Article  Google Scholar 

  • Rado R, Terkel J, Wollberg Z (1998) Seismic communication signals in the blind mole rat (Spalax ehrenbergi): electrophysiological and behavioral evidence for their processing by the auditory system. J Comp Physiol A 183: 503–511

    Article  PubMed  CAS  Google Scholar 

  • Randall JA (1984) Territorial defense and advertisement by footdrumming in bannertail kangaroo rats (Dipodomys spectabilis) at high and low population densities. Behav Ecol Sociobiol 16: 11–20

    Article  Google Scholar 

  • Randall JA, Lewis ER (1997) Seismic communication between the burrows of kangaroo rats, Dipodomys spectabilis. J Comp Physiol A 181: 525–531

    Article  PubMed  CAS  Google Scholar 

  • Raxworthy CJ (1991) Field observations on some dwarf chameleons (Brookesia spp.) from rainforest areas of Madagascar, with the description of a new species. J. Zool Lond 224: 11–25

    Article  Google Scholar 

  • Reuter T, Nummela S, Hemilä S (1998) Elephant hearing. J Acoust Soc Am 104: 1122–1123

    Article  PubMed  CAS  Google Scholar 

  • Wiener N (1958) Nonlinear Problems in Random Theory. MIT Press, Cambridge, MA

    Google Scholar 

  • Wolodkin G, Yamada WM, Lewis ER, Henry KR (1997) Spike rate models for auditory fibers. In: ER Lewis, GR Long, RF Lyon, PM Narins, CR Steele, E Hecht-Poinar (eds) Diversity in auditory mechanics. Singapore, World Scientific Press, pp 104–110

    Google Scholar 

  • Yamada WM (1997) Second-order Wiener Kernel Analysis of Auditory Afferent Axons of the North American Bullfrog and Mongolian Gerbil Responding to Noise. Doctoral dissertation, Graduate Group in Neurobiology, University of California, Berkeley

    Google Scholar 

  • Yamada WM, Lewis ER (1999) Predicting the temporal responses of non-phaselocking bullfrog auditory units to complex acoustic waveforms. Hearing Res 130: 155–170

    Article  CAS  Google Scholar 

  • Yamada WM, Lewis ER (2000) Demonstrating the Wiener kernel description of tuning and suppression in an auditory afferent fiber: Predicting the AC and DC responses to a complex novel stimulus. In: H Wada, T Takasaka (eds) Symposium on Recent Developments in Auditory Mechanics, Singapore, World Scientific Publishers, In press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Narins, P.M. (2001). Vibration Communication in Vertebrates. In: Barth, F.G., Schmid, A. (eds) Ecology of Sensing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22644-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22644-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08619-9

  • Online ISBN: 978-3-662-22644-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics