Skip to main content

Signaling Through G Protein-Coupled Receptors

  • Chapter
G Protein-Coupled Receptors

Abstract

Gprotein-coupled receptors are now defined in molecular terms and rightly so. Their most salient characteristic is the possession of a number of structural motifs the most important of which is the hydrophobicity profile diagnostic of seven membrane-spanning domains. Accordingly some investigators have advanced the terms serpentine or heptahelical as alternative, and more structurally descriptive, names for this class of receptor. These have not caught on and probably won’t. Although undoubtedly clumsy, the term G protein-coupled receptor is of both historical and functional significance. It encapsulates what is still the most relevant characteristic of this class of receptor: its ability to couple to G proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bourne HR, Sanders DA, McCormick F. The GTPase superf: conserved structure and molecular mechanism. Nature 1991; 349: 117–127.

    Article  PubMed  CAS  Google Scholar 

  2. Obar RA, Collins CA, Hammarback JA et al. Molecular cloning of the microtubuleassociated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 1990; 347: 256–261.

    Article  PubMed  CAS  Google Scholar 

  3. Gilman AG. G proteins and regulation of adenylyl cyclase. J Am Med Assoc 1989; 262: 1819–1825.

    Article  CAS  Google Scholar 

  4. Hepler JR, Gilman AG. G proteins. Trends Biochem Sci 1992; 17: 383–387.

    Article  CAS  Google Scholar 

  5. Spiegel AM. G proteins in cellular control. Curr Opin Cell Biol 1992; 4: 203–211.

    Article  PubMed  CAS  Google Scholar 

  6. Cassel D, Selinger Z. Catecholamine-stimulated GTPase activity in turkey erythrocytes. Biochem Biophys Acta 1976; 452: 538–551.

    Article  PubMed  CAS  Google Scholar 

  7. Maguire ME, Van Arsdale PMV, Gilman AG. An agonist-specific effect of guanine nucleotides on binding to the ß-adrenergic receptor. Mol Pharmacol 1976; 12: 335–339.

    PubMed  CAS  Google Scholar 

  8. Schramm M, Rodbell M. A persistent active state of the adenylate cyclase system produced by the combined actions of isoproterenol and guanylyl imidodiphosphate in frog erythrocyte membranes. J Biol Chem 1975; 250: 2232–2237.

    PubMed  CAS  Google Scholar 

  9. Cassel D, Selinger Z. Mechanism of adenylate cyclase activation by cholera toxin: an inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 1977; 74: 3307–3311.

    Article  PubMed  CAS  Google Scholar 

  10. Katada T, Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci USA 1982; 79: 3129–3133.

    Article  PubMed  CAS  Google Scholar 

  11. Rodbell M. G-protein alpha subunits as programmable second messengers. Trends Biochem Sci 1985; 10: 461–465.

    Article  CAS  Google Scholar 

  12. Clapham DE, Neer EJ. New roles for G-protein fry-dimers in transmembrane signalling. Nature 1993; 365: 403–406.

    Article  PubMed  CAS  Google Scholar 

  13. Yi F, Denker BM, Neer EJ. Structural and functional studies of cross-linked Go protein subunits. J Biol Chem 1991; 266: 3900–3906.

    PubMed  CAS  Google Scholar 

  14. Stow JL, Almeida JBD, Narula N et al. A heterotrimeric G protein, Ga;.3, on golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLCPK1 epithelial cells. J Cell Biol 1991; 114: 1113–1124.

    Article  PubMed  CAS  Google Scholar 

  15. Donaldson JG, Kahn RA, Lippincott-Schwartz J et al. Binding of ARF and beta-COP to golgi membranes: possible regulation by a trimeric G protein. Science 1991; 254: 1197–1199.

    Article  PubMed  CAS  Google Scholar 

  16. Crouch MF. Growth factor-induced cell division is paralleled by translocation of G, alpha to the nucleus. FASEB J 1991; 5: 200–206.

    PubMed  CAS  Google Scholar 

  17. Taylor CW. The role of G proteins in trans-membrane signalling. Biochem J 1990; 272: 1–13.

    PubMed  CAS  Google Scholar 

  18. Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 1987; 56: 615–649.

    Article  PubMed  CAS  Google Scholar 

  19. Birnbaumer L. Receptor-to-effector signalling through G proteins: roles for Ply dimers as well as a subunits. Cell 1992; 71: 1069–1072.

    Article  PubMed  CAS  Google Scholar 

  20. Milligan C. Mechanisms of multifunctional signalling by G protein linked receptors. Trends Pharmacol Sci 1993; 14: 239–244.

    Article  PubMed  CAS  Google Scholar 

  21. Berstein G, Blank JL, Jhon DY et al. Phospholipase C beta-1 is a GTPase-activating protein for Gq/11 its physiological regulator. Cell 1992; 70: 411–418.

    Article  PubMed  CAS  Google Scholar 

  22. Arshaysky, Bownds MD. Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature 1992; 357: 416–417.

    Article  Google Scholar 

  23. Bauer PH, Muller S, Puzicha M et al. Phosducin is a protein kinase A-regulated G-protein regulator. Nature 1992; 358: 73–76.

    Article  PubMed  CAS  Google Scholar 

  24. Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science 1991; 252: 802–808.

    Article  PubMed  CAS  Google Scholar 

  25. Casey PJ, Fong HKW, Simon MI et al. G,, a guanine nucleotide-binding protein with unique biochemical properties. J Biol Chem 1990; 265: 2383–2390.

    PubMed  CAS  Google Scholar 

  26. Landis CA, Masters SB, Spada A. GTPase inhibiting mutations activate the a chain of G, and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989; 340: 692–696

    Article  PubMed  CAS  Google Scholar 

  27. Lyons J, Landis CA, Harsh G et al. Two G protein oncogenes in human endocrine turnouts. Science 1990; 249: 655–659.

    Article  PubMed  CAS  Google Scholar 

  28. Weinstein LS, Shenker A, Gejman PV et al. Activating mutations of stimulatory G protein in the McCune-Albright Syndrome. New Engl J Med 1991; 325: 1688–1695.

    Article  PubMed  CAS  Google Scholar 

  29. Journot L, Pantaloni C, Bockaert J et al. Deletion within the amino terminal region of G,a impairs its ability to interact with ß y subunits and to activate adenylate cyclase. J Biol Chem 1991; 266: 9009–9015.

    PubMed  CAS  Google Scholar 

  30. Jones TLZ, Simonds WF, Merendino JJ et al. Myristoylation of an inhibitory GTP binding protein a subunit is essential for its membrane attachment. Proc Natl Acad Sci USA 1990; 87: 568–572.

    Article  PubMed  CAS  Google Scholar 

  31. Linder ME, Pang I-H, Duronio RJ et al. Lipid modifications of G protein subunits. Myristoylation of Goa increases its affinity for jay. J Biol Chem 1991; 266: 4654–4659.

    PubMed  CAS  Google Scholar 

  32. Kokame K, Fukada Y, Yoshizawa T. Lipid modification at the N terminus of photoreceptor G-protein a-subunit. Nature 1992; 259: 671–672.

    Google Scholar 

  33. Audiger Y, Journot L, Pantaloni C et al. The carboxy terminal domain of Gsa is necessary for anchorage of the activated form to the plasma membrane. J Cell Biol 1990; 111: 427–1435.

    Google Scholar 

  34. Noel JP, Hamm HE, Sigler PB. The 2.2A crystal structure of transduction-a cornplexed with GTPyS. Nature 1993; 366: 654–663.

    Article  PubMed  CAS  Google Scholar 

  35. Markby DW, Onrust R, Boume HR. Separate GTP binding and GTPase activating domains of a Ga subunit. Science 1993; 262: 1895–1901.

    Article  PubMed  CAS  Google Scholar 

  36. Rall TW, Sutherland EW. The regulatory role of adenosine-3’,5’-phosphate. Cold Spring Harbor Symp Quant Biol 1961; 26: 347–354.

    Article  PubMed  CAS  Google Scholar 

  37. Limbird LE, Lefkowitz RJ. Resolution of ß-adrenergic receptor binding and adenylate cyclase activity by gel exclusion chromotography. J Biol Chem 1977; 252: 799–802.

    PubMed  CAS  Google Scholar 

  38. Rodbell M, Birnbaumer L, Pohl SL et al. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J Biol Chem 1971; 246: 1877–1882.

    PubMed  CAS  Google Scholar 

  39. Ross EM, Howlett AC, Ferguson KM et al. Reconstitution of hormone sensitive adenylate cyclase activity with resolved components of the enzyme. J Biol Chem 1978; 253: 6401–6412.

    PubMed  CAS  Google Scholar 

  40. Sternweis PC, Northup JK, Smigel MD et al. The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem 1981; 256: 11517–11526.

    PubMed  CAS  Google Scholar 

  41. Tang W-J, Gilman AG. Adenylyl cyclases. Cell 1992; 70: 869–872.

    Article  PubMed  CAS  Google Scholar 

  42. Pieroni JP, Jacobowitz O, Chen J et al. Signal recognition and integration by G; stimulated adenylyl cyclases. Curr Opin Neurobiol 1993; 3: 345–351.

    Article  PubMed  CAS  Google Scholar 

  43. Krebs EG. Role of cyclic AMP-dependent protein kinase in signal transduction. J Am Med Assoc 1989; 262: 1815–1818.

    Article  CAS  Google Scholar 

  44. Adams SR, Harootunian AI, Buechler YJ et al. Flourescence ratio imaging of cyclic AMP in single cells. Nature 1991; 349: 694–697.

    Article  PubMed  CAS  Google Scholar 

  45. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem 1989; 58: 453–508.

    Article  PubMed  CAS  Google Scholar 

  46. McKnight GS, Cadd GG, Clegg CH et al. Expression of wild-type and mutant subunits of the cAMP-dependent protein kinase. Cold Spring Harbor Symp Quant Biol 1988; 53: 111–119.

    Article  PubMed  CAS  Google Scholar 

  47. McKnight GS. Cyclic AMP second messenger systems. Curr Opin Cell Biol 1991; 3: 213–217.

    Article  PubMed  CAS  Google Scholar 

  48. Scott JD, Soderling TR. Serine/theonine protein kinases. Curr Opin Neurobiol 1992; 2: 289–295.

    Article  PubMed  CAS  Google Scholar 

  49. Beebe SJ, Oyen O, Sandberg M et al. Molecular cloning of a tissue-specific protein kinase (Cy) from human testis–representing a third isoform for the catalytic subunit of cAMP-dependent protein kinase. Mol Endocrinol 1990; 4: 465–475.

    Article  PubMed  CAS  Google Scholar 

  50. Itoh H, Kozasa T, Nagata S. Molecular cloning and sequence determination of cDNAs for a subunits of the guanine nucleotide-binding proteins Gs, G, and Go from rat brain. Proc Natl Acad Sci USA 1986; 83: 3776–3780.

    Article  PubMed  CAS  Google Scholar 

  51. Chen J, Iyengar R. Inhibition of cloned adenylyl cyclases by mutant activated Gia and specific suppression of type 2 adenylyl cyclase inhibition by phorbol ester treatment. J Biol Chem 1993; 268: 12253–12256.

    PubMed  CAS  Google Scholar 

  52. Limbird LE. Receptors linked to inhibition of adenylate cyclase: additional signalling mechanisms. FASEB J 1988; 2: 2686–2695.

    PubMed  CAS  Google Scholar 

  53. Garcia-Sainz JA. “Inhibitory” receptors and ion channel effectors. Trends Pharmacol Sci 1988; 9:27–28.

    Google Scholar 

  54. Vallar L, Meldolesi J. Mechanism of signal transduction at the dopamine D2 receptor. Trends Pharmacol Sci 1989; 10: 74–77.

    Article  PubMed  CAS  Google Scholar 

  55. Hille B. G protein-coupled mechanisms and nervous signalling. Neuron 1992; 9: 187–195.

    Article  PubMed  CAS  Google Scholar 

  56. Hescheler J, Schultz G. G-proteins involved in the calcium channel signalling systems. Curr Opin Neurobiol 1993; 3: 360–367.

    Article  PubMed  CAS  Google Scholar 

  57. Brown AM. Membrane-delimited cell signalling complexes: direct ion channel regulation by G-proteins. J Membr Biol 1993; 131: 93–104.

    Article  PubMed  CAS  Google Scholar 

  58. Ullrich S, Wollheim CB. GTP-dependent inhibition of insulin secretion by epinephrine in permeabilized RINm5F cells: lack of correlation between insulin secretion and cyclic AMP levels. J Biol Chem 1988; 263: 8615–8620.

    PubMed  CAS  Google Scholar 

  59. McDermott AM, Sharp GWG. Inhibition of insulin secretion: a fail-safe system. Cell Signal 1993; 5: 229–234.

    Article  PubMed  CAS  Google Scholar 

  60. Stryer L. Visual excitation and recovery. J Biol Chem 1991; 266: 10711–10714.

    PubMed  CAS  Google Scholar 

  61. Bentley JK, Beavo JA. Regulation of cyclic nucleotides. Curr Opin Cell Biol 1992; 4: 233–240.

    Article  PubMed  CAS  Google Scholar 

  62. Berridge MJ, Irvine RF. Inositol tris-phosphate, a novel second messenger in cellular signal transduction. Nature 1984; 312: 315–321.

    Article  PubMed  CAS  Google Scholar 

  63. Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature 1989; 341: 197–205.

    Article  PubMed  CAS  Google Scholar 

  64. Lassing I, Lindberg U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 1985; 314: 472–474.

    Article  PubMed  CAS  Google Scholar 

  65. Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ et al. The actin-binding protein prolifin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science 1990; 247: 1575–1578.

    Article  PubMed  CAS  Google Scholar 

  66. Rhee SG, Choi K. Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 1992; 267: 12393–12396.

    PubMed  CAS  Google Scholar 

  67. Cockcroft S, Thomas GMH. Inositol-lipidspecific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J 1992; 288: 1–14.

    PubMed  CAS  Google Scholar 

  68. Dixon JF, Hokin LE. Kinetic analysis of the formation of inositol 1:2-cyclic phosphate in carbachol-stimulated pancreatic minilobules: half is formed by direct phosphodiesteratic cleavage of phosphatidylinositol. J Biol Chem 1989; 264: 11721–11724.

    PubMed  CAS  Google Scholar 

  69. Biden TJ, Prugue ML, Davidson AGM. Evidence for phosphatidylinositol hydrolysis in islets stimulated with carbamoylcholine. Kinetic analysis of inositol polyphosphate metabolism. Biochem J 1992; 285: 541–549.

    PubMed  CAS  Google Scholar 

  70. Haslam RJ, Davidson ML. Receptor-induced diacylglycerol formation in permeabilized platelets; possible role for a GTP-binding protein. J Recept Res 1984; 4: 1–6.

    Google Scholar 

  71. Fain JN, Wallace MA, Wojcikiewicz RJH. Evidence for involvement of guanine nucleotide binding regulatory proteins in the activation of phospholipases by hormones. FASEB J 1988; 2: 2569–2574.

    PubMed  CAS  Google Scholar 

  72. Smrcka AV, Helper JR, Brown KO et al. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 1991; 251: 804–807.

    Article  PubMed  CAS  Google Scholar 

  73. Taylor SJ, Chae HZ, Rhee SG et al. Activation of the ß1 isozyme of phospholipase C by a subunits of the Gq class of G proteins. Nature 1991; 350: 516–518.

    Article  PubMed  CAS  Google Scholar 

  74. Strathmann M, Simon MI. G protein diversity: a distinct class of a subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci USA 1990; 87: 9113–9117.

    Article  PubMed  CAS  Google Scholar 

  75. Park D, Jhon D-Y, Kriz R et al. Cloning, sequencing, expression, and G„-independent activation of phospholipase C-ß2. J Biol Chem 1992; 267: 16048–16055.

    PubMed  CAS  Google Scholar 

  76. Jhon D-Y, Lee H-H, Park D et al. Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-133. J Biol Chem 1993; 268: 6654–6661.

    PubMed  CAS  Google Scholar 

  77. Kim MJ, Bahk YY, Min DS et al. Cloning of cDNA encoding rat phospholipase C-134, a new member of the phospholipase C. Biochem Biophys Res Commun 1993; 194: 706–712.

    Article  PubMed  CAS  Google Scholar 

  78. Camps M, Carozzi A, Schnabel P et al. Isozyme-selective stimulation of phospholipase C-02 by G protein fry-subunits. Nature 1992; 360: 684–686.

    Article  PubMed  CAS  Google Scholar 

  79. Park D, Jhon D-Y, Lee C-W et al. Activation of phospholipase C isozymes by G protein py subunits. J Biol Chem 1993; 268: 4573–4576.

    PubMed  CAS  Google Scholar 

  80. Smrcka AV, Sternweis PC. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C 13 by G protein and (3y subunits. J Biol Chem 1993; 268: 9667–9674.

    PubMed  CAS  Google Scholar 

  81. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature 1993; 361: 315–325.

    Article  PubMed  CAS  Google Scholar 

  82. Spat A, Bradford PG, McKinley JS et al. A saturable receptor for 32P-inositol-1,4,5trisphosphate in hepatocytes and neutrophils. Nature 1986; 319: 514–516.

    Article  PubMed  CAS  Google Scholar 

  83. Furuichi T, Yoshikawa S, Miyawaki A et al. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein Poo. Nature 1989; 342: 32–38.

    Article  PubMed  CAS  Google Scholar 

  84. Sudhof TC, Newton CL, Archer BT et al. Structure of a novel InsP3 receptor. EMBO J 1991; 10: 3199–3206.

    PubMed  CAS  Google Scholar 

  85. Blondel O, Takeda J, Janssen H et al. Sequence and functional characterisation of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J Biol Chem 1993; 268: 11356–11363.

    PubMed  CAS  Google Scholar 

  86. Danoff SK, Ferris CD, Donath C et al. Inositol 1,4,5-trisphosphate receptors: Distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. Proc Natl Acad Sci USA 1991; 88: 2951–2955.

    Article  PubMed  CAS  Google Scholar 

  87. Streb HP, Irvine RF, Berridge MJ et al. Release of Cat’ from a nonmitochondrial store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 1983; 306: 67–69.

    Article  PubMed  CAS  Google Scholar 

  88. Means AR, VanBerkum MF, Bagchi I et al. Regulatory functions of calmodulin. Pharmacol Therap 1991; 50: 255–270.

    Article  CAS  Google Scholar 

  89. Irvine RF, Moor RM, Pollock WK et al. Inositol phosphates: proliferation, metabolism and function. Phil Trans R Soc Lond Biol 1988; 320: 281–298.

    Article  CAS  Google Scholar 

  90. Putney JW. A model for receptor-regulated Cat’ entry. Cell Calcium 1986; 7: 1–12.

    Article  PubMed  CAS  Google Scholar 

  91. Penner R, Fasolato C, Hoth M. Calcium influx and its control by calcium release. Curr Opin Neurobiol 1993; 3: 368–374.

    Article  PubMed  CAS  Google Scholar 

  92. Randriamampita C, Tsien RY. Emptying of intracellular Cat’ stores releases a novel small messenger that stimulates Ca’ influx. Nature 1993; 364: 809–814.

    Article  PubMed  CAS  Google Scholar 

  93. Fasolato C, Hoth M, Penner R. A GTPdependent step in the activation mechanism of capacitative calcium influx. J Biol Chem 1993; 268: 20737–20740.

    PubMed  CAS  Google Scholar 

  94. Bird GS, Putney JW. Inhibition of thapsigargin-induced calcium entry by microinjected guanine nucleotide analogues. Evi-

    Google Scholar 

  95. dence for the involvement of a small G-protein in capacitative calcium entry. J Biol Chem 1993; 268: 21486–21488.

    Google Scholar 

  96. Shears SB. Metabolism of the inositol phosphates produced upon receptor activation. Biochem J 1989; 260: 313–324.

    PubMed  CAS  Google Scholar 

  97. Majerus PW. Inositol phosphate biochemistry. Annu Rev Biochem 1992; 61: 225–250.

    Article  PubMed  CAS  Google Scholar 

  98. Menniti FS, Oliver KG, Putney JW et al. Inositol phosphates and cell signalling: new views of Ins P5 and Ins P6. Trends Biochem Sci 1993; 18: 53–56.

    Article  PubMed  CAS  Google Scholar 

  99. Takai Y, Kishimoto A, Inoue M et al. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. J Biol Chem 1977; 252: 7603–7609.

    PubMed  CAS  Google Scholar 

  100. Nishizuka Y. Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607–614.

    Article  PubMed  CAS  Google Scholar 

  101. Osada S, Mizuno K, Saido TC et al. A new member of the protein kinase C family, nPKC9, specifically expressed in skeletal muscle. Mol Cell Biol 1992; 12: 3930–3938.

    PubMed  CAS  Google Scholar 

  102. Selbie LA, Schmitz-Peiffer C, Sheng Y et al. Molecular cloning and characterisation of PKCt, an atypical isoform of protein kinase C derived from insulin-secreting cells. J Biol Chem 1993; 268: 24296–24302.

    PubMed  CAS  Google Scholar 

  103. Castana M, Takai Y, Kaibuchi K et al. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 1982; 257: 7847–7851.

    Google Scholar 

  104. Kraft AS, Anderson WB. Phorbol esters increase the amount of Ca’, phospholipiddependent protein kinase associated with plasma membrane. Nature 1983; 301: 621–623.

    Article  PubMed  CAS  Google Scholar 

  105. Wolf M, Cautrecasas P, Sahyoun N. Interaction of protein kinase C with membranes is regulated by Ca’, phorbol esters, and ATP. J Biol Chem 1985; 260: 15718–15722.

    PubMed  CAS  Google Scholar 

  106. Parker PJ, Coussens L, Totty N et al. The complete primary structure protein kinase C-the major phorbol ester receptor. Science 1986; 233: 853–859.

    Article  PubMed  CAS  Google Scholar 

  107. Coussens L, Parker PJ, Rhee L et al. Multiple distinct forms of bovine and human protein kinase C suggest diversity in cellular signalling pathways. Science 1986; 233: 859–866.

    Article  PubMed  CAS  Google Scholar 

  108. Bell RM, Burns DJ. Lipid activation of protein kinase C. J Biol Chem 1991; 266: 4661–4664.

    PubMed  CAS  Google Scholar 

  109. Mochly-Rosen D, Khaner H, Lopez J. Identification of intracellular receptor proteins for activated protein kinase C. Proc Natl Acad Sci USA 1991; 88: 3997–4000.

    Article  PubMed  CAS  Google Scholar 

  110. Trilivas I, McDonough PM, Brown JH. Dissociation of protein kinase C redistribution from the phosphorylation of its substrates. J Biol Chem 1991; 266: 8431–8438.

    PubMed  CAS  Google Scholar 

  111. Hug H, Sarre TF. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J 1993; 291: 329–343.

    PubMed  CAS  Google Scholar 

  112. Shears SB. Regulation of the metabolism of 1,2-diaylglycerol and inositol phosphates that respond to receptor activation. Pharmac Therap 1991; 49: 79–104.

    Article  Google Scholar 

  113. Schimmel RJ. The al-adrenergic transduction system in hamster brown adipocytes: release of arachidonic acid accompanies activation of phospholipase C. Biochem J 1988; 253: 93–102

    PubMed  CAS  Google Scholar 

  114. Balsinde J, Diez E, Mollinedo F. Arachidonic acid release from diacylglycerol in human neutrophils. Translocation of diacylglycerol deacylating enzyme activities from an intracellular pool to plasma membrane upon cell activation. J Biol Chem 1991; 266: 15638–15643.

    PubMed  CAS  Google Scholar 

  115. Linden J, Delahunty TM. Receptors that inhibit phosphoinositide beakdown. Trends Pharmacol Sci 1989; 10: 112–120.

    Google Scholar 

  116. Bizzarri C, DiGirolamo M, D’Orazio MC et al. Evidence that a guanine nucleotide-binding protein linked to a muscarinic receptor inhibits directly phospholipase C. Proc Natl Acad Sci USA 1990; 87: 4889–4893.

    Article  PubMed  CAS  Google Scholar 

  117. Litosch I, Sulkholutskaya I, Weng C. G protein-mediated inhibition of phospholipase C activity in a solubilized membrane preparation. J Biol Chem 1993; 268: 8692–8697.

    PubMed  CAS  Google Scholar 

  118. Axelrod J. Receptor-mediated activation of phospholipase A2 and arachidonic acid release in signal transduction. Biochem Soc Trans 1990; 18: 503–507.

    PubMed  CAS  Google Scholar 

  119. Clark JD, Lin L-L, Kriz RW et al. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2’-dependent translocation domain with homology to PKC and GAP. Cell 1991; 86: 1043–1051.

    Article  Google Scholar 

  120. Chan K-M, Turk J. Mechanism of arachidonic acid-induced Ca2’mobilization from rat liver microsomes. Biochem Biophys Acta 1987; 928: 186–193.

    Article  PubMed  CAS  Google Scholar 

  121. Billah MM, Anthes JC. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J 1990; 269: 281–291.

    PubMed  CAS  Google Scholar 

  122. Exton JH. Signalling through phosphatidylcholine breakdown. J Biol Chem 1990; 265: 1–4.

    PubMed  CAS  Google Scholar 

  123. Pan MG, Florio T, Stork PJS. G protein activation of a hormone-stimulated phosphatase in human tumor cells. Science 1993; 256: 1215–1217.

    Article  Google Scholar 

  124. van Corven EJ, Hordijk PL, Medema RH et al. Pertussis toxin-sensitive activation of p21“S by G protein-coupled receptor agonists in fibroblasts. Proc Natl Acad Sci USA 1993; 90: 1257–1261.

    Article  PubMed  CAS  Google Scholar 

  125. Winitz S, Russell M, Qian N-X et al. Involvement of Ras and Raf in the G,-coupled acetylcholine muscarinic m2 receptor activation of mitogen-activated protein (MAP) kinase kinase and MAP kinase. J Biol Chem 1993; 268: 19196–19199.

    PubMed  CAS  Google Scholar 

  126. Alblas J, van Corven EJ, Hordijk PL et al. G-mediated activation of the p21“`-mitogen-activated protein kinase pathway by a2adrenergic receptors expressed in fibroblasts. J Biol Chem 1993; 268: 22235–22238.

    PubMed  CAS  Google Scholar 

  127. Aridor M, Rajmilevich G, Beaven MA et al. Activation of exocytosis by the heterotrimeric G protein Gi3. Science 1993; 262: 1569–1572.

    Article  PubMed  CAS  Google Scholar 

  128. Comperts BD. Ge: a GTP-binding protein mediating exocytosis. Annu Rev Physiol 1990; 52: 591–606.

    Article  Google Scholar 

  129. Carpenter CL, Duckworth BC, Auger KR et al. Purification and characterisation of phosphatidylinositol 3-kinase from bovine thymus: monomer and heterodimer forms. J Biol Chem 1990; 265:19704–1 97 1 1.

    Google Scholar 

  130. Stephens LR, Hughes KT, Irvine RF. Pathway of phosphatidylinositol (3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 1991; 351: 33–38.

    Article  PubMed  CAS  Google Scholar 

  131. Stephens LR, Jackson T, Hawkins PT. Synthesis of phosphatidylinositol (3,4,5)trisphosphate synthesis in permeabilized neutrophils regulated by receptors and G-proteins. J Biol Chem 1993; 268: 17162–17172.

    PubMed  CAS  Google Scholar 

  132. Pfaffinger PJ, Martin JM, Hunter DD et al. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 1985; 317: 536–538.

    Article  PubMed  CAS  Google Scholar 

  133. Breitwieser GE, Szabo G. Uncoupling of cardiac muscarinic and ß-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 1985; 317: 538–540.

    Article  PubMed  CAS  Google Scholar 

  134. Soejima M, Noma A. Mode of regulation of the ACh-sensitive K channel by the muscarinic receptor in rabbit atrial cells. Pflugers Arch 1984; 400: 424–431.

    Article  PubMed  CAS  Google Scholar 

  135. Yatani A, Mattera R, Codina J et al. The G protein-gated atrial K. channel is stimulated by three distinct Gia subunits. Nature 1988; 336: 680–682.

    Article  PubMed  CAS  Google Scholar 

  136. Logothetis DE, Kurachi Y, Galper J et al. The ßy-subunits of GTP-binding proteins activate the muscarinic K’ channel in heart. Nature 1987; 325: 321–326.

    Article  PubMed  CAS  Google Scholar 

  137. Kim D, Lewis DL, Grazidei L et al. G-protein ßy-subunits activate the cardiac muscarinic K’-channel via phospholipase A2. Nature 1989; 337: 557–560.

    Article  PubMed  CAS  Google Scholar 

  138. Kubo Y, Reuveny E, Slesinger PA et al. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 1993; 364: 802–806.

    Article  PubMed  CAS  Google Scholar 

  139. Yatani A, Codina J, Imoto Y et al. A G protein directly regulates mammalian cardiac calcium channels. Science 1987; 238: 1288–1292.

    Article  PubMed  CAS  Google Scholar 

  140. Cavalie A, Allen TJ, Trautwein W. Role of the GTP-binding protein G, in the ß-adrenergic modulation of cardiac Ca channels. Pflugers Arch 1991; 419: 433–443.

    Article  PubMed  CAS  Google Scholar 

  141. Cali JJ, Balcueva EA, Rybalkin I et al. Selective tissue distribution of G protein y subunits, including a new form of the y subunits identified by cDNA cloning. J Biol Chem 1992; 267: 24023–24027.

    PubMed  CAS  Google Scholar 

  142. Asano T, Morishita R, Matsuda T et al. Purification of four forms of the ßy subunit complex of G proteins containing different y subunits. J Biol Chem 1993; 268: 20512–20519.

    PubMed  CAS  Google Scholar 

  143. Simonds WF, Butrynski JE, Gautam N et al. G protein beta/gamma dimers: Membrane targeting requires subunit coexpression and intact gamma CAAX domain. J Biol Chem 1991; 266: 5363–5366.

    PubMed  CAS  Google Scholar 

  144. Blumer KJ, Thorner J. Receptor-G protein signalling in yeast. Annu Rev Physiol 1991; 53: 37–57.

    Article  PubMed  CAS  Google Scholar 

  145. Tang W J, Gilman AG. Type-specific regulation of adenylyl cyclase by G protein ßy subunits. Science 1991; 254: 1500–1503.

    Article  PubMed  CAS  Google Scholar 

  146. Federman AD, Conklin BR, Schrader KA et al. Hormonal stimulation of adenylyl cyclase through G;-protein ßy subunits. Nature 1992; 356: 159–161.

    Article  PubMed  CAS  Google Scholar 

  147. Camps M, Hou C, Sidiropoulos D et al. Stimulation of phospholipase C by guanine-nucleotide binding protein ßy subunits. Eur J Biochem 1992; 206: 821–831.

    Article  PubMed  CAS  Google Scholar 

  148. Wu D, Katz A, Simon MI. Activation of phospholipase C 132 by the a and ßy subunits of trimeric GTP-binding protein. Proc Natl Acad Sci USA 1993; 90: 5297–5301.

    Article  PubMed  CAS  Google Scholar 

  149. Kleuss C, Hescheler J, Ewel C et al. Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 1991; 353: 43–48.

    Article  PubMed  CAS  Google Scholar 

  150. Kleuss C, Scherubl H, Hescheler H et al. Different ß subunits determine G-protein interaction with transmembrane receptors. Nature 1992; 358: 424–426.

    Article  PubMed  CAS  Google Scholar 

  151. Kleuss C, Scherubl H, Hescheler J et al. Selectivity in signal transduction is determined by each of the subunits of heterotrimeric G-proteins. Science 1993; 259: 832–834.

    Article  PubMed  CAS  Google Scholar 

  152. Thomas JM, Hoffman BB. Adenylate cyclase supersensitivity: a general means of cellular adaptation to inhibitory agonists? Trends Pharmacol Sci 1987; 8: 308–311.

    Article  CAS  Google Scholar 

  153. Milligan G. Agonist control of G protein levels. Trends Pharmacol Sci 1991; 12: 207–209.

    Article  PubMed  CAS  Google Scholar 

  154. Hausdorff WP, Caron MG, Lefkowitz RJ. Turning off the signal: desensitization of ßadrenergic receptor function. FASEB J 1990; 4: 2881–2889.

    PubMed  CAS  Google Scholar 

  155. Wojcikiewicz RJH, Tobin AB, Nahorski SR. Desensitization of cell signalling mediated by phosphoinositidase C. Trends Pharmacol Sci 1993; 14: 279–285.

    Article  PubMed  CAS  Google Scholar 

  156. Sibley DR, Benovic JL, Caron MG et al. Regulation of transmembrane signalling by receptor phosphorylation. Cell 1987; 48: 913–922.

    Article  PubMed  CAS  Google Scholar 

  157. Vicentini LM, DiVirgilio F, Pozzan T et al. Tumor promoter phorbol 12-myristate, 13-acetate inhibits phosphoinositide hydrolysis and cytosolic Cat’ rise induced by the activation of muscarinic receptors in PC12 cells. Biochem Biophys Res Commun 1985; 127: 310–317.

    Article  PubMed  CAS  Google Scholar 

  158. Orellana SA, Solski PA, Brown JH. Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells. J Biol Chem 1985; 260: 5236–5239.

    PubMed  CAS  Google Scholar 

  159. Hepler JR, Shelton H, Kendall T. Longterm phorbol ester treatment down-regulates protein kinase C and sensitizes the phosphoinositide signalling pathway to hormone and growth factor stimulation. J Biol Chem 1988; 263: 7610–7619.

    PubMed  CAS  Google Scholar 

  160. Thompson P, Findlay JB. Phosphorylation of ovine rhodopsin. Biochem J 1984; 220: 773–780.

    PubMed  CAS  Google Scholar 

  161. Inglese J, Glickman JF, Lorenz W et al. Isoprenylation of a protein kinase. J Biol Chem 1992; 267: 1422–1425.

    PubMed  CAS  Google Scholar 

  162. Wilden U, Hall SW, Kuhn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci USA 1986; 83: 1174–1178.

    Article  PubMed  CAS  Google Scholar 

  163. Lefkowitz RJ. ß-adrenergic receptor kinase: primary structure delineates a multigene family. Science 1989; 246: 235–240.

    Article  PubMed  Google Scholar 

  164. Lefkowitz RJ. G protein-coupled receptor kinases. Cell 1993; 74: 409–412.

    Article  PubMed  CAS  Google Scholar 

  165. Inglese J, Freedman NJ, Koch WJ et al. Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 1993; 268: 23735–23738.

    PubMed  CAS  Google Scholar 

  166. Lohse MJ, Benovic JL, Codina J et al. ßarrestin: a protein that regulates ß-adrenergic receptor function. Science 1990; 248: 1547–1550.

    Article  PubMed  CAS  Google Scholar 

  167. Haga K, Haga T. Activation by G protein Jay subunits of agonist-or light-dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin. J Biol Chem 1992; 267: 2222–2227.

    PubMed  CAS  Google Scholar 

  168. Kameyama K, Haga K, Haga T et al. Activation by G protein ßy subunits of 13-adrenergic and muscarinic receptor kinase. J Biol Chem 1993; 268: 7753–7758.

    PubMed  CAS  Google Scholar 

  169. Pitcher JA, Inglese J, Higgins JB et al. Role of fry subunits of G proteins in targeting the ß-adrenergic receptor kinase to membrane-bound receptors. Science 1992; 257: 1264–1267.

    Article  PubMed  CAS  Google Scholar 

  170. Kunapuli P, Benovic JL. Cloning and expression of GRK5: a member of the G protein-coupled receptor kinase family Proc Natl Acad Sci USA 1993; 90: 5588–5592.

    CAS  Google Scholar 

  171. Benovic JL, Gomez J. Molecular cloning and expression of GRK6. J Biol Chem 1993; 268: 19521–19527.

    PubMed  CAS  Google Scholar 

  172. Peralta EG, Ashkenazi A, Winslow JW et al. Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 1988; 334: 434–437.

    Article  PubMed  CAS  Google Scholar 

  173. Ashkenazi A, Peralta EG, Winslow JW et al. Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell 1989; 56: 487–493.

    Article  PubMed  CAS  Google Scholar 

  174. Vallar L, Muca C, Magni M et al. Differential coupling of dopaminergic D2 receptors expressed in different cell types. J Biol Chem 1990; 265: 10320–10326.

    PubMed  CAS  Google Scholar 

  175. Munshi R, Pang I-H, Sternweis PC et al. A, adenosine receptors of bovine brain couple to guanine nucleotide-binding proteins Gil, Gil and Go. J Biol Chem 1991; 266: 22285–22289.

    PubMed  CAS  Google Scholar 

  176. Freissmuth M, Schutz W, Linder ME. Interactions of the bovine brain Al-adenosine receptor with recombinant G protein a-subunits. Selectivity for rG;a-3. J Biol Chem 1991; 266: 17778–17783.

    PubMed  CAS  Google Scholar 

  177. Berstein G, Blank JL, Smrcka AV et al. Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified ml muscarinic receptor, Gg11, and phospholipase C-01. J Biol Chem 1992; 267: 8081–8088.

    PubMed  CAS  Google Scholar 

  178. McClue SJ, Milligan G. Molecular interaction of the human a2-C10-adrenergic receptor, when expressed in Rat-1 fibroblasts, with multiple pertussis toxin-sensitive guanine nucleotide-binding proteins: studies with site-directed antisera. Mol Pharmacol 1991; 40: 627–632.

    PubMed  CAS  Google Scholar 

  179. Murray-Whelan R, Schlegel W. Brain somatostatin receptor G-protein interaction. J Biol Chem 1992; 267: 2960–2965.

    PubMed  CAS  Google Scholar 

  180. Simonds WF, Goldsmith PK, Codina J et al. G,2 mediates a2-adrenergic inhibition of adenylate cyclase in platelet membranes: in situ identification with Ga C-terminal antibodies. Proc Natl Acad Sci USA 1989; 86: 7809–7813.

    Article  PubMed  CAS  Google Scholar 

  181. Gutowski S, Smrcka A, Nowak L et al. Antibodies to the aq subfamily of guanine nucleotide-binding regulatory protein a subunits attenuate activation of phosphatidylinositol 4,5-biphosphate hydrolysis by hormones. J Biol Chem 1991; 266: 20519–20524.

    PubMed  CAS  Google Scholar 

  182. Offermanns S, Schultz G, Rosenthal W. Evidence for opioid receptor-mediated activation of the G-proteins, Ga and G12 in membranes of neuroblastoma x glioma (NG-108) hybrid cells. J Biol Chem 1991; 266: 3365–3368.

    PubMed  CAS  Google Scholar 

  183. Schmidt A, Hescheler J, Offermanns S et al. Involvement of pertusis toxin-sensitive G-proteins in the hormonal inhibition of dihydropyridine-sensitive Ca’ currents in an insulin-secreting cell line (RINm5F). J Biol Chem 1991; 266: 18025–18033.

    PubMed  CAS  Google Scholar 

  184. Sho K, Okajima F, Majid MA et al. Reciprocal modulation of thyrotropin actions by P1-purinergic agonists in FRTL-S thyroid cells. Inhibition of cAMP pathway and stimulation of phospholipase C-Ca2’ pathway. J Biol Chem 1991; 266: 12180–12184.

    PubMed  CAS  Google Scholar 

  185. Biden TJ, Browne CL. Cross-talk between muscarinic and adenosine receptor signalling in the regulation of cytosolic free Cat’ and insulin secretion. Biochem J 1993; 293: 721–728.

    PubMed  CAS  Google Scholar 

  186. Katada T, Gilman AG, Watanabe Y et al. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 1985; 151: 431–437.

    Article  PubMed  CAS  Google Scholar 

  187. Carlson KE, Brass LF, Manning DR. Thrombin and phorbol esters cause the selective phosphorylation of a G protein other than G, in human platelets. J Biol Chem 1989; 264: 13298–13305.

    PubMed  CAS  Google Scholar 

  188. Gollasch M, Kleuss C, Hescheler J et al. G12 and protein kinase C are required for thyrotropin-releasing hormone-induced stimulation of voltage-dependent Ca“ channels in rat pituitary GH3 cells. Proc Natl Acad Sci USA 1993; 90: 6265–6269.

    Article  PubMed  CAS  Google Scholar 

  189. Ferris CD, Huganir RI, Bredt DS et al. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc Natl Acad Sci USA 1991; 88: 2232–2235.

    Article  PubMed  CAS  Google Scholar 

  190. Joseph SK, Ryan SV. Phosphorylation of the inositol trisphosphate receptor in isolated rat hepatocytes. J Biol Chem 1993; 268: 23059–23065.

    PubMed  CAS  Google Scholar 

  191. Biden TJ, Comte M, Cox JA et al. Calcium-calmodulin stimulates inositol 1,4,5trisphosphate kinase activity from insulin secreting RINm5F cells. J Biol Chem 1987; 262: 9437–9440.

    PubMed  CAS  Google Scholar 

  192. Roach PJ. Multisite and hierarchal protein phosphorylation. J Biol Chem 1991; 266: 14139–14142.

    PubMed  CAS  Google Scholar 

  193. Sarndahl E, Bokoch GM, Stendahl O et al. Stimulus-induced dissociation of a subunits of heterotrimeric GTP-binding proteins from the cytoskeleton of human neutrophils. Proc Natl Acad Sci USA 1993; 90: 6552–6556.

    Article  PubMed  CAS  Google Scholar 

  194. Ausiello DA, Stow JL, Cantiello HF et al. Purified epithelial Na’ channel complex contains the pertussis toxin-sensitive Ga;-3 protein. J Biol Chem 1992; 267: 4759–4765.

    PubMed  CAS  Google Scholar 

  195. Leiber D, Jasper JR, Alousi AA et al. Alteration in G,-mediated signal transduction in S49 lymphoma cells treated with inhibitors of microtubules. J Biol Chem 1993; 268: 3833–3837.

    PubMed  CAS  Google Scholar 

  196. Strittmatter SM, Valenzuela D, Sudo Y et al. An intracellular guanine nucleotide release protein for Go. J Biol Chem 1991; 266: 22465–22471.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iismaa, T.P., Biden, T.J., Shine, J. (1995). Signaling Through G Protein-Coupled Receptors. In: G Protein-Coupled Receptors. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21930-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21930-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21932-4

  • Online ISBN: 978-3-662-21930-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics