Skip to main content

Structural Determinants of Receptor Function

  • Chapter
G Protein-Coupled Receptors

Abstract

Investigation of structure-function relationships in G protein-coupled receptors has been directed towards identification of residues and do mains of the receptors which are of significance in ligand binding, functional activation, G protein coupling and desensitization of receptor activity. Much attention has been focused on rhodopsin, and the adrenergic and muscarinic acetylcholine receptor subtypes, since these were among the first members of the receptor superfamily to be isolated. Determination of structural determinants of function in these receptors has provided a valuable framework for delineation of structure-function relationships in other members of the receptor superfamily. It is becoming increasingly apparent that structural determinants of function are contributed by sequence features which are discontinuous within the primary protein sequence and which arise from the three-dimensional structure of the receptor protein and the molecular species with which it interacts, namely its extracellular ligand(s) and intracellular G proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oprian DD. The ligand-binding domain of rhodopsin and other G protein-linked receptors. J Bioenerg Biomemb 1992; 24: 211–217.

    Article  CAS  Google Scholar 

  2. Hargrave PA, McDowell JH, Siemiatkowski JEC et al. The carboxy-terminal one-third of bovine rhodopsin: its structure and function. Vision Res 1982; 22: 1429–1438.

    Article  PubMed  CAS  Google Scholar 

  3. Thomas DD, Stryer L. Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes. J Mol Biol 1982; 154: 145–157.

    Article  PubMed  Google Scholar 

  4. Hargrave PA, McDowell JH. Rhodopsin and phototransduction: a model system for G protein-linked receptors. FASEB J 1992; 6: 2323–2331.

    PubMed  CAS  Google Scholar 

  5. Khorana HG. Rhodopsin, photoreceptor of the rod cell. An emerging pattern for structure and function. J Biol Chem 1992; 267: 1–4.

    Google Scholar 

  6. Hargrave PA, Hamm HE, Hofmann KP. Interaction of rhodopsin with the G-protein, transducin. BioEssays 1993; 15: 43–50.

    Article  PubMed  CAS  Google Scholar 

  7. Hamm HE. Molecular interactions between the photoreceptor G protein and rhodopsin. Cell Mol Neurobiol 1991; 11: 563–578.

    Article  PubMed  CAS  Google Scholar 

  8. Farahbakhsh ZT, Hideg K, Hubbell WL. Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. Science 1993; 262: 1416–1419.

    Article  PubMed  CAS  Google Scholar 

  9. Weitz CJ, Nathans J. Histidine residues regulate the transition of photoexcited rhodopsin to its active conformation, metarhodopsin II. Neuron 1992; 8: 465–472.

    Article  PubMed  CAS  Google Scholar 

  10. Dixon RAF, Sigal IS, Rands E et al. Ligand binding to the ß-adrenergic receptor involves its rhodopsin-like core. Nature 1987; 326: 73–77.

    Article  PubMed  CAS  Google Scholar 

  11. Dixon RAF, Sigal IS, Candelore MR et al. Structural features required for ligand binding to the I3-adrenergic receptor. EMBO J 1987; 6: 3269–3275.

    PubMed  CAS  Google Scholar 

  12. Ostrowski J, Kjelsberg MA, Caron MG et al. Mutagenesis of the 132-adrenergic receptor: how structure elucidates function. Annu Rev Pharmacol Toxicol 1992; 32: 167–183.

    Article  PubMed  CAS  Google Scholar 

  13. Saravese TM, Wang C-D, Fraser CM. Site-directed mutagenesis of the rat m, muscarinic acetylcholine receptor. Role of conserved cysteines in receptor function. J Biol Chem 1992; 267: 11439–11448.

    Google Scholar 

  14. Dohlman HG, Thorner J, Caron MG et al. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 1991; 60: 653–688.

    Article  PubMed  CAS  Google Scholar 

  15. Tota MR, Candelore MR, Dixon RAF et al. Biophysical and genetic analysis of the ligand-binding site of the (3-adrenoceptor. Trends Pharmacol Sci 1991; 12: 4–6.

    Article  PubMed  CAS  Google Scholar 

  16. Kobilka B. Adrenergic receptors as models for G protein-coupled receptors. Annu Rev Neurosci 1992; 15: 87–114.

    Article  PubMed  CAS  Google Scholar 

  17. Saravese TM, Fraser CM. In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem J 1992; 283: 1–19.

    Google Scholar 

  18. Strosberg AD. Structure, function, and regulation of adrenergic receptors. Prot Sci 1993; 2: 1198–1209.

    Article  CAS  Google Scholar 

  19. Venter JC, Fraser CM. Structure and molecular biology of transmitter receptors. Am Rev Respir Dis 1990; 141: S99 - S105.

    Article  PubMed  CAS  Google Scholar 

  20. Brann MR, Klimkowski VJ, Ellis J. Structure/function relationships of muscarinic acetylcholine receptors. Life Sci 1993; 52: 405–412.

    Article  PubMed  CAS  Google Scholar 

  21. Wess J. Molecular basis of muscarinic acetylcholine receptor function. Trends Pharmacol Sci 1993; 14: 308–313.

    Article  PubMed  CAS  Google Scholar 

  22. Wess J. Mutational analysis of muscarinic acetylcholine receptors: structural basis of ligand/receptor/G protein interactions. Life Sci 1993; 53: 1447–1463.

    Article  PubMed  CAS  Google Scholar 

  23. Strader CD, Sigal IS, Dixon RAF. Mapping the functional domains of the j3-adrenergic receptor. Am J Respir Cell Mol Biol 1989; 1: 81–86.

    Article  PubMed  CAS  Google Scholar 

  24. Green SA, Cole G, Jacinto M et al. A polymorphism of the human 132-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 1993; 268: 23116–23121.

    PubMed  CAS  Google Scholar 

  25. Strader CD, Sigal IS, Dixon RAF. Structural basis of [3-adrenergic receptor function. FASEB J 1989; 3: 1825–1832.

    PubMed  CAS  Google Scholar 

  26. Frielle T, Daniel KW, Caron MG et al. Structural basis of ß-adrenergic receptor subtype specificity studied with chimeric 01432-adrenergic receptors. Proc Natl Acad Sci USA 1988; 85: 9494–9498.

    Article  PubMed  CAS  Google Scholar 

  27. Kobilka BK, Kobilka TS, Daniel K et al. Chimeric a2-, 02-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 1988; 240: 1310–1316.

    Article  PubMed  CAS  Google Scholar 

  28. Suryanarayana S, Daunt DA, Von Zastrow M et al. A point mutation in the seventh hydrophobic domain of the a2 adrenergic receptor increases its affinity for a family of ß receptor antagonists. J Biol Chem 1991; 266: 15488–15492.

    PubMed  CAS  Google Scholar 

  29. Wilson AL, Guyer CA, Cragoe EJ et al. The hydrophobic tryptic core of the porcine a2-adrenergic receptor retains allosteric modulation of binding by Na’, H’, and 5amino-substituted amiloride analogs. J Biol Chem 1990; 265: 17318–17322.

    PubMed  CAS  Google Scholar 

  30. Strosberg AD, Camoin L, Blin N et al. In receptors coupled to GTP-binding proteins, ligand binding and G-protein activation is a multistep dynamic process. Drug Des Discov 1993; 9: 199–211.

    PubMed  CAS  Google Scholar 

  31. Seeman P. Receptor amino acid sequences of G-linked receptors. First Edition. Toronto: University of Toronto, 1992.

    Google Scholar 

  32. Wess J, Gdula D, Brann MR. Site-directed mutagenesis of the m3 muscarinic receptor: identification of a series of threonine and tyrosine residues involved in agonist but not antagonist binding. EMBO J 1991; 10: 3729–3734.

    PubMed  CAS  Google Scholar 

  33. Wess J, Nanavati S, Vogel Z et al. Functional role of proline and tryptophan residues highly conserved among G protein-coupled receptors studied by mutational analysis of the m3 muscarinic receptor. EMBO J 1993; 12: 331–338.

    PubMed  CAS  Google Scholar 

  34. Wess J, Bonner TI, Dörje F et al. Delineation of muscarinic receptor domains conferring selectivity of coupling to guanine nucle- otide proteins and second messengers. Mol Pharmacol 1990; 38: 517–523.

    PubMed  CAS  Google Scholar 

  35. Lai J, Nunan L, Waite SL et al. Chimeric M1/M2 muscarinic receptors: correlation of ligand selectivity and functional coupling with structural modifications. J Pharmacol Exp Ther 1992; 262: 173–180.

    PubMed  CAS  Google Scholar 

  36. Wess J, Bonner TI, Brann MR. Chimeric m2/m3 muscarinic receptors: role of carboxy terminal receptor domains in selectivity of ligand binding and coupling to phosphoinositide hydrolysis. Mol Pharmacol 1990; 38: 872–877.

    PubMed  CAS  Google Scholar 

  37. Wess J, Gdula D, Brann MR. Structural basis of the subtype selectivity of muscarinic antagonists: a study with chimeric m2/ m5 muscarinic receptors. Mol Pharmacol 1992; 41: 369–374.

    PubMed  CAS  Google Scholar 

  38. Drübbisch V, Lameh J, Philip M et al. Mapping the ligand binding pocket of the human muscarinic cholinergic receptor Hml: contribution of tyrosine-82. Pharm Res 1992; 9: 1644–1647.

    Article  PubMed  Google Scholar 

  39. Wess J, Maggio R, Palmer JR. Role of conserved threonine and tyrosine residues in acetylcholine binding and muscarinic receptor activation. A study with m3 muscarinic receptor point mutants. J Biol Chem 1992; 267: 19313–19319.

    PubMed  CAS  Google Scholar 

  40. Tanabe Y, Masu M, Ishii T et al. A family of metabotropic glutamate receptors. Neuron 1992; 8: 169–179.

    Article  PubMed  CAS  Google Scholar 

  41. Pin J-P, Waeber C, Prezeau L et al. Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus oocytes. Proc Natl Acad Sci USA 1992; 89: 10331–10335.

    Article  PubMed  CAS  Google Scholar 

  42. Abe T, Sugihar H, Nawa H et al. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2’ signal transduction. J Biol Chem 1992; 267: 13361–13368.

    PubMed  CAS  Google Scholar 

  43. Nakajima Y, Iwakabe H, Akazawa C et al. Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2amino-4-phosphonobutyrate. J Biol Chem 1993; 268: 11868–11873.

    PubMed  CAS  Google Scholar 

  44. Okamoto N, Hori S, Akazawa C et al. Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem 1994; 269: 1231–1236.

    PubMed  CAS  Google Scholar 

  45. Takahashi K, Tsuchida K, Tanabe Y et al. Role of the large extracellular domain of metabotropic glutamate receptors in agonist selectivity determination. J Biol Chem 1993; 268: 19341–19345.

    PubMed  CAS  Google Scholar 

  46. Moyle WR, Bernard MP, Myers RV et al. Leutropin/43-adrenergic receptor chimeras bind choriogonadotropin and adrenergic ligands but are not expressed at the cell surface. J Biol Chem 1991; 266: 10807–10812.

    PubMed  CAS  Google Scholar 

  47. Tsai-Morris CH, Buczko E, Wand W et al. Intronic nature of the rat luteinizing hormone receptor gene defines a soluble receptor subspecies with hormone binding activity. J Biol Chem 1990; 265: 19385–19388.

    PubMed  CAS  Google Scholar 

  48. Xie Y-B, Wang HY, Segaloff DL. Extracellular domain of lutropin/choriogonadotropin receptor expressed in transfected cells binds choriogonadotropin with high affinity. J Biol Chem 1990; 265: 21411–21414.

    PubMed  CAS  Google Scholar 

  49. Reichert LE, Dattatreyamurty B, Grasso P et al. Structure-function relationships of the glycoprotein hormones and their receptors. Trends Pharmacol Sci 1991; 12: 199–203.

    Article  PubMed  CAS  Google Scholar 

  50. Braun T, Schofield PR, Sprengel R. Amino-terminal leucine-rich repeats in gonadotropin receptors determine hormone selectivity. EMBO J 1991; 10: 1885–1890.

    PubMed  CAS  Google Scholar 

  51. Dias JA. Recent progress in structure-function and molecular analyses of the pituitary/ placental glycoprotein hormone receptors. Biochim Biophys Acta 1992; 1135: 278–294.

    Article  Google Scholar 

  52. Segaloff DL, Ascoli M. The lutropin/ choriogonadotropin receptor… 4 years later. Endocr Rev 1993; 14: 324–347.

    PubMed  CAS  Google Scholar 

  53. Dattatreyamurty B, Reichert LE. A synthetic peptide corresponding to amino acids 9–30 of the extracellular domain of the follitropin (FSH) receptor specifically binds FSH. Mol Cell Endocrinol 1992; 87: 9–17.

    Article  PubMed  CAS  Google Scholar 

  54. Nagayama Y, Russo D, Chazenbalk GD et al. Extracellular domain chimeras of the TSH and LH/CG receptors reveal the mid-region (amino acids 171–260) to play a vital role in high affinity TSH binding. Biochem Biophys Res Commun 1990; 173: 1150–1156.

    Article  PubMed  CAS  Google Scholar 

  55. Wadsworth HL, Chazenbalk GD, Nagayama Y et al. An insertion in the human thyrotropin receptor critical for high affinity hormone binding. Science 1990; 249: 1423–1425.

    Article  PubMed  CAS  Google Scholar 

  56. Atassi MZ, Manshouri T, Sakata S. Localization and synthesis of the hormone-binding regions of the human thyrotropin receptor. Proc Natl Acad Sci USA 1991; 88: 3613–3617.

    Article  PubMed  CAS  Google Scholar 

  57. Ohmori M, Endo T, Ikeda M et al. Role of N-terminal region of the thyrotropin (TSH) receptor in signal transduction for TSH or thyroid-stimulating antibody. Biochem Biophys Res Commun 1991; 178: 733–738.

    Article  PubMed  CAS  Google Scholar 

  58. Morris JC, Bergert ER, McCormick DJ. Structure-function studies of the human thyrotropin receptor. Inhibition of binding of labeled thyrotropin (TSH) by synthetic human TSH receptor peptides. J Biol Chem 1993; 268: 10900–10905.

    PubMed  CAS  Google Scholar 

  59. Nagayama Y, Wadsworth HL, Chazenbalk GD et al. Thyrotropin-luteinizing hormone/ chorionic gonadotropin receptor extracellular domain chimeras as probes for thyrotropin receptor function. Proc Natl Acad Sci USA 1991; 88: 902–905.

    Article  PubMed  CAS  Google Scholar 

  60. Nagayama Y, Russo D, Chazenbalk GD et al. Seven amino acids (lys-201-lys-211) and 9 amino acids (gly-222 to leu-230) in the human thyrotropin receptor are involved in ligand binding. J Biol Chem 1991; 266: 14926–14930.

    PubMed  CAS  Google Scholar 

  61. Kosugi S, Ban T, Akamizu T et al. Site-directed mutagenesis of a portion of the extracellular domain of the rat thyrotropin receptor important in autoimmune thyroid disease and nonhomologous with gonadotropin receptors. Relationship of functional and immunogenic domains. J Biol Chem 1991; 266: 19413–19418.

    PubMed  CAS  Google Scholar 

  62. Kosugi S, Ban T, Akamizu T et al. Further characterization of a high affinity thyrotropin binding site on the rat thyrotropin receptor from idiopathic myxedema patients but not thryoid stimulating antibodies from Graves’ patients. Biochem Biophys Res Commun 1991; 180: 1118–1124.

    Article  PubMed  CAS  Google Scholar 

  63. Roche PC, Ryan RJ, McCormick DJ. Identification of hormone-binding regions of the luteinizing hormone/human chorionic gonadotropin receptor using synthetic peptides. Endocrinology 1992; 131: 268–274.

    Article  PubMed  CAS  Google Scholar 

  64. Dattatreyamurty B, Reichert LE. Identification of regions of the follitropin (FSH)I3- subunit that interact with the N-terminus region (residues 9–30) of the FSH receptor. Mol Cell Endocrinol 1993; 93: 39–46.

    Article  PubMed  CAS  Google Scholar 

  65. Moyle WR, Campbell RK, Myers RV et al. Co-evolution of ligand-receptor pairs. Nature 1994; 368: 251–255.

    Article  PubMed  CAS  Google Scholar 

  66. Ji I, Ji TH. Human choriogonadotropin binds to a lutropin receptor with essentially no N-terminal extension and stimulates cAMP synthesis. J Biol Chem 1991; 266: 13076–13079.

    PubMed  CAS  Google Scholar 

  67. Ji I, Ji TL. Asp383 in the second transmembrane domain of the lutropin receptor is important for high affinity hormone binding and cAMP production. J Biol Chem 1991; 266: 14953–14957.

    PubMed  CAS  Google Scholar 

  68. Quintana J, Wang H, Ascoli M. The regulation of the binding affinity of the luteinizing hormone/choriogonadotropin receptor is mediated by a highly conserved aspartate located in the second transmembrane domain of G protein-coupled receptors. Endocrinology 1993; 7: 767–775.

    Article  CAS  Google Scholar 

  69. Horstman DA, Brandon S, Wilson AL et al. An aspartate conserved among G-protein receptors confers allosteric regulation of a2-adrenergic receptors. J Biol Chem 1990; 21590–21595.

    Google Scholar 

  70. Ji I, Ji TH. Receptor activation is distinct from hormone binding in intact lutropinchoriogonadotropin receptors and Asp397 is important for receptor activation. J Biol Chem 1993; 268: 20851–20854.

    PubMed  CAS  Google Scholar 

  71. Ji I, Zeng H, Ji TH. Receptor activation of and signal generation by the lutropin/ choriogonadotropin receptor. Cooperation of Asp397 of the receptor and aLys91 of the hormone. J Biol Chem 1993; 268: 22971–22974.

    PubMed  CAS  Google Scholar 

  72. Yamano Y, Ohyama K, Chaki S et al. Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site-directed mutagenesis. Biochem Biophys Res Commun 1992; 187: 1426–1431.

    Article  PubMed  CAS  Google Scholar 

  73. Kong H, Raynor K, Yasuda K et al. A single residue, aspartic acid 95, in the 3 opioid receptor specifies selective high affinity agonist binding. J Biol Chem 1993; 268: 23055–23058.

    PubMed  CAS  Google Scholar 

  74. Radel SJ, Genco RJ, De Nardin E. Localization of ligand binding regions of the human formyl peptide receptor. Biochem Int 1991; 25: 745–753.

    PubMed  CAS  Google Scholar 

  75. Perez HD, Holmes R, Vilanders LR et al. Formyl peptide receptor chimeras define domains involved in ligand binding. J Biol Chem 1993; 268: 2292–2295.

    PubMed  CAS  Google Scholar 

  76. Quehenberger O, Prossnitz ER, Cavanagh SL et al. Multiple domains of the N-formyl peptide receptor are required for high-affinity ligand binding. J Biol Chem 1993; 268: 18167–18175.

    PubMed  CAS  Google Scholar 

  77. Fathi Z, Benya RV, Shapira H et al. The fifth transmembrane segment of the neuromedin B receptor is critical for high affinity neuromedin B binding. J Biol Chem 1993; 268: 14622–14626.

    PubMed  CAS  Google Scholar 

  78. Zhu G, Wu LH, Mauzy C et al. Replacement of lysine-181 by aspartic acid in the third transmembrane region of endothelin type B receptor reduces its affinity to endothelin peptides and sarafotoxin 6c without affecting G protein coupling. J Cell Biochem 1992; 50: 159–164.

    PubMed  CAS  Google Scholar 

  79. Adachi M, Yang Y-Y, Trzeciak A et al. Identification of a domain of ETA receptor required for ligand binding. FEBS Lett 1992; 311: 179–183.

    Article  PubMed  CAS  Google Scholar 

  80. Sakamoto A, Yanagisawa M, Sawamura T et al. Distinct subdomains of human endothelin receptors determine their selectivity to endothelin-selective antagonist and endothelin-selective agonists. J Biol Chem 1993; 268: 8547–8553.

    PubMed  CAS  Google Scholar 

  81. Maggio JE. Tachykinins. Annu Rev Neurosci 1988; 11: 13–28.

    Article  PubMed  CAS  Google Scholar 

  82. Huang R-RC, Yu H, Strader CD et al. Interaction of substance P with the second and seventh transmembrane domains of the neurokinin-1 receptor. Biochemistry 1994; 33: 3007–3013.

    Article  PubMed  CAS  Google Scholar 

  83. Fong TM, Huang R-RC, Strader CD. Localization of agonist and antagonist binding domains of the human neurokinin-1 receptor. J Biol Chem 1992; 267: 25664–25667.

    PubMed  CAS  Google Scholar 

  84. Fong TM, Yu H, Huang R-RC et al. The extracellular domain of the nuerokinin-1 receptor is required for high-affinity binding of peptides. Biochemistry 1992; 31: 11806–11811.

    Article  PubMed  CAS  Google Scholar 

  85. Fong TM, Yu H, Strader CD. The extracellular domain of substance P (NK1) receptor comprises part of the ligand binding site. Biophys J 1992; 62: 59–60.

    Article  PubMed  CAS  Google Scholar 

  86. Yokota Y, Akazawa C, Ohkubo H et al. Delineation of structural domains involved in the subtype specificity of tachykinin receptors through chimeric formation of substance P/substance K receptors. EMBO J 1992; 11: 3585–3591.

    PubMed  CAS  Google Scholar 

  87. Gether U, Johanson TE, Snider RM et al. Binding epitopes for peptide and nonpeptide ligands on the NK1 (substance P) receptor. Regul Pept 1993; 46: 49–58.

    Article  PubMed  CAS  Google Scholar 

  88. Gerard NP, Bao L, Xiao-Ping H et al. Molecular aspects of the tachykinin receptors. Regul Pept 1993; 43: 21–35.

    Article  PubMed  CAS  Google Scholar 

  89. Gether U, Johansen TE, Snider RM et al. Different binding epitopes on the NK, receptor for substance P and a nonpeptide antagonist. Nature 1993; 362: 345–348.

    Article  PubMed  CAS  Google Scholar 

  90. Fong TM, Yu H, Ctrader CD. Molecular basis for the species selectivity of the neurokinin-1 receptor antagonists CP96,345 and RP67580. J Biol Chem 1992; 267: 25668–25671.

    PubMed  CAS  Google Scholar 

  91. Sachais BS, Snider RM, Lowe JA et al. Molecular basis for the species specificity of the substance P antagonist CP-96,345. J Biol Chem 1993; 268: 2319–2323.

    PubMed  CAS  Google Scholar 

  92. Fong TM, Cascierei MA, Yu H et al. Amino-aromatic interaction between histidine 197 of the neurokinin-1 receptor and CP 96345. Nature 1993; 362: 350–353.

    Article  PubMed  CAS  Google Scholar 

  93. Vu T-K, Wheaton VI, Hung DT et al. Domains specifying thrombin-receptor interaction. Nature 1991; 353: 674–677.

    Article  PubMed  CAS  Google Scholar 

  94. Coughlin SR. Thrombin receptor structure and function. Thromb Haemost 1993; 70: 184–187.

    PubMed  CAS  Google Scholar 

  95. Vu T-K, Hung D, Wheaton VI et al. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64: 1057–1068.

    Article  PubMed  CAS  Google Scholar 

  96. Hung DT, Wong YH, Vu T-KH et al. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem 1992; 267: 20831–20834.

    PubMed  CAS  Google Scholar 

  97. Ishii K, Hein L, Kobilka B et al. Kinetics of thrombin receptor cleavage on intact cells: relation to signaling. J Biol Chem 1993; 268: 9780–9786.

    PubMed  CAS  Google Scholar 

  98. Vouret-Craviari V, Obberghen-Schilling V, Rasmussen U et al. Synthetic a-thrombin receptor peptides activate G-protein coupled signalling pathways but are unable to induce mitogenesis. Mol Cell Biol 1992; 3: 95–102.

    CAS  Google Scholar 

  99. Vassallo R, Kieber-Emmons T, Cichowski K et al. Structure-function relationships in the activation of platelet thrombin receptors by receptor-derived peptides. J Biol Chem 1992; 267: 6081–6085.

    PubMed  CAS  Google Scholar 

  100. Scarborough RM, Naughton M, Teng W et al. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem 1992; 267: 13146–13149.

    PubMed  CAS  Google Scholar 

  101. Coller BS, Ward P, Ceruso M et al. Thrombin receptor activating peptides: importance of the N-terminal serine and its ionization state as judged by pH dependence, NMR spectroscopy, and cleavage by aminopeptidase M. Biochemistry 1992; 31: 11713–11720.

    Article  PubMed  CAS  Google Scholar 

  102. La Rosa GJ, Thomas KM, Kaufmann ME et al. Amino terminus of the interleukin-8 receptor is a major determinant of receptor subtype specificity. J Biol Chem 1992; 267: 25402–25406.

    Google Scholar 

  103. Gayle RB, Sleath PR, Srinivason S et al. Importance of the amino terminus of the interleukin-8 receptor in ligand interactions. J Biol Chem 1993; 268: 7283–7289.

    PubMed  CAS  Google Scholar 

  104. Hébert CA, Chuntharapai A, Smith M et al. Partial functional mapping of the human interleukin-8 type A receptor. Identification of a major ligand binding determinant. J Biol Chem 1993; 268: 18549–18553.

    PubMed  Google Scholar 

  105. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 1991; 65: 175–187.

    Article  PubMed  CAS  Google Scholar 

  106. Levy NS, Bakalyar HA, Reed RR. Signal transduction in olfactory neurons. J Steroid Biochem 1991; 39: 633–637.

    Article  CAS  Google Scholar 

  107. Parmentier M, Libert F, Schurmans S et al. Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 1992; 355: 453–455.

    Article  PubMed  CAS  Google Scholar 

  108. Selbie LA, Townsend-Nicholson A, Iismaa TP et al. Novel G protein-coupled receptors: a gene family of putative human olfactory receptor sequences. Mol Brain Res 1992; 13: 159–163.

    Article  PubMed  CAS  Google Scholar 

  109. Ngai J, Dowling MM, Buck L et al. The family of genes encoding odorant receptors in the channel catfish. Cell 1993; 72: 657–666.

    Article  PubMed  CAS  Google Scholar 

  110. Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccarides. Annu Rev Biochem 1985; 54: 631–664.

    Article  PubMed  CAS  Google Scholar 

  111. Rands E, Candelore MR, Cheung AH et al. Mutational analysis of ß-adrenergic receptor glycosylation. J Biol Chem 1990; 265: 10759–10764.

    PubMed  CAS  Google Scholar 

  112. van Koppen CJ, Nathanson NM. Site-directed mutagenesis of the m2 muscarinic acetylcholine receptor. Analysis of the role of N-glycosylation in receptor expression and function. J Biol Chem 1990; 265: 20887–20892.

    PubMed  CAS  Google Scholar 

  113. Klotz K-N, Lohse MJ. The glycoprotein nature of A, adenosine receptors. Biochem Biophys Res Commun 1986; 140: 406–413.

    Article  PubMed  CAS  Google Scholar 

  114. Benovic JL, Staniszewski C, Cerione RA et al. The mammalian ß-adrenergic receptor: structural and functional characterization of the carbohydrate moiety. J Recept Res 1987; 7: 257–281.

    PubMed  CAS  Google Scholar 

  115. Hootman SR, Verme TB, Habara Y. Effects of cycloheximide and tunicamycin on cell surface expression of pancreatic muscarinic acetylcholine receptors. FEBS Lett 1990; 274: 35–38.

    Article  PubMed  CAS  Google Scholar 

  116. Liu X, Davis D, Segaloff DL. Disruption of potential sites for N-linked glycosylation does not impair hormone binding to the lutropin/choriogonadotropin receptor if Asn173 is left intact. J Biol Chem 1993; 268: 1513–1516.

    PubMed  CAS  Google Scholar 

  117. Russo D, Chazenbalk GD, Nagayama Y et al. Site-directed mutagenesis of the human thyrotropin receptor: role of asparagine-linked oligosaccharides in the expression a functional receptor. Mol Endocrinol 1991; 5: 29–33.

    Article  PubMed  CAS  Google Scholar 

  118. Remes JJ, Petäjä UE, Tuukkanen KJ et al. Significance of the extracellular domain and the carbohydrates of the human neutrophil N-formyl peptide chemotactic receptor for the signal transduction by the receptor. Exp Cell Res 1993; 209: 26–32.

    Article  PubMed  CAS  Google Scholar 

  119. Haendler B, Hechler U, Becker A et al. Expression of human endothelin receptor ETB by Escherichia coli transformants. Biochem Biophys Res Commun 1993; 191: 633–638.

    Article  PubMed  CAS  Google Scholar 

  120. Herzog H, Shine J. Human NPY Yl receptor expressed in E. coli retains its pharmacological properties. DNA and Cell Biology 1994; in press.

    Google Scholar 

  121. Grisshammer R, Duckworth R, Henderson R. Expression of a rat neurotensin receptor in Escherichia coli. Biochem J 1993; 295: 571–576.

    PubMed  CAS  Google Scholar 

  122. Santer R, Leung YK, Alliet P et al. The role of carbohydrate moieties of cholecystokinin receptors in cholecystokinin octapeptide binding: alteration of binding data by specific lectins. Biochim Biophys Acta 1990; 1051: 78–83.

    Article  PubMed  CAS  Google Scholar 

  123. Rens-Domiano S, Reisine T. Structural analysis and functional role of the carbohydrate component of somatostatin receptors. J Biol Chem 1991; 266: 20094–20102.

    PubMed  CAS  Google Scholar 

  124. Chochola J, Fabre C, Bellan C et al. Structural and functional analysis of the human vasoactive intestinal peptide receptor glycosylation. J Biol Chem 1993; 268: 2312–2318.

    PubMed  CAS  Google Scholar 

  125. Honda Z, Nakamura M, Miki I et al. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature 1991; 349: 342–346.

    Article  PubMed  CAS  Google Scholar 

  126. Nakamura M, Honda Z, Izumi T et al. Molecular cloning and expression of platelet-activating factor receptor from human leukocytes. J Biol Chem 1991; 266: 20400–20405.

    PubMed  CAS  Google Scholar 

  127. O’Brien PJ, Zatz M. Acylation of bovine rhodopsin by [3H]palmitic acid. J Biol Chem 1984; 259: 5054–5057.

    PubMed  Google Scholar 

  128. Ovchinnikov YA, Abdulaev NG, Bogachuk AS. Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett 1988; 230: 1–5.

    Article  PubMed  CAS  Google Scholar 

  129. Kennedy ME, Limbird LE. Mutations of the a2A-adrenergic receptor that eliminate detectable palmitoylation do not perturb receptor-G-protein coupling. J Biol Chem 1993; 268: 8003–8011.

    PubMed  CAS  Google Scholar 

  130. O’Dowd BF, Hnatowich M, Caron MG et al. Palmitoylation of the human 132-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. J Biol Chem 1989; 264: 7564–7569.

    PubMed  Google Scholar 

  131. Strittmatter SM, Valenzuela D, Kennedy TE et al. Go is a major growth cone protein subject to regulation by GAP-43. Nature 1990; 344: 836–841.

    Article  PubMed  CAS  Google Scholar 

  132. Morrison DF, O’Brien PJ, Pepperberg DR. Depalmitylation with hydroxylamine alters the functional properties of rhodopsin. J Biol Chem 1991; 266: 20118–20123.

    PubMed  CAS  Google Scholar 

  133. Karnik SS, Ridge KD, Bhattacharya S et al. Palmitoylation of bovine opsin and its cysteine mutants in COS cells. Proc Nat1 Acad Sci USA 1993; 90: 40–44.

    Article  CAS  Google Scholar 

  134. Moffett S, Mouillac B, Bonin H et al. Altered phosphorylation and desensitization patterns of a human ß2-adrenergic receptor lacking the palmitoylated Cys341. EMBO J 1993; 12: 349–356.

    PubMed  CAS  Google Scholar 

  135. van Koppen CJ, Nathanson NM. The cysteine residue in the carboxyl-terminal domain of the m2 muscarinic acetylcholine receptor is not required for receptor-mediated inhibition of adenylate cyclase. J Neurochem 1991; 57: 1873–1877.

    Article  PubMed  CAS  Google Scholar 

  136. Karnik SS, Sakmar TP, Khorana HG. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci USA 1988; 85: 8459–8463.

    Article  PubMed  CAS  Google Scholar 

  137. Noda K, Saad Y, Graham RM et al. The high affinity state of the 32-adrenergic receptor requires unique interaction between conserved and nonconserved extracellular loop cysteines. J Biol Chem 1994; 269: 6743–6752.

    PubMed  CAS  Google Scholar 

  138. Curtis CAM, Wheatley M, Bansal S et al. Propylbenzilylcholine mustard labels an acidic residue in transmembrane helix 3 of the muscarinic receptor. J Biol Chem 1989; 264: 489–495.

    PubMed  CAS  Google Scholar 

  139. Kurtenbach E, Curtis CAM, Pedder EK et al. Muscarinic acetylcholine receptors. Peptide sequencing identifies residues involved in antagonist binding and disulfide bond formation. J Biol Chem 1990; 265: 13702–13708.

    PubMed  CAS  Google Scholar 

  140. Nathans J, Davenport CM, Maumenee IH et al. Molecular genetics of human blue cone monochromacy. Science 1989; 245: 831–838.

    Article  PubMed  CAS  Google Scholar 

  141. Lameh J, Cone RI, Maeda S et al. Structure and function of G protein coupled receptors. Pharm Res 1990; 7: 1213–1221.

    Article  PubMed  CAS  Google Scholar 

  142. Probst WC, Snyder LA, Schuster DI et al. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 1992; 11: 1–20.

    Article  PubMed  CAS  Google Scholar 

  143. Hedin KE, Duerson K, Clapham DE. Specificity of receptor-G protein interaction: searching for the structure behind the signal. Cell Signal 1993; 5: 505–518.

    Article  PubMed  CAS  Google Scholar 

  144. Kühn H, Hargrave PA. Light-induced binding of guanosine triphosphate to bovine photoreceptor membranes: effect of limited proteolysis of the membranes. Biochemistry 1981; 20: 2410–2417.

    Article  PubMed  Google Scholar 

  145. Weiss ER, Kelleher DJ, Johnson GL. Mapping sites of interaction between rhodopsin and transducin using rhodopsin antipeptide antibodies. J Biol Chem 1988; 263: 6150–6154.

    PubMed  CAS  Google Scholar 

  146. König B, Arendt A, McDowell JH et al. Three cytoplasmic loops of rhodopsin interact with transducin. Proc Natl Acad Sci USA 1989; 86: 6878–6882.

    Article  PubMed  Google Scholar 

  147. Francke RR, Sakmar TP, Oprian DD et al. A single amino acid substitution in rhodopsin (Lys248-leucine) prevents activation of transducin. J Biol Chem 1988; 263: 2119–2122.

    Google Scholar 

  148. Franke RR, König B, Sakmar TP et al. Rhodopsin mutants that bind but fail to activate transducin. Science 1990; 250: 123–125.

    Article  PubMed  CAS  Google Scholar 

  149. Franke RR, Sakmar TP, Graham RM et al. Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J Biol Chem 1992; 267: 14767–14774.

    PubMed  CAS  Google Scholar 

  150. Strader CD, Dixon RAF, Cheung AH et al. Mutations that uncouple the ß-adrenergic receptor from G, and increase agonist affin- ity. J Biol Chem 1987; 262: 16439–16443.

    PubMed  CAS  Google Scholar 

  151. O’Dowd BF, Hnatowich M, Regan JW et al. Site-directed mutagenesis of the cytoplasmic domains of the human ß-adrenergic receptor. Localization of regions invlved in G protein-receptor coupling. J Biol Chem 1988; 263: 15985–15992.

    PubMed  Google Scholar 

  152. Moro O, Lameh J, Hogger P et al. Hydrophobic amino acid in the i2 loop plays a key role in receptor-G protein coupling. J Biol Chem 1993; 268: 22273–22276.

    PubMed  CAS  Google Scholar 

  153. Dixon RAF, Sigal IS, Strader CD. Structure-function analysis of the ß-adrenergic receptor. Cold Spring Harbor Symp Quant Biol 1988; 53: 487–498.

    Article  PubMed  CAS  Google Scholar 

  154. Fraser CM, Chung FZ, Wang CD et al. Site-directed mutagenesis of human ß-adrenergic receptors: substitution of aspartic acid-130 by asparagine produces a receptor with high-affinity binding that is uncoupled from adenylate cyclase. Proc Natl Acad Sci USA 1988; 85: 5478–5482.

    Article  PubMed  CAS  Google Scholar 

  155. Fraser CM, Wang CD, Robinson DA et al. Site-directed mutagenesis of ml muscarinic acetylcholine receptors: conserved aspartic acids play important roles in receptor function. Mol Pharmacol 1989; 36: 840–847.

    PubMed  CAS  Google Scholar 

  156. Wang CD, Buck MA, Fraser CM. Site-directed mutagenesis of a2-adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists. Mol Pharmacol 1991; 40: 168–179.

    PubMed  CAS  Google Scholar 

  157. Suprenant A, Horstman DA, Akbarali H et al. A point mutation of the a2-adrenoceptor that blocks coupling to potassium but not calcium currents. Science 1992; 257: 977–980.

    Article  Google Scholar 

  158. Ohyama K, Yamano Y, Chaki S et al. Domains for G-protein coupling in angiotensin II receptor type I: studies by site-directed mutagenesis. Biochem Biophys Res Commun 1992; 189: 677–683.

    Article  PubMed  CAS  Google Scholar 

  159. Wang Z, Hang H, Ascoli M. Mutation of a highly conserved acidic residue present in the second intracellular loop of G-proteincoupled receptors does not impair hormone binding or signal transduction of the luteinizing hormone/chorionic gonadotropin receptor. Mol Endocrinol 1993; 7: 85–93.

    Article  PubMed  CAS  Google Scholar 

  160. Dalman HM, Neubig RR. Two peptides from the am-adrenergic receptor alter receptor G protein coupling by distinct mechanisms. J Biol Chem 1991; 266: 11025–11029.

    PubMed  CAS  Google Scholar 

  161. Chazenbalk GD, Nagayama Y, Russo D et al. Functional analysis of the cytoplasmic domains of the human thyrotropin receptor by site-directed mutagenesis. J Biol Chem 1990; 265: 20970–20975.

    PubMed  CAS  Google Scholar 

  162. Kosugi S, Mori T. The first cytoplasmic loop of the thyrotropin receptor is important for phosphoinositide signaling but not for agonist-induced adenylate cyclase activation. FEBS Lett 1994; 341: 162–166.

    Article  PubMed  CAS  Google Scholar 

  163. Bommakanti RJ, Klotz K-N, Dratz EA et al. A carboxy-terminal tail peptide of neutrophil chemotactic receptor disrupts its physical complex with G protein. J Leukoc Biol 1993; 54: 572–577.

    PubMed  CAS  Google Scholar 

  164. Prossnitz ER, Quehenberger O, Cochrane CG et al. The role of the third intracellular loop of the neutrophil N-formyl peptide receptor in G protein coupling. Biochem J 1993; 294: 581–587.

    PubMed  CAS  Google Scholar 

  165. Schreiber RE, Prossnitz ER, Ye RD et al. Domains of the human neutrophil N-formyl peptide receptor involved in G protein coupling. Mapping with receptor-derived peptides. J Biol Chem 1994; 269: 326–331.

    PubMed  CAS  Google Scholar 

  166. Spengler D, Waeber C, Pantaloni C et al. Differential signal transduction of five splice variants of the PACAP receptor. Nature 1993; 365: 170–175.

    Article  PubMed  CAS  Google Scholar 

  167. Vanetti M, Vogt G, Höllt V. The two isoforms of the mouse somatostatin receptor (mSSTR2A and mSSTR2B) differ in coupling efficiency to adenylate cyclase and in agonist-induced receptor desensitization. FEBS Lett 1993; 331: 260–266.

    Article  PubMed  CAS  Google Scholar 

  168. Sugimoto U, Negishi M, Hayashi Y et al. Two isoforms of the EP3 receptor with different carboxyl-terminal domains. Identical ligand binding properties and different coupling with G, proteins. J Biol Chem 1993; 268: 2712–2718.

    PubMed  CAS  Google Scholar 

  169. Namba T, Sugimoto Y, Negishi M et al. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 1993; 365: 166–170.

    CAS  Google Scholar 

  170. Wong SK-F, Parker EM, Ross EM. Chimeric muscarinic cholinergic:ß-adrenergic receptors that activate G, in response to muscarinic agonists. J Biol Chem 1990; 265: 6219–6224.

    PubMed  CAS  Google Scholar 

  171. Cheung AH, Huang R-RC, Graziano MP et al. Specific activation of G, by synthetic peptides corresponding to an intracellular loop of the ß-adrenergic receptor. FEBS Lett 1991; 279: 277–280.

    Article  PubMed  CAS  Google Scholar 

  172. Cotecchia S, Ostrowski J, Kjelsberg MA et al. Discrete amino acid sequences of the a,adrenergic receptor determine the selectivity of coupling to phosphatidylinositol hydrolysis. J Biol Chem 1992; 267: 1633–1639.

    PubMed  CAS  Google Scholar 

  173. Liggett SB, Caron MG, Lefkowitz RJ et al. Coupling of a mutated form of the ß2-adrenergic receptor to G, and G,. Requirement for multiple cytoplasmic domains in the coupling process. J Biol Chem 1991; 266: 4816–4821.

    PubMed  CAS  Google Scholar 

  174. Campbell PT, Hnatowich M, O’Dowd BF et al. Mutations of the human ß2-adrenergic receptor that impair coupling to G, interfere with receptor down-regulation but not sequestration. Mol Pharmacol 1991; 39: 192–198.

    PubMed  CAS  Google Scholar 

  175. Blüml K, Mutschler E, Wess J. Identification of an intracellular tyrosine residue critical for muscarinic receptor-mediated stimulation of phosphatidylinositol hydrolysis. J Biol Chem 1994; 269: 402–405.

    PubMed  Google Scholar 

  176. Pin J-P, Joly C, Heinemann SF et al. Domains involved in the specificity of G protein activation in phospholipase C-coupled metabotropic glutamate receptors. EMBO J 1994; 13: 342–348.

    PubMed  CAS  Google Scholar 

  177. Higashijima T, Burnier J, Ross EM. Regulation of G, and Go by mastoparan, related amphiphilic peptides and hydrophobic amines: mechanism and structural determinants of activity. J Biol Chem 1990; 265: 14176–14186.

    PubMed  CAS  Google Scholar 

  178. Nishimoto I, Hata Y, Ogata E et al. Insulin-like growth factor II stimulates calcium influx in competent BALB/c 3T3 cells primed with epidermal growth factor. Characterisitcs of calcium influx and involvement of GTP-binding protein. J Biol Chem 1987; 262: 12120–12126.

    PubMed  CAS  Google Scholar 

  179. Okamoto T, Katada T, Muruyama Y et al A simple structure encodes G protein-acti- vating function of the IGFII/mannose 6- phosphate receptor. Cell 1990; 62: 709–717.

    Article  PubMed  CAS  Google Scholar 

  180. Takahashi K, Murayama Y, Okamoto T et al. Conversion of G-protein specificity of insulin-like growth factor II/mannose-6phosphate receptor by exchanging of a short region of ß-adrenergic receptor. Proc Natl Acad Sci USA 1993; 90: 11772–11776.

    Article  PubMed  CAS  Google Scholar 

  181. Voss T, Wallner E, Czernilofsky AP et al. Amphipathic a-helical structure does not predict the ability of receptor-derived synthetic peptides to interact with guanine nucleotide-binding regulatory proteins. J Biol Chem 1993; 268: 4637–4642.

    PubMed  CAS  Google Scholar 

  182. Cheung AH, Huang R-RC, Strader CD. Involvement of specific hydrophobic, but not hydrophilic, amino acids in the third intracellular loop of the 13-adrenergic receptor in the activation of G,. Mol Pharmacol 1992; 41: 1061–1065.

    PubMed  CAS  Google Scholar 

  183. Arden JR, Nagata O, Shockley MS et al. Mutational analysis of third cytoplasmic loop domains in G-protein coupling of the HMI muscarinic receptor. Biochem Biophys Res Commun 1992; 188: 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  184. Duerson K, Carroll R, Clapham D. a-Helical distorting substitutions disrupt coupling between m3 muscarinic receptor and G proteins. FEBS Lett 1993; 324: 103–108.

    Article  PubMed  CAS  Google Scholar 

  185. Wang H, Jaquette J, Collison K et al. Positive charges in a putative amphiphilic helix in the carboxy-terminal region of the third intracellular loop of the luteinizing hormone/chorionic gonadotropin receptor are not required for hormone-stimulated cAMP production but are necessary for expression of the receptor at the plasma membrane. Mol Endocrinol 1993; 7: 1437–1444.

    Article  PubMed  CAS  Google Scholar 

  186. Kosugi S, Okajima F, Ban T et al. Mutation of alanine 623 in the third cytoplasmic loop of the rat thyrotropin (TSH) receptor results in a loss in the phosphoinositide but not cAMP signal induced by TSH and receptor autoantibodies. J Biol Chem 1992; 267: 24153–24156.

    PubMed  CAS  Google Scholar 

  187. Parma J, Duprez L, Van Sande J et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 1993; 365: 649–651.

    Article  PubMed  CAS  Google Scholar 

  188. Kjelsberg MA, Cotecchia S, Ostrowski J et al. Constitutive activation of the a,B-adrenergic receptor by all amino acid substitutions at a single site. J Biol Chem 1992; 267: 1430–1433.

    PubMed  CAS  Google Scholar 

  189. Ren Q, Kurose H, Lefkowitz RJ et al. Constitutively active mutants of the a2-adrenergic receptor. J Biol Chem 1993; 268:16483–16487. Erratum J Biol Chem 269: 1566.

    Google Scholar 

  190. Samama P, Cotecchia S, Costa T et al. A mutation-induced activated state of the f 2adrenergic receptor. Extending the ternary complex model. J Biol Chem 1993; 268: 4625–4636.

    PubMed  CAS  Google Scholar 

  191. Pei G, Samama P, Lohse M et al. A constitutively active mutant ß2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc Natl Acad Sci USA 1994; 91: 2699–2702.

    Article  PubMed  CAS  Google Scholar 

  192. Lefkowitz RJ, Cotecchia S, Samama P et al. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 1993; 14: 303–307.

    Article  PubMed  CAS  Google Scholar 

  193. Boone C, Davis NG, Sprague GF. Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype. Proc Natl Acad Sci USA 1993; 90: 9921–9925.

    Article  PubMed  CAS  Google Scholar 

  194. Lefkowitz RJ. G protein-coupled receptor kinases. Cell 1993; 74: 409–412.

    Article  PubMed  CAS  Google Scholar 

  195. Inglese J, Freedman NJ, Koch WJ et al. Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 1993; 268: 23735–23738.

    PubMed  CAS  Google Scholar 

  196. Haribaru B, Snyderman R. Identification of additional members of human G-proteincoupled receptor kinase multigene family. Proc Natl Acad Sci USA 1993; 90: 9398–9402.

    Article  Google Scholar 

  197. Huganir RL, Greengard P. Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron 1990; 5: 555–567.

    Article  PubMed  CAS  Google Scholar 

  198. Hausdorff WP, Caron MG, Lefkowitz RJ. Turning off the signal: desensitization of ßadrenergic receptor function. FASEB J 1990; 4:2881–2889. Erratum FASEB J 4: 3049.

    Google Scholar 

  199. Hausdorff WP, Sung J, Caron MG et al. Recent molecular analyses of ß-adrenergic receptor phosphorylation, sequestration and down regulation. Asia Pacific J Pharmacol 1992; 7: 149–158.

    CAS  Google Scholar 

  200. Lohse MJ molecular mechanisma of membrane recptor desensitization.Bzation of adenylyl cyclase in S49 wild-type 1993; 1179:171–188.

    Google Scholar 

  201. Palczewski K, Benovic JL. G protein- lymphoma cells. Proc Natl Acad Sci USA coupled receptor kinases. Trends Biochem1988; 85: 1442–1446.

    Google Scholar 

  202. Ohguro H., Benovic JL sensitization of DA1 dopamine receptors al. Sequential phosphorylation of rhodopsin at multiple sites. Biochemistry 1993; 32: 5718–5724.

    Article  PubMed  CAS  Google Scholar 

  203. Onorato JJ, Palczewski K, Regan JW et al. Role of acidic amino acids in peptide subarrestin: a protein that regulates 13-adrener-strates of the 13-adrenergic receptor kinase and rhodopsin kinase. Biochemistry 1991; 30: 5118–5125.

    Article  PubMed  CAS  Google Scholar 

  204. Receptor-specific desensitization with puri-et al. A small region of the f3-adrenergicreceptor is selectively involved in its rapid regulation. Proc Natl. Acad Sci USA 1991; 88: 2979–2983.

    Article  Google Scholar 

  205. Liggett SB, Ostrowski J, Chesnut LC et al. Sites in the third intracellular loop of the a2A-adrenergic receptor confer short term agonist-promoted desensitization. Evidencere for a receptor kinase-mediated mechanism. J Biol Chem 1992; 267: 4740–4746.

    PubMed  CAS  Google Scholar 

  206. Haga T, Haga K, Kameyama K et al. Phosphorylation sites on two domains of the 132-adrenergic receptor 268: 421–428

    Google Scholar 

  207. Feramisco JR, Glass DB, Krebs EG. Optimal spatial requirements for the location of basic residues in peptide substrates for the cAMP-dependent protein kinase. J Biol Chem 1980; 255: 4240–4245.

    PubMed  CAS  Google Scholar 

  208. Hausdorff WP, Bouvier M, O’Dowd BF et al. Phosphorylation sites on two domains of the 132-adrenergic receptor are involved in distinct pathways of receptor desensitization. J Biol Chem 1989; 264: 12657–12665.

    PubMed  CAS  Google Scholar 

  209. Clark RB, Kunkel MW, Friedman Identification of a specific site required for rapid heterologous desensitization of the ß-adrenergic receptor by cAMP-dependentprotein kinase. Mol Pharmacol 1989; 36: 343–348.

    PubMed  CAS  Google Scholar 

  210. Nantel F, Bonin H human 133-adrenergic receptor is resistant to short-term agonist-promoted desensitization. duced desensitization of the follicle-stimulating hormone and luteinizing hormone/ chorionic gonadotropin-responsive adenylyl cyclase in cells expressing the recombinant gonadotropin receptors. Endocrinology 1993; 132: 1007–1016.

    Article  Google Scholar 

  211. Clark RB, Kunkel MW, Friedman J et al. Lohse MJ. Molecular mechanisms of mem Activation of cAMP-dependent protein ki-brane receptor desensitization. Biochimnase is required for heterologous desensiti Biophys Acta 1993; 1179: 171–188

    Google Scholar 

  212. Bates MD, Caron MG, Raymond JR. De-Ohguro H, Palczewski K, Ericsson LH et coupled to adenylyl cyclase in opossum kidney cells. Am J Physiol 1991; 260:F937–213F945..

    Google Scholar 

  213. Lohse MJ, Benovic JL, Codina J et al. gic receptor function. Science 1990; 248: 1547–1550.

    Article  PubMed  CAS  Google Scholar 

  214. Lohse MJ, Andexinger S, Pitcher J et al. Hausdorff WP, Campbell PT, Ostrowski J fied proteins. Kinase dependence and re-

    Google Scholar 

  215. ceptor specificity of 13-arrestin and arrestin. Roth NS, Campbell PT, Caron MG et al.Cin the l2-adrenergic receptor and rhodopsinomparative rates of desensitization of 13-systems. J Biol Chem 1992; 267: 8558–8564.

    Google Scholar 

  216. Kwatra MM, Schwinn DA, Schreurs J et al. phorylation of muscarinic receptorstance P receptor, which couples to tion by G proteins. Life Sci 1993; 2 Gq, is a substrate of 13-adrenergic receptor 9161–9164.

    Google Scholar 

  217. Ramkumar V, Kwatra M, Benovic JL et al. Functional consequences of Al adenosine- receptor phosphorylation by the 13-adrener-gic receptor kinase. Biochim Biophys Acta 1993; 1179: 89–97.

    Article  PubMed  CAS  Google Scholar 

  218. Ishii K, Chen J, Ishii WJ et al. Inhibition of thrombin receptor signaling by a G-pro-tein coupled receptor kinase. Functional specificity among G-protein coupled re- Clark RB, Friedman J, Dixon RAF et al.1125–1130.

    Google Scholar 

  219. Zhou X-M, Fishman PH. Desensitization of the human 131-adrenergic receptor. In-220. Sanchez-Yague J, Hiplin RW, Ascoli M. Biochemical properties of the agonist-in-Mol Pharmacol 1993; 43: 548–555.

    Google Scholar 

  220. volvement of the cyclic AMP-dependent but. Hipkin RW, Sanchez-Yagüe J, Ascoli M. Agonist-induced phosphorylation of the luteinizing hormone/chorionic gonadotropin receptor expressed in a stably not a receptor-specific kinase. J Biol Chemtransfected cell line. Mol Endocrinol 1993; 7: 823–832.

    Article  Google Scholar 

  221. Emorine LZ et al. The 1991; 266:7462–7468.. Nagayama Y, Rapoport B. The thyrotropin receptor 25 years after its discovery: new insight after its molecular cloning. Mol Endocrinol 1992; 6: 145–156.

    Article  Google Scholar 

  222. Wojcikiewicz RJH, Tobin AB, Nahorski SR. Desensitization of cell signalling mediated by phosphoinositidase C. Trends Pharmacol Sci 1993; 14: 279–285.

    Article  PubMed  CAS  Google Scholar 

  223. Didsbury JR, Uhing RJ, Tomhave E et al. Receptor class desensitization of leukocyte chemoattractant receptors. Proc Natl Acad Sci USA 1991; 88: 11564–11568.

    Article  PubMed  CAS  Google Scholar 

  224. Shigemoto R, Yokota Y, Tsuchida K et al. Cloning and expression of a rat neuromedin K receptor cDNA. J Biol Chem 1990; 265: 623–628.

    PubMed  CAS  Google Scholar 

  225. Kishimoto A, Nishiyama K, Nakanishi H et al. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3’:5’-monophosphate-dependent protein kinase. J Biol Chem 1985; 260: 12492–12499.

    PubMed  CAS  Google Scholar 

  226. Johnson JA, Clark RB, Friedman J et al. Identification of a specific domain in the ßadrenergic receptor required for phorbol ester-induced inhibition of catecholaminestimulated adenylyl cyclase. Mol Pharmacol 1990; 38: 289–293.

    PubMed  CAS  Google Scholar 

  227. Bouvier M, Guilbault N, Bonin H. Phorbolester-induced phosphorylation of the 02-adrenergic receptor decreases its coupling to G,. FEBS Lett 1991; 279: 243–248.

    Article  PubMed  CAS  Google Scholar 

  228. Newton AC, Williams DS. Does protein kinase C play a role in rhodopsin desensitization. Trends Biochem Sci 1993; 18: 275–277.

    Article  PubMed  CAS  Google Scholar 

  229. Ali H, Richardson RM, Tomhave ED et al. Differences in phosphorylation of formylpeptide and C5a chemoattractant receptors correlate with differences in desensitization. J Biol Chem 1993; 268: 24247–24254.

    PubMed  CAS  Google Scholar 

  230. Von 7astrow M, Kobilka BK. Ligand-regulated internalization and recycling of human 32-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J Biol Chem 1992; 267: 3530–3538.

    Google Scholar 

  231. Tan PK, Davis NG, Sprague GF et al. Clathrin facilitates the internalization of 7 transmembrane segment receptors for mating pheromones in yeast. J Cell Biol 1993; 123: 1707–1716.

    Article  PubMed  CAS  Google Scholar 

  232. Sibley DR, Strasser RH, Benovic JL et al. Phosphorylation/dephosphorylation of the ßadrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution. Proc Natl Acad Sci USA 1986; 83: 9408–9412.

    Article  PubMed  CAS  Google Scholar 

  233. Waldo GL, Northup JK, Perkins JP et al. Characterization of an altered membrane form of the ß-adrenergic receptor produced during agonist-induced desnesitization. J Biol Chem 1983; 258: 13900–13908.

    PubMed  CAS  Google Scholar 

  234. Yu SS, Lefkowitz RJ, Hausdorff WP. ßadrenergic receptor sequestration. A potential mechanism of receptor desensitization. J Biol Chem 1993; 268: 337–341.

    PubMed  CAS  Google Scholar 

  235. Lameh J, Philip M, Sharma Y et al. Hml muscarinic cholinergic receptor internalization requires a domain in the third cytoplamic loop. J Biol Chem 1992; 267: 13406–13412.

    PubMed  CAS  Google Scholar 

  236. Moro O, Shockley MS, Lameh J et al. Overlapping multi-site domains of the muscarinic cholinergic Hml receptor involved in signal transduction and sequestration. J Biol Chem 1994; 269: 6651–6655.

    PubMed  CAS  Google Scholar 

  237. Strader CD, Sigal IS, Blake AD et al. The carboxyl terminus of the hamster ß-adrenergic receptor expressed in mouse L cells is not required for receptor sequestration. Cell 1987; 49: 855–863.

    Article  PubMed  CAS  Google Scholar 

  238. Cheung AH, Dixon RAF, Hill WS et al. Separation of the structural requirements for agonist-promoted activation and sequestration of the ß-adrenergic receptor. Mol Pharmacol 1990; 37: 775–779.

    PubMed  CAS  Google Scholar 

  239. Maeda S, Lameh J, Mallet WG et al. Internalization of the Hml muscarinic cholinergic receptor involves the third cytoplasmic loop. FEBS Lett 1990; 269: 386–388.

    Article  PubMed  CAS  Google Scholar 

  240. Benya RV, Fathi Z, Battey JF et al. Serines and threonines in the gastrin-releasing peptide receptor carboxyl terminus mediate internalization. J Biol Chem 1993; 268: 20285–20290.

    PubMed  CAS  Google Scholar 

  241. Bouvier M, Hausdorff WP, De Blasi A et al. Removal of phosphorylation sites from the ß2-adrenergic receptor delays onset of agonist-promoted desensitization. Nature 1988; 333: 370–373.

    Article  PubMed  CAS  Google Scholar 

  242. Nussenzveig DR, Heinflink M, Gershengorn MC. Agonist-stimulated internalization of the thyrotropin-releasing hormone receptor is dependent on two domains in the receptor carboxyl terminus. J Biol Chem 1993; 268: 2389–2392.

    PubMed  CAS  Google Scholar 

  243. Moro O, Lameh J, Sadée W. Serine-and threonine-rich domain regulates internalization of muscarinic cholinergic receptors. J Biol Chem 1993; 268: 6862–6865.

    PubMed  CAS  Google Scholar 

  244. Barak LS, Tiberi M, Freedman NJ et al. A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated ß2-adrenergic receptor sequestration. J Biol Chem 1994; 269: 2790–2975.

    PubMed  CAS  Google Scholar 

  245. Bouvier M, Collins S, O’Dowd BF et al. Two distinct pathways for cAMP-mediated down-regulation of the ß2-adrenergic receptor. Phosphorylation of the receptor and regulation of its mRNA level. J Biol Chem 1989; 264: 16786–16792.

    PubMed  CAS  Google Scholar 

  246. Mahan LC, Koachman AM, Insel PA. Genetic analysis of ß-adrenergic receptor internalization and down-regulation. Proc Natl Acad Sci USA 1985; 82: 129–133.

    Article  PubMed  CAS  Google Scholar 

  247. Hadcock JR, Ros M, Malbon CC. Agonist regulation of 0-adrenergic receptor mRNA. Analysis in S49 mouse lymphoma mutants. J Biol Chem 1989; 264: 13956–13961.

    PubMed  CAS  Google Scholar 

  248. Yang J, Logsdon CD, Johansen TE et al. Human m3 muscarinic acetylcholine receptor carboxyl-terminal threonine residues are required for agonist-induced receptor down-regulation. Mol Pharmacol 1993; 44: 1158–1164.

    PubMed  CAS  Google Scholar 

  249. Valiquette M, Bonin H, Hnatowich M et al. Involvement of tyrosine residues located in the carboxyl tail of the human ß-adrenergic receptor in agonist-induced down-regulation of the receptor. Proc Natl Acad Sci USA 1990; 87: 5089–5093.

    Article  PubMed  CAS  Google Scholar 

  250. Valiquette M, Bonin H, Bouvier M. Mutation of tyrosine-350 impairs the coupling of the l2-adrenergic receptor to the stimulatory guanine nucleotide binding protein without interfering with receptor down-regulation. Biochemistry 1993; 32: 4979–4985.

    Article  PubMed  CAS  Google Scholar 

  251. Wang H-Y, Berrios M, Malbon CC. Localization of p-adrenergic receptors in A341 cells in situ. Effect of chronic exposure to agonist. Biochem J 1989; 263: 533–538.

    PubMed  CAS  Google Scholar 

  252. Zemcik BA, Strader CD. Fluorescent localization of the ß-adrenergic receptor on DDT-1 cells. Down-regulation by adrenergic agonists. Biochem J 1988; 251: 333–339.

    PubMed  CAS  Google Scholar 

  253. Wang S-Z, Hu JR, Long RM et al. Agonist-induced down-regulation of ml muscarinic receptors and reduction of their mRNA level in a transfected cell line. FEBS Lett 1990; 276: 185–188.

    Article  PubMed  CAS  Google Scholar 

  254. Fukamauchi F, Hough C, Chuang DM. Expression and agonist-induced down-regulation of mRNAs of m2- and m3-muscarinic acetylcholine receptors in cultured cerebellar granule cells. J Neurochem 1991; 56: 716–719.

    Article  PubMed  CAS  Google Scholar 

  255. Habecker BA, Nathanson NM. Regulation of muscarinic acetylcholine receptor mRNA expression by activation of homologous and heterologous receptors. Proc Natl Acad Sci USA 1992; 89: 5035–5038.

    Article  PubMed  CAS  Google Scholar 

  256. Fujimoto CS, Straub RE, Gershergorn MC. Thyrotropin-releasing hormone (TRH) and phorbol myristate acetate decrease TRH receptor messenger RNA in rat pituitary GH3 cells: evidence that protein kinase-C mediates the TRH effect. Mol Endocrinol 1991; 5: 1527–1532.

    Article  PubMed  CAS  Google Scholar 

  257. Akamizu T, Ikuyama S, Saji M et al. Cloning, chromosomal assignment, and regulation of the rat thyrotropin receptor: expression of the gene is regulated by thyrotropin, agents that increase cAMP levels, and thyroid autoantibodies. Proc Natl Acad Sci USA 1990; 87: 5677–5681.

    Article  PubMed  CAS  Google Scholar 

  258. Hadcock JR, Malbon CC. Down-regulation of ß-adrenergic receptors: agonist-induced reduction in receptor mRNA levels. Proc Natl Acad Sci USA 1988; 85: 5021–5025.

    Article  PubMed  CAS  Google Scholar 

  259. Hadcock JR, Wang H, Malbon CC. Agonist-induced destabilization of ß-adrenergic receptors mRNA. Attenuation of glucocor- ticoid induced upregulation of ß-adrenergic receptors. J Biol Chem 1989; 19928–19933.

    Google Scholar 

  260. Lu DL, Peegel H, Mosier SM et al. Loss of lutropin/human choriogonadotropin receptor messenger ribonucleic acid during ligand-induced down-regulation occurs post-transcriptionally. Endocrinology 1993; 132: 235–240.

    Article  PubMed  CAS  Google Scholar 

  261. Fujimoto J, Narayanan CS, Benjamin JE et al. Mechanism of regulation of thyrotropinreleasing hormone receptor messenger ribonucleic acid in stably transfected rat pituitary cells. Endocrinology 1992; 130: 1879–1884.

    Article  PubMed  CAS  Google Scholar 

  262. Port JD, Huang LY, Malbon CC. ß-adrenergic agonists that down-regulate receptor mRNA up-regulate a M(r) 35,000 protein(s) that selectively binds to ß-adrenergic receptor mRNAs. J Biol Chem 1992; 267: 24103–24108.

    PubMed  CAS  Google Scholar 

  263. Narayanan CS, Fujimoto J, Geras-Raaka E et al. Regulation by thyrotropin-releasing hormone (TRH) of TRH receptor mRNA degradation in rat pituitary GH3 cells. J Biol Chem 1992; 267: 17296–17303.

    PubMed  CAS  Google Scholar 

  264. Hadcock JR, Malbon CC. Regulation of receptor expression by agonists: transcriptional and post-transcriptional controls. Trends Neurosci 1991; 14: 242–247.

    Article  PubMed  CAS  Google Scholar 

  265. Collins S, Caron MG, Lefkowitz RJ. From ligand binding to gene expression: new insights into the regulation of G-proteincoupled receptors. Trends Biochem Sci 1992; 17: 37–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iismaa, T.P., Biden, T.J., Shine, J. (1995). Structural Determinants of Receptor Function. In: G Protein-Coupled Receptors. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21930-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21930-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21932-4

  • Online ISBN: 978-3-662-21930-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics