Skip to main content

Cell Surface Receptors and the G Protein-Coupled Receptor Superfamily

  • Chapter
G Protein-Coupled Receptors

Abstract

Transduction of extracellular signals across the plasma membrane to the intracellular environment is achieved by the interaction of regulatory molecules with specific membrane-spanning cell surface receptors. Interaction of an appropriate activating ligand with the receptor at the external face of the cell results in the generation of an intracellular signal. Cell surface receptors are able to distinguish their specific ligands from the multitude of other bioactive factors in the extracellular milieu. In response to specific activation, such receptors function in the transmission, amplification and integration of extracellular signals through a variety of intracellular mechanisms to control cellular functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birnbaumer L, Abramowitz J, Brown AM. Receptor-effector coupling by G proteins. Biochim Biophys Acta 1990; 1031: 163–224.

    PubMed  CAS  Google Scholar 

  2. Williams AF. A year in the life of the immunoglobulin superfamily. Immunol Today 1987; 8: 298–303.

    CAS  Google Scholar 

  3. Williams AF, Barclay AN. The immunoglobulin superfamily–domains for cell surface recognition. Annu Rev Immunol 1988; 6: 381–405.

    PubMed  CAS  Google Scholar 

  4. Buck CA. Immunoglobulin superfamily: structure, function and relationship to other receptor molecules. Sem Cell Biol 1992; 3: 179–188.

    CAS  Google Scholar 

  5. Cunningham BA, Hemperly JJ, Murray BA et al. Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 1987; 236: 799–806.

    PubMed  CAS  Google Scholar 

  6. Turner ML. Cell adhesion molecules: a unifying approach to topographic biology. Biol Rev 1992; 67: 359–377.

    PubMed  CAS  Google Scholar 

  7. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morpho-genesis. Development 1988; 102: 639–655.

    PubMed  CAS  Google Scholar 

  8. Takeichi M. Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 1990; 59: 237–258.

    PubMed  CAS  Google Scholar 

  9. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991; 251: 1451–1455.

    PubMed  CAS  Google Scholar 

  10. Fleming S. Cellular functions of adhesion molecules. J Pathol 1990; 161: 189–190.

    PubMed  CAS  Google Scholar 

  11. Hynes RO. Specificity of cell adhesion in development: the cadherin superfamily. Curr Opin Genet Dev 1992; 2: 621–624.

    PubMed  CAS  Google Scholar 

  12. Kemler R. Classical cadherins. Sem Cell Biol 1992; 3: 149–155.

    CAS  Google Scholar 

  13. Rosen SD. The LEC-CAMs: an emerging family of cell-cell adhesion receptors based upon carbohydrate recognition. Am J Respir Cell Mol Biol 1990; 3: 397–402.

    PubMed  CAS  Google Scholar 

  14. Rosen SD. L-selectin and its biological ligands. Histochemistry 1993; 100: 185–191.

    PubMed  CAS  Google Scholar 

  15. Springer TA, Lasky LA. Cell adhesion: sticky sugars for selectins. Nature 1991; 349: 196–197.

    PubMed  CAS  Google Scholar 

  16. Lasky LA. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science 1992; 258: 964–969.

    PubMed  CAS  Google Scholar 

  17. Vestweber D. Selectins: cell surface lectins which mediate the binding of leukocytes to endothelial cells. Sem Cell Biol 1992; 3: 211–220.

    CAS  Google Scholar 

  18. Hynes RO. Integrins: a family of cell surface receptors. Cell 1987; 48: 549–554.

    PubMed  CAS  Google Scholar 

  19. Hemler ME. Adhesive protein receptors on hematopoietic cells. Immunol Today 1988; 9: 109–113.

    PubMed  CAS  Google Scholar 

  20. Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J 1990; 4: 2868–2880.

    PubMed  CAS  Google Scholar 

  21. Werb Z, Tremble P, Damsky CH. Regulation of extracellular matrix degradation by cell-extracellular matrix interactions. Cell Differ Dev 1990; 32: 299–306.

    PubMed  CAS  Google Scholar 

  22. Bosman FT. Integrins: cell adhesives and modulators of cell function. Histochem J 1993; 25: 469–477.

    PubMed  CAS  Google Scholar 

  23. Haynes BF, Telen MJ, Hale LP et al. CD44-a molecule involved in leukocyte adherence and T-cell activation. Immunol Today 1989; 10: 423–428.

    PubMed  CAS  Google Scholar 

  24. Lewinsohn DM, Nagler A, Ginzton N et al. Haematopoietic progenitor cell expression of the H-CAM (CD44) homing-associated adhesion molecule. Blood 1990; 75: 589–595.

    PubMed  CAS  Google Scholar 

  25. Haynes BF, Liao H-X, Patton KL. The transmembrane hyaluronate receptor (CD44): multiple functions, multiple forms. Cancer Cells 1991; 3: 347–350.

    PubMed  CAS  Google Scholar 

  26. Gallagher JT. The protein and proteoglycan guises of Hermes/CD44. Glycobiology 1992; 2: 93–94.

    PubMed  CAS  Google Scholar 

  27. Underhill C. CD44: the hyaluronan receptor. J Cell Sci 1992; 103: 293–298.

    PubMed  CAS  Google Scholar 

  28. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232: 34–47.

    PubMed  CAS  Google Scholar 

  29. Schneider WJ. The low density lipoprotein receptor. Biochim Biophys Acta 1989; 988: 303–317.

    PubMed  CAS  Google Scholar 

  30. Soutar AK, Knight BL. Structure and regulation of the LDL-receptor and its gene. Brit Med Bull 1990; 46: 891–916.

    PubMed  CAS  Google Scholar 

  31. McClelland A, Kühn LC, Ruddle FH. The human transferrin receptor gene: genomic organization and the complete primary structure of the receptor deduced from a cDNA sequence. Cell 1984; 39: 267–274.

    PubMed  CAS  Google Scholar 

  32. Aisen P. Entry of iron into cells: a new role for the transferrin receptor in modulating iron release from transferrin. Ann Neurol 1992; 32: S62 - S68.

    PubMed  CAS  Google Scholar 

  33. Testa U, Pelosi E, Peschle C. The transfer-rin receptor. Crit Rev Oncog 1993; 4: 241–276.

    PubMed  CAS  Google Scholar 

  34. Bell GI, Kayano T, Buse JB et al. Molecular biology of mammalian glucose transporters. Diabetes Care 1990; 13: 198–208.

    PubMed  CAS  Google Scholar 

  35. Thorens B, Charron MJ, Lodish HF. Molecular physiology of glucose transporters. Diabetes Care 1990; 12: 209–218.

    Google Scholar 

  36. Baldwin SA. Molecular mechanisms of sugar transport across mammalian and microbial cell membranes. Biotechnol Applied Biochem 1990; 12: 512–516.

    CAS  Google Scholar 

  37. Kong C-T, Yet S-F, Lever JE. Cloning and expression of a mammalian Na`/amino acid cotransporter with sequence similarity to Na’/glucose cotransporters. J Biol Chem 1993; 268: 1509–1512.

    PubMed  CAS  Google Scholar 

  38. Souba WW, Pacitti AJ. How amino acids get into cells: mechanisms, models, menus, and mediators. J Patenter Enter Nutrition 1992; !6:569–578.

    Google Scholar 

  39. Kim JW, Closs EI, Albritton LM et al. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 1991; 352: 725–728.

    PubMed  CAS  Google Scholar 

  40. Wang H, Kavanaugh MP, North RA et al. Cell-surface receptor for ecotropic murine retroviruses is a basic amino acid transporter. Nature 1991; 352: 729–731.

    PubMed  CAS  Google Scholar 

  41. Christensen HH. A retrovirus uses a cationic amino acid transporter as a cell surface receptor. Nutr Rev 1992; 50: 47–48.

    PubMed  CAS  Google Scholar 

  42. Tate SS, Yan N, Udenfriend S. Expression cloning of a Na’-independent neutral amino acid transporter from rat kidney. Proc Natl Acad Sci USA 1992; 89: 1–5.

    PubMed  CAS  Google Scholar 

  43. Wells RG, Hediger MA. Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci USA 1992; 89: 5596–5600.

    PubMed  CAS  Google Scholar 

  44. Bertran J, Werner A, Moore ML et al. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci USA 1992; 89: 5601–5605.

    PubMed  CAS  Google Scholar 

  45. You G, Smith CP, Kanai Y et al. Cloning and characterization of the vasopressin-regulated urea transporter. Nature 1993; 365: 844–847.

    PubMed  CAS  Google Scholar 

  46. Schloss P, Mayser W, Betz H. Neurotransmitter transporters. A novel family of integral plasma membrane proteins. FEBS Lett 1992; 307: 76–80.

    PubMed  CAS  Google Scholar 

  47. Kanner BI. Glutamate transporters from brain. A novel neurotransmitter transporter family. FEBS Lett 1993; 325: 95–99.

    PubMed  CAS  Google Scholar 

  48. Amara S, Arriza JL. Neurotransmitter transporters: three distinct gene families. Curr Opin Neurobiol 1993; 3: 337–344.

    PubMed  CAS  Google Scholar 

  49. Hyde SC, Emsley P, Hartshorn MJ et al. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 1990; 346: 362–365.

    PubMed  CAS  Google Scholar 

  50. Collins F. Cystic fibrosis: molecular biology and therapeutic implications. Science 1992; 256: 774–779.

    PubMed  CAS  Google Scholar 

  51. Kuchler K, Thorner J. Secretion of peptides and proteins lacking hydrophobic signal sequences: the role of adenosine triphosphate-driven membrane translocators. Endocr Rev 1992; 13: 499–514.

    PubMed  CAS  Google Scholar 

  52. Gillis S. Cytokine receptors. Curr Opin Immunol 1991; 3: 315–319.

    PubMed  CAS  Google Scholar 

  53. Olsson I, Gullberg U, Lantz M et al. The receptors for regulatory molecules of hematopoiesis. Eur J Haematol 1992; 48: 1–9.

    PubMed  CAS  Google Scholar 

  54. Miyajima A, Kitamura T, Harada N et al. Cytokine receptors and signal transduction. Annu Rev Immunol 1992; 10: 295–331.

    PubMed  CAS  Google Scholar 

  55. Hall AK, Rao MS. Cytokines and neurokines: related ligands and related receptors. Trends Neurosci 1992; 15: 35–37.

    PubMed  CAS  Google Scholar 

  56. Dower SK. Cytokine receptor families. Adv Second Messenger Phosphoprotein Res 1993; 28: 19–25.

    PubMed  CAS  Google Scholar 

  57. Taga T, Kishimoto T. Cytokine receptors and signal transduction. FASEB J 1993; 7: 3387–3396.

    Google Scholar 

  58. Kaczmarski RS, Mufti GJ. The cytokine receptor superfamily. Blood Rev 1991; 5: 193–203.

    PubMed  CAS  Google Scholar 

  59. Stahl N, Yancopoulos GD. The alphas, betas, and kinases of cytokine receptor complexes. Cell 1993; 74: 587–590.

    PubMed  CAS  Google Scholar 

  60. Kitamura T, Ogorochi T, Miyajima A. Multimeric cytokine receptors. Trends Endocrinol Metab 1994; 5: 8–14.

    PubMed  CAS  Google Scholar 

  61. Yarden Y, Ullrich A. Growth factor recep tor tyrosine kinases. Annu Rev Biochem 1988; 57: 443–478.

    PubMed  CAS  Google Scholar 

  62. Yarden Y, Ullrich A. Molecular analysis of signal transduction by growth factors. Biochemistry 1988; 27: 3113–3119.

    PubMed  CAS  Google Scholar 

  63. Cadena DL, Gill GN. Receptor tyrosine kinases. FASEB J 1992; 6: 2332–2337.

    PubMed  CAS  Google Scholar 

  64. Miki T, Felming TP, Bottaro DP et al. Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science 1991; 251: 72–75.

    PubMed  CAS  Google Scholar 

  65. Givol D, Yayon A. Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J 1992; 6: 3361–3369.

    Google Scholar 

  66. Mathews LS, Vale WW. Expression cloning of an activin receptor, a predicted trans-membrane serine kinase. Cell 1991; 65: 973–982.

    PubMed  CAS  Google Scholar 

  67. Attisano L, Wrana JL, Cheifetz S et al. Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell 1992; 68: 97–108.

    PubMed  CAS  Google Scholar 

  68. O’Grady P, Liu Q, Huang SS et al. Transforming growth factor ß (TGF-ß) type V receptor has a TGF-1i-stimulated serine/threonine-specific autophosphorylation activity. J Biol Chem 1992; 267: 21033–21037.

    PubMed  Google Scholar 

  69. Hunter T. Protein-serine kinase receptors? Curr Biol 1991; 1: 15–16.

    PubMed  CAS  Google Scholar 

  70. Massagué J, Andres J, Attisano L et al. TGF-ß receptors. Mol Reprod Dev 1992; 32: 99–104.

    PubMed  Google Scholar 

  71. Matsuzaki K, Xu J, Wang F et al. A widely expressed transmembrane serine/threonine kinase that does not bind activin, inhibin, transforming growth factor ß, or bone morphogenic factor. J Biol Chem 1993; 268: 12719–12723.

    PubMed  CAS  Google Scholar 

  72. Ebner R, Chen R-H, Shum L et al. Cloning of a type I TGF-ß receptor and its effect on TGF-ß binding to the type II receptor. Science 1993; 260: 1344–1348.

    PubMed  CAS  Google Scholar 

  73. Janeway CA. The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu Rev Immunol 1992; 10: 645–674.

    PubMed  CAS  Google Scholar 

  74. Trowbridge IS, Ostergaard HL, Johnson P. CD45: a leukocyte-specific member of the protein tyrosine phosphatase family. Biochim Biophys Acta 1991; 1095: 46–56.

    PubMed  CAS  Google Scholar 

  75. Trowbridge IS, Johnson P, Ostergaard H et al. Structure and function of CD45: a leukocyte-specific protein tyrosine phosphatase. Adv Exp Med Biol 1992; 323: 29–37.

    PubMed  CAS  Google Scholar 

  76. Weaver CT, Pingel JT, Nelson JO et al. CD45: a transmembrane protein tyrosine phosphatase involved in the transduction of antigenic signals. Biochem Soc Trans 1992; 20: 169–174.

    PubMed  CAS  Google Scholar 

  77. Koretzky GA. Role of CD45 tyrosine phosphatase in signal transduction in the immune system. FASEB J 1993; 7: 420–426.

    PubMed  CAS  Google Scholar 

  78. Garbers DL. Guanylate cyclase, a cell surface receptor. J Biol Chem 1989; 264: 9103–9106.

    PubMed  CAS  Google Scholar 

  79. Garbers DL. Guanylate cyclase receptor family. Recent Prog Horm Res 1990; 46: 85–97.

    PubMed  CAS  Google Scholar 

  80. Garbers DL, Koesling D, Schultz G. Guanylyl cyclase receptors. Mol Biol Cell 1994; 5: 1–5.

    PubMed  CAS  Google Scholar 

  81. Levin ER. Natriuretic peptide C-receptor: more than a clearance receptor. Am J Physiol 1993; 264: E483 - E489.

    PubMed  CAS  Google Scholar 

  82. Strange PG. The structure and mechanism of neurotransmitter receptors. Implications for the structure and function of the central nervous system. Biochem J 1988; 249: 309–318.

    PubMed  CAS  Google Scholar 

  83. North RA. Neurotransmitters and their receptors: from the clone to the clinic. Sem Neurosci 1989; 1: 81–90.

    Google Scholar 

  84. Betz H. Ligand-gated ion channels in the brain: the amino acid receptor superfamily. Neuron 1990; 5: 383–392.

    PubMed  CAS  Google Scholar 

  85. Dingledine R, Myers SJ, Nicholas RA. Molecular biology of mammalian amino acid receptors. FASEB J 1990; 4: 2636–2645.

    PubMed  CAS  Google Scholar 

  86. Seeburg PH. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 1993; 16: 359–365.

    PubMed  CAS  Google Scholar 

  87. Brisson A, Unwin PNT. Quarternary structure of the acetylcholine receptor. Nature 1985; 315: 474–477.

    PubMed  CAS  Google Scholar 

  88. Pritchett DB, Sontheimer H, Shivers BD et al. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 1989; 338: 582–585.

    PubMed  CAS  Google Scholar 

  89. Lüddens H, Pritchett DB, Köhler M et al. Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature 1990; 346: 648–651.

    PubMed  Google Scholar 

  90. Unwin N. Neurotransmitter action: opening of ligand-gated ion channels. Cell 1993; 72 Supp1:31–41.

    Google Scholar 

  91. Inamura K, Kufe D. Colony-stimulating factor 1-induced Na’ influx into human monocytes involves activation of a pertussis toxin-sensitive GTP-binding protein. J Biol Chem 1988; 263: 14093–14098.

    Google Scholar 

  92. Nishimoto I, Murayama Y, Katada T et al. Possible direct linkage of insulin-like growth factor-II receptor with guanine nucleotide-binding proteins. J Biol Chem 1989; 264: 14029–14038.

    PubMed  CAS  Google Scholar 

  93. Luttrell L, Kilgour E, Lamer J et al. A pertussis toxin-sensitive G-protein mediates some aspects of insulin action in BC3H-1 murine monocytes. J Biol Chem 1990; 265: 16873–16879.

    PubMed  CAS  Google Scholar 

  94. Liang M, Garrison JC. The epidermal growth factor is coupled to a pertussis toxin-sensitive guanine nucleotide regulatory protein in rat hepatocytes. J Biol Chem 1991; 266: 13342–13349.

    PubMed  CAS  Google Scholar 

  95. Okamoto T, Katada T, Murayama Y et al. A simple structure encodes G protein-activating function of the IGFII/mannose 6-phosphate receptor. Cell 1990; 62: 709–717.

    PubMed  CAS  Google Scholar 

  96. Nishimoto I, Ogata E, Okamoto T. Guanine nucleotide-binding protein interacting but unstimulating sequence located in insulin-like growth factor II receptor. Its autoinhibitory characteristics and structural determinants. J Biol Chem 1991; 266: 12747–12751.

    PubMed  CAS  Google Scholar 

  97. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157: 105–132.

    PubMed  CAS  Google Scholar 

  98. Chabre M. Trigger and amplification mechanisms in visual phototransduction. Annu Rev Biophys Biophys Chem 1985; 14: 331–360.

    PubMed  CAS  Google Scholar 

  99. Dixon RAF, Kobilka BK, Strader DJ et al. Cloning of the gene and cDNA for the mammalian ß-adrenergic receptor and homology with rhodopsin. Nature 1986; 321: 75–79.

    PubMed  CAS  Google Scholar 

  100. Henderson R, Unwin PNT. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 1975; 257: 28–32.

    PubMed  CAS  Google Scholar 

  101. Henderson R, Baldwin JM, Ceska TA et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 1990; 213: 899–929.

    PubMed  CAS  Google Scholar 

  102. Caspar DLD. Bacteriorhodopsin–at last! Nature 1990; 345: 666–667.

    PubMed  CAS  Google Scholar 

  103. Findlay J, Eliopoulos E. Three-dimensional modelling of G protein-linked receptors. Trends Pharmacol Sci 1990; 11: 492–499.

    PubMed  CAS  Google Scholar 

  104. Attwood TK, Eliopoulos E, Findlay JBC. Multiple sequence alignment of protein families showing low sequence homology: a methodological approach using database pattern-matching discriminators for G-protein-linked receptors. Gene 1991; 98: 153–159.

    PubMed  CAS  Google Scholar 

  105. Applebury ML, Hargrave PA. Molecular biology of the visual pigments. Vision Res 1986; 26: 1881–1895.

    PubMed  CAS  Google Scholar 

  106. Wang H, Lipfert L, Malbon CC et al. Site-directed anti-peptide antibodies define the topography of the ß-adrenergic receptor. J Biol Chem 1989; 264: 14424–14431.

    PubMed  CAS  Google Scholar 

  107. Donnelly D, Johnson MS, Blundell TL et al. An analysis of the periodicity of conserved residues in sequence alignments of G-protein coupled receptors. Implications for the three-dimensional structure. FEBS Lett 1989; 251: 109–116.

    PubMed  CAS  Google Scholar 

  108. Hibert MF, Trumpp-Kallmeyer S, Bruinvels A et al. Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. Mol Pharmacol 1991; 40: 8–15.

    PubMed  CAS  Google Scholar 

  109. Dahl SG, Edvardsen 0, Sylte I. Molecular dynamics of dopamine at the Dz receptor. Proc Natl Acad Sci USA 1991; 88: 8111–8115.

    PubMed  CAS  Google Scholar 

  110. Pardo L, Ballesteros JA, Osman R et al. On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors. Proc Natl Acad Sci USA 1992; 89: 4009–4012.

    PubMed  CAS  Google Scholar 

  111. Trumpp-Kallmeyer S, Hoflack J, Bruinvels A et al. Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. J Med Chem 1992; 35: 3448–3462.

    PubMed  CAS  Google Scholar 

  112. Cronet P, Sander C, Vriend G. Modeling of transmembrane seven helix bundles. Protein Eng 1993; 6: 59–64.

    PubMed  CAS  Google Scholar 

  113. Sylte I, Edvardsen 0, Dahl SG. Molecular dynamics of the 5-HT1, receptor and ligands. Protein Eng 1993; 6: 691–700.

    PubMed  CAS  Google Scholar 

  114. Brann MR, Klimkowski VJ, Ellis J. Structure/function relationships of muscarinic acetylcholine receptors. Life Sci 1993; 52: 405–412.

    PubMed  CAS  Google Scholar 

  115. Baldwin JM. The probable arrangement of the helices in G protein-coupled receptors. EMBO J 1993; 12: 1693–1703.

    PubMed  CAS  Google Scholar 

  116. Schertler GFX, Villa C, Henderson R. Projection structure of rhodopsin. Nature 1993; 362: 770–772.

    PubMed  CAS  Google Scholar 

  117. Hoflack J, Trumpp-Kallmeyer S, Hibert M. Re-evaluation of bacteriorhodopsin as a model for G protein-coupled receptors. Trends Pharmacol Sci 1994; 15: 7–9.

    PubMed  CAS  Google Scholar 

  118. Hepler JR, Gllman AG. G proteins. Trends Biochem Sci 1992; 17: 383–387.

    CAS  Google Scholar 

  119. Hille B. G protein-coupled mechanisms and nervous signaling. Neuron 1992; 9: 187–195.

    PubMed  CAS  Google Scholar 

  120. Masu M, Tanabe Y, Tsuchida K et al. Sequence and expression of a metabotropic glutamate receptor. Nature 1991; 349: 760–765.

    PubMed  CAS  Google Scholar 

  121. Dias JA. Recent progress in structure-function and molecular analyses of the pituitary/ placental glycoprotein hormone receptors. Biochim Biophys Acta 1992; 1135: 278–294.

    Google Scholar 

  122. Seeman P. Receptor amino acid sequences of G-linked receptors. First Edition. Toronto: University of Toronto, 1992.

    Google Scholar 

  123. Abe K, Kusakabe Y, Tanemura K et al. Multiple genes for G protein-coupled receptors and their expression in lingual epithelia. FEBS Lett 1993; 316: 253–256.

    PubMed  CAS  Google Scholar 

  124. Cone RD, Mountjoy KG. Cloning and functional characterization of the human adrenocorticotropin receptor. Cellular and Molecular Biology of the Adrenal Cortex 1992; 222: 27–40.

    CAS  Google Scholar 

  125. Brown EM, Gamba G, Riccardi D et al. Cloning and characterization of an extracellular Ca2’-sensing receptor from bovine parathyroid. Nature 1993; 366: 575–580.

    PubMed  CAS  Google Scholar 

  126. Tanabe Y, Masu M, Ishii T et al. A family of metabotropic glutamate receptors. Neuron 1992; 8: 169–179.

    PubMed  CAS  Google Scholar 

  127. Pin J-P, Waeber C, Prezeau L et al. Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus oocytes. Proc Natl Acad Sci USA 1992; 89: 10331–10335.

    PubMed  CAS  Google Scholar 

  128. Abe T, Sugihar H, Nawa H et al. Molecular characterization of a novel metabotropic glutamate receptor mG1uR5 coupled to inositol phosphate/Ca2’ signal transduction. J Biol Chem 1992; 267: 13361–13368.

    PubMed  CAS  Google Scholar 

  129. Nakajima Y, Iwakabe H, Akazawa C et al. Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2amino-4-phosphonobutyrate. J Biol Chem 1993; 268: 11868–11873.

    PubMed  CAS  Google Scholar 

  130. Okamoto N, Hori S, Akazawa C et al. Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem 1994; 269: 1231–1236.

    PubMed  CAS  Google Scholar 

  131. Furlong TJ, Pierce KD, Selbie LA et al. Molecular characterization of a human brain adenosine A2 receptor. Mol Brain Res 1992; 15: 62–66.

    PubMed  CAS  Google Scholar 

  132. Pierce KD, Furlong TJ, Selbie LA et al. Molecular cloning and expression of an adenosine A2b receptor from human brain. Biochem Biophys Res Commun 1992; 187: 86–93.

    PubMed  CAS  Google Scholar 

  133. Peralta EG, Ashkenazi A, Winslow JW et al. Distinct primary structures, ligand-binding properties, and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J 1987; 6: 3923–3929.

    PubMed  CAS  Google Scholar 

  134. Boulay F, Tardif M, Brouchon L et al. The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-proteincoupled receptors. Biochemistry 1990; 29: 11123–11133.

    PubMed  CAS  Google Scholar 

  135. Gerard NP, Gerard C. The chemotactic receptor for human C5a anaphylatoxin. Nature 1991; 349: 614–617.

    PubMed  CAS  Google Scholar 

  136. Boulay F, Mary L, Tardif M et al. Expression cloning of a receptor for C5a anaphylatoxin on differentiated HL-60 cells. Biochemistry 1991; 30: 2993–2999.

    PubMed  CAS  Google Scholar 

  137. Cotecchia S, Schwinn DA, Randall RR et al. Molecular cloning and expression of the cDNA for the hamster al-adrenergic receptor. Proc Natl Acad Sci USA 1988; 85: 7159–7163.

    PubMed  CAS  Google Scholar 

  138. Selbie LA, Hayes G, Shine J. The major dopamine D2 receptor: molecular analysis of the human D2A subtype. DNA Cell Biol 1989; 8: 683–689.

    CAS  Google Scholar 

  139. Brooks J, Taylor PL, Saunders PTK et al. Cloning and sequencing of the sheep pituitary gonadotropin-releasing hormone receptor and changes in expression of its mRNA during the estrous cycle. Mol Cell Endocrinol 1993; 94: R23 - R27.

    PubMed  CAS  Google Scholar 

  140. Nagayama Y, Rapoport B. The thyrotropin receptor 25 years after its discovery: new insight after its molecular cloning. Mol Endocrinol 1992; 6: 145–156.

    PubMed  CAS  Google Scholar 

  141. Segaloff DL, Ascoli M. The lutropin/ choriogonadotropin receptorchwr(133)4 years later. Endocr Rev 1993; 14: 324–347.

    PubMed  CAS  Google Scholar 

  142. Sprengel R, Braun T, Nikolics K et al. The testicular receptor for follicle stimulating hormone: structure and functional expression of cloned cDNA. Mol Endocrinol 1990; 4: 525–530.

    PubMed  CAS  Google Scholar 

  143. Hubbard SC, Ivatt RJ. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 1981; 50: 555–583.

    PubMed  CAS  Google Scholar 

  144. Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccarides. Annu Rev Biochem 1985; 54: 631–664.

    PubMed  CAS  Google Scholar 

  145. Townsend-Nicholson A, Shine J. Molecular cloning and characterisation of a human brain Al adenosine receptor cDNA. Mol Brain Res 1992; 16: 365–370.

    PubMed  CAS  Google Scholar 

  146. Zeng D, Harrison JK, D’Angelo DD et al. Molecular characterization of a rat a2a-adrenergic receptor. Proc Natl Acad Sci USA 1990; 87: 3102–3106.

    PubMed  CAS  Google Scholar 

  147. Lomasney JW, Lorenz W, Allen LF et al. Expansion of the a2-adrenergic receptor family: cloning and characterization of a human a2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci USA 1990; 87: 5094–5098.

    PubMed  CAS  Google Scholar 

  148. Kursar JD, Nelson DL, Wainscott DB et al. Molecular cloning, functional expression, and pharmacological characterization of a novel serotonin receptor (5-hydroxytryptamine2F) from rat stomach fundus. Mol Pharmacol 1992; 42: 549–557.

    PubMed  CAS  Google Scholar 

  149. Nakamura M, Honda Z, Izumi T et al. Molecular cloning and expression of platelet-activating factor receptor from human leukocytes. J Biol Chem 1991; 266: 20400–20405.

    PubMed  CAS  Google Scholar 

  150. Usdin TB, Mezey E, Button DC et al. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal polypeptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 1993; 133: 2861–2870.

    PubMed  CAS  Google Scholar 

  151. : Gantz I, Miwa H, Konda Yet al. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J Biol Chem 1993; 268: 15174–15179.

    Google Scholar 

  152. Webb TE, Simon J, Krishek BJ et al. Cloning and functional expression of a brain Gprotein-coupled ATP receptor. FEBS Lett 1993; 324: 219–225.

    PubMed  CAS  Google Scholar 

  153. Ngai J, Dowling MM, Buck L et al. The family of genes encoding odorant receptors in the channel catfish. Cell 1993; 72: 657–666.

    PubMed  CAS  Google Scholar 

  154. Hargrave PA. The amino-terminal tryptic peptide of bovine rhodopsin. A glycopeptide containing two sites of oligosaccharide attachment. Biochim Biophys Acta 1977; 492: 83–94.

    PubMed  CAS  Google Scholar 

  155. van Galen PJM, Stiles GL, Michaels G et al. Adenosine Al and A2 receptors: structure-function relationships. Med Res Rev 1992; 12: 423–471.

    PubMed  CAS  Google Scholar 

  156. Sawutz DG, Lanier SM, Warren CD et al. Glycosylation of the mammalian al-adrenergic receptor by complex type N-linked oligosaccharides. Mol Pharmacol 1987; 32: 565–571.

    PubMed  CAS  Google Scholar 

  157. O’Dowd BF, Lefkowitz RJ, Caron MG. Structure of the adrenergic and related receptors. Annu Rev Neurosci 1989; 12: 67–83.

    PubMed  Google Scholar 

  158. van Koppen CJ, Nathanson NM. Site-directed mutagenesis of the m2 muscarinic acetylcholine receptor. analysis of the role of N-glycosylation in receptor expression and function. J Biol Chem 1990; 265: 20887–20892.

    PubMed  CAS  Google Scholar 

  159. Desarnaud F, Marie J, Lombard C et al. Deglycosylation and fragmentation of purified rat liver angiotensin II receptor: application to the mapping of hormone-binding domains. Biochem J 1993; 289: 289–297.

    PubMed  CAS  Google Scholar 

  160. Von Heijne G. The signal peptide. J Membr Biol 1990; 115: 195–201.

    Google Scholar 

  161. Saito Y, Mizuno T, Itakura M et al. Primary structure of bovine endothelin ETB receptor and identification of signal peptidase and metal proteinase cleavage sites. J Biol Chem 1991; 266: 23433–23437.

    PubMed  CAS  Google Scholar 

  162. Haendler B, Hechler U, Schleuning W-D. Molecular cloning of human endothelin (ET) receptors ETA and ETB. J Cardiovasc Pharmacol 1992; 20 (Suppl 12): S1 - S4.

    PubMed  CAS  Google Scholar 

  163. Karne S, Jayawickreme CK, Lerner MR. Cloning and characterization of an endothelin-3 specific receptor (ETc receptor) from Xenopus laevis dermal melanophores. J Biol Chem 1993; 268: 19126–19133.

    PubMed  CAS  Google Scholar 

  164. Zhong C, Hayzer DJ, Corson MA et al. Molecular cloning of the rat vascular smooth muscle thrombin receptor. Evidence for in vitro regulation by basic fibroblast growth factor. J Biol Chem 1992; 267: 16975–16979.

    PubMed  CAS  Google Scholar 

  165. Ishihara T, Nakamura S, Kaziro Y et al. Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 1991; 10: 1635–1641.

    PubMed  CAS  Google Scholar 

  166. Sexton PM, Houssami S, Hilton JM et al. Identification of brain isoforms of the rat calcitonin receptor. Mol Endocrinol 1993; 7: 815–821.

    PubMed  CAS  Google Scholar 

  167. Chen R, Lewis KA, Perrin MH et al. Expression cloning of a human corticotropinreleasing-factor receptor. Proc Natl Acad Sci USA 1993; 90: 8967–8971.

    PubMed  CAS  Google Scholar 

  168. Perrin MH, Donaldson CJ, Chen R et al. Cloning and functional expression of a rat brain corticotropin releasing factor (CRF) receptor. Endocrinology 1993; 133: 3058–3061.

    PubMed  CAS  Google Scholar 

  169. Chang C-P, Pearse RV, O’Connell S et al. Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Neuron 1993; 11: 1187–1195.

    PubMed  CAS  Google Scholar 

  170. Svoboda M, Ciccarelli E, Tastenoy M et al. Small introns in a hepatic cDNA encoding a new glucagon-like peptide 1-type receptor. Biochem Biophys Res Commun 1993; 191: 479–486.

    PubMed  CAS  Google Scholar 

  171. Dillon JS, Tanizawa Y, Wheeler MB et al. Cloning and functional expression of the human glucagon-like peptide-1 (GLP-1) receptor. Endocrinology 1993; 133: 1907–1910.

    PubMed  CAS  Google Scholar 

  172. Mayo KE. Molecular cloning and expression of a pituitary-specific receptor for growth hormone-releasing hormone. Mol Endocrinol 1992; 6: 1734–1744.

    PubMed  CAS  Google Scholar 

  173. Lin C, Lin S-C, Chang C-P et al. Pit-1dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature 1992; 360: 765–768.

    PubMed  CAS  Google Scholar 

  174. Hsiung HM, Smith DP, Zhang X-Y et al. Structure and functional expression of a complementary DNA for porcine growth hormone-releasing hormone receptor. Neuropeptides 1993; 25: 1–10.

    PubMed  CAS  Google Scholar 

  175. Schipani E, Karga H, Karpalis AC et al. Identical complementary deoxyribonucleic acids encode a human renal and bone parathyroid hormone (PTH)/PTH-related peptide receptor. Endocrinology 1993; 132: 2157–2165.

    PubMed  CAS  Google Scholar 

  176. Spengler D, Waeber C, Pantaloni C et al. Differential signal transduction of five splice variants of the PACAP receptor. Nature 1993; 365: 170–175.

    PubMed  CAS  Google Scholar 

  177. Sreedharan SP, Patel DR, Huang J-X et al. Cloning and functional expression of a human neuroendocrine vasoactive intestinal peptide receptor. Biochem Biophys Res Commun 1993; 193: 546–553.

    PubMed  CAS  Google Scholar 

  178. Battey JF, Way JM, Corjay MH et al. Molecular cloning of the bombesin/gastrinreleasing peptide receptor from Swiss 3T3 cells. Proc Natl Acad Sci USA 1991; 88: 395–399.

    PubMed  CAS  Google Scholar 

  179. Findlay JBC, Pappin DJC. The opsin family of proteins. Biochem J 1986; 238: 625–642.

    PubMed  CAS  Google Scholar 

  180. Oprian DD. The ligand-binding domain of rhodopsin and other G protein-linked receptors. J Bioenerg Biomembr 1992; 24: 211–217.

    PubMed  CAS  Google Scholar 

  181. Takahashi K, Tsuchida K, Tanabe Y et al. Role of the large extracellular domain of metabotropic glutamate receptors in agonist selectivity determination. J Biol Chem 1993; 268: 19341–19345.

    PubMed  CAS  Google Scholar 

  182. Iismaa TP, Shine J. G protein-coupled receptors. Curr Opin Cell Biol 1992; 4: 195–202.

    PubMed  CAS  Google Scholar 

  183. Nakanishi S, Nakajima Y, Yokota Y. Signal transduction and ligand-binding domains of the tachykinin receptors. Regul Pept 1993; 46: 37–42.

    PubMed  CAS  Google Scholar 

  184. Lefkowitz RJ, Caron MG. Adrenergic receptors: models for the study of receptors coupled to guanine nucleotide regulatory proteins. J Biol Chem 1988; 263: 4993–4996.

    PubMed  CAS  Google Scholar 

  185. Strader CD, Sigal IS, Dixon RAF. Mapping the functional domains of the ß-adrenergic receptor. Am J Respir Cell Mol Biol 1989; 1: 81–86.

    PubMed  CAS  Google Scholar 

  186. Strader CD, Sigal IS, Dixon RAF. Structural basis of 0-adrenergic function. FASEB J 1989; 3: 1825–1832.

    PubMed  CAS  Google Scholar 

  187. Dohlman HG, Thorner MG, Caron MG et al. Model systems for the study of seventransmembrane-segment receptors. Annu Rev Biochem 1991; 60: 653–688.

    PubMed  CAS  Google Scholar 

  188. Kobilka B. Adrenergic receptors as models for G protein-coupled receptors. Annu Rev Neurosci 1992; 15: 87–114.

    PubMed  CAS  Google Scholar 

  189. Strosberg AD. Structure/function relationships of proteins belonging to the family of receptors coupled to GTP-binding proteins. Eur J Biochem 1991; 196: 1–10.

    PubMed  CAS  Google Scholar 

  190. Strosberg AD. Structure, function, and regulation of adrenergic receptors. Prot Sci 1993; 2: 1198–1209.

    CAS  Google Scholar 

  191. Huganir RL, Greengard P. Regulation of neurotransmitter desensitization by protein phosphorylation. Neuron 1990; 5: 555–567.

    PubMed  CAS  Google Scholar 

  192. Dixon RAF, Sigal IS, Candelore MR et al. Structural features required for ligand binding to the ß-adrenergic receptor. EMBO J 1987; 6: 3269–3275.

    PubMed  CAS  Google Scholar 

  193. Karnik SS, Sakmar TP, Chen HB et al. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci USA 1988; 85: 8459–8463.

    PubMed  CAS  Google Scholar 

  194. Fraser CM. Site-directed mutagenesis of ßadrenergic receptors: identification of conserved cysteine residues that independently affect ligand binding and receptor activation. J Biol Chem 1989; 264: 9266–9270.

    PubMed  CAS  Google Scholar 

  195. Hulme EC, Birdsall NJ, Buckley NJ. Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 1990; 30: 633–673.

    PubMed  CAS  Google Scholar 

  196. Noda K, Saad Y, Graham RM et al. The high affinity state of the ß2-adrenergic receptor requires unique interaction between conserved and nonconserved extracellular loop cysteines. J Biol Chem 1994; 269: 6743–6752.

    PubMed  CAS  Google Scholar 

  197. Ovchinnikov YA, Abdulaiv NG, Bogachuk AS. Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitoylated. FEBS Lett 1988; 230: 1–5.

    PubMed  CAS  Google Scholar 

  198. O’Dowd BF, Hnatowich M, Caron MG et al. Palmitoylation of the human ß2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. J Biol Chem 1989; 264: 7564–7569.

    PubMed  Google Scholar 

  199. Probst WC, Snyder LA, Schuster DI et al. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 1992; 11: 1–20.

    PubMed  CAS  Google Scholar 

  200. Kobilka BK, Dixon RAF, Frielle T et al. cDNA for the human ß2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA 1987; 84: 46–50.

    PubMed  CAS  Google Scholar 

  201. Chung F-Z, Lentes KU, Gocayne J et al. Cloning and sequence analysis of the human ß-adrenergic receptor. Evolutionary relationship to rodent and avian I3-receptors and porcine muscarinic receptors. FEBS Lett 1987; 211: 200–206.

    PubMed  CAS  Google Scholar 

  202. Strader CD, Sigal IS, Register RB et al. Identification of residues required for ligand binding to the ß-adrenergic receptor. Proc Natl Acad Sci USA 1987; 84: 4384–4388.

    PubMed  CAS  Google Scholar 

  203. Wess J, Nanavati S, Vogel Z et al. Functional role of proline and tryptophan residues highly conserved among G protein-coupled receptors studied by mutational analysis of the m3 muscarinic receptor. EMBO J 1993; 12: 331–338.

    PubMed  CAS  Google Scholar 

  204. Burbach JPH, Meijer OC. The structure of neuropeptide receptors. Eur J Pharmacol 1992; 227: 1–18.

    PubMed  CAS  Google Scholar 

  205. Wang Z, Wang H, Ascoli M. Mutation of a highly conserved acidic residue present in the second intracellular loop of G-proteincoupled receptors does not impair hormone binding or signal transduction of the luteinizing hormone/chorionic gonadotropin receptor. Mol Endocrinol 1993; 7: 85–93.

    PubMed  CAS  Google Scholar 

  206. Kimura T, Tanizawa O, Mori K et al. Structure and expression of a human oxytocin receptor. Nature 1992; 356:526–529. Erratum Nature 357: 176.

    Google Scholar 

  207. Masu YK, Nakayama K, Tamaki Y et al. cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature 1987; 329: 836–838.

    PubMed  CAS  Google Scholar 

  208. Honda Z, Nakamura M, Miki I et al. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature 1991; 349: 342–346.

    PubMed  CAS  Google Scholar 

  209. Gluzman Y. SV-40 transformed simian cells support the replication of early SV40 mutants. Cell 1981; 23: 175–182.

    PubMed  CAS  Google Scholar 

  210. Seed B. An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. Nature 1987; 329: 840–842.

    PubMed  CAS  Google Scholar 

  211. Seed B, Aruffo A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc Natl Acad Sci USA 1987; 84: 3365–3369.

    PubMed  CAS  Google Scholar 

  212. Xie G-X, Miyajima A, Goldstein A. Expression cloning of cDNA encoding a seven-helix receptor from human placenta with affinity for opioid ligands. Proc Natl Acad Sci USA 1992; 89:4124–4128. Erratum Proc Natl Acad Sci USA 89: 7287.

    Google Scholar 

  213. Harada N, Castle BE, Gorman DM et al. Expression cloning of a cDNA encoding the murine interleukin 4 receptor based on ligand binding. Proc Natl Acad Sci USA 1990; 87: 857–861.

    PubMed  CAS  Google Scholar 

  214. Holmes WE, Lee J, Kuang W-J et al. Structure and functional expression of a human interleukin-8 receptor. Science 1991; 253: 1278–1280.

    PubMed  CAS  Google Scholar 

  215. Kieffer BL, Befort K, Gaveriaux-Ruff C et al. The 8-opioid receptor: isolation of a cDNA clone by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA 1992; 89: 12048–12052.

    PubMed  CAS  Google Scholar 

  216. Evans CJ, Keith DE, Morrison H et al. Cloning of a delta opioid receptor by functional expression. Science 1992; 258: 1952–1955.

    PubMed  CAS  Google Scholar 

  217. Barberis C, Seibold A, Ishido M et al. Expression cloning of the human V2 vasopressin receptor. Regul Pept 1993; 45: 61–66.

    PubMed  CAS  Google Scholar 

  218. McClintock TS, Graminski GF, Potenza MN et al. Functional expression of recombinant G-protein coupled receptors monitored by video imaging of pigment movement in melanophores. Anal Biochem 1993; 209: 298–305.

    PubMed  CAS  Google Scholar 

  219. Herzog H, Hort YJ, Ball HJ et al. Cloned human neuropeptide Y receptor couples to two different second messenger systems. Proc Natl Acad Sci USA 1992; 89: 5794–5798.

    PubMed  CAS  Google Scholar 

  220. Perret JJ, Raspe E, Vassart G et al. Cloning and functional expression of the canine anaphylatoxin C5a receptor. Biochem J 1992; 288: 911–917.

    PubMed  CAS  Google Scholar 

  221. Sunahara RK, Guan H-C, O’Dowd BF et al. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D,. Nature 1991; 350: 614–619.

    PubMed  CAS  Google Scholar 

  222. Ishihara T, Shigemoto R, Mori K et al. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal peptide. Neuron 1992; 8: 811–819.

    PubMed  CAS  Google Scholar 

  223. Bunzow JR, Van Tol HHM, Grandy DK et al. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 1988; 336: 783–787.

    PubMed  CAS  Google Scholar 

  224. Matsuda LA, Lolait SJ, Brownstein MJ et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346: 561–564.

    PubMed  CAS  Google Scholar 

  225. Devane WA, Hanus L, Breuer A et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258: 1946–1949.

    PubMed  CAS  Google Scholar 

  226. Felder CC, Briley EM, Axelrod J et al. Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc Natl Acad Sci USA 1993; 90: 7656–7660.

    PubMed  CAS  Google Scholar 

  227. Libert F, Parmentier M, Lefort A et al. Selective amplification and cloning of four new members of the G protein-coupled re- ceptor family. Science 1989; 244: 569–572.

    PubMed  CAS  Google Scholar 

  228. Maenhaut C, Van Sande J, Libert F et al. RDC8 codes for an adenosine A2 receptor with physiological constitutive activity. Biochem Biophys Res Commun 1990; 173: 1169–1178.

    PubMed  CAS  Google Scholar 

  229. Libert F, Schiffmann S, Lefort A et al. The orphan receptor cDNA RDC7 encodes an Al adenosine receptor. EMBO J 1991; 10: 1677–1682.

    PubMed  CAS  Google Scholar 

  230. Watson S, Girdlestone D. Receptor and Ion Channel Nomenclature Supplement. Trends Pharmacol Sci 1994; 15 Suppl:l-51.

    Google Scholar 

  231. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 1991; 65: 175–187.

    PubMed  CAS  Google Scholar 

  232. Selbie LA, Townsend-Nicholson A, Iismaa TP et al. Novel G protein-coupled receptors: a gene family of putative human olfactory receptor sequences. Mol Brain Res 1992; 13: 159–163.

    PubMed  CAS  Google Scholar 

  233. Bao L, Gerard NP, Eddy RL et al. Mapping of genes for the human-05a receptor (C5AR), human FMLP receptor (FPR), and 2 FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19. Genomics 1992; 13: 437–440.

    PubMed  CAS  Google Scholar 

  234. Murphy PM, Özçelik T, Kenney RT et al. A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. J Biol Chem 1992; 267: 7637–7643.

    PubMed  CAS  Google Scholar 

  235. Ahuja SK, Özçelik T, Milatovitch A et al. Molecular evolution of the human interleukin-8 receptor gene cluster. Nature Genetics 1992; 2: 31–36.

    PubMed  CAS  Google Scholar 

  236. Herzog H, Hort YJ, Shine J et al. Molecular cloning, characterization, and localization of the human homolog to the reported bovine NPY Y3 receptor: lack of NPY binding and activation. DNA Cell Biol 1993; 12: 465–471.

    PubMed  CAS  Google Scholar 

  237. Harrison JK, Barber CM, Lynch KR. Molecular cloning of a novel rat G-proteincoupled receptor gene expressed prominently in lung, adrenal, and liver. FEBS Lett 1993; 318: 17–22.

    PubMed  CAS  Google Scholar 

  238. Eva C, Sprengel R. A novel putative G protein-coupled receptor highly expressed in lung and testis. DNA Cell Biol 1993; 12: 393–399.

    PubMed  CAS  Google Scholar 

  239. Perez DM, Piascik MT, Graham RM. Solution-phase library screening for the identification of rare clones: isolation of an a,Dadrenergic receptor cDNA. Mol Pharmacol 1991; 40: 876–883.

    PubMed  CAS  Google Scholar 

  240. Yasuda K, Raynor K, Kong H et al. Cloning and functional comparison of x and S opioid receptors from mouse brain. Proc Natl Acad Sci USA 1993; 90: 6736–6740.

    PubMed  CAS  Google Scholar 

  241. Fishburn CS, Belleli D, David C et al. A novel short isoform of the D3 dopamine receptor generated by alternative splicing in the third cytoplasmic loop. J Biol Chem 1993; 268: 5872–5878.

    PubMed  CAS  Google Scholar 

  242. Itokawa M, Arinami T, Futamura N et al. A structural polymorphism of human dopamine D2 receptor. D2(Ser31-Cys). Biochem Biophys Res Commun 1993; 196: 1369–1375.

    PubMed  CAS  Google Scholar 

  243. Gingrich JA, Caron MG. Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 1993; 16: 299–321.

    PubMed  CAS  Google Scholar 

  244. O’Dowd BF. Structures of dopamine receptors. J Neurochem 1993; 60: 804–816.

    PubMed  Google Scholar 

  245. Giros B, Sokoloff P, Martres MP et al. Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 1989; 342: 923–926.

    PubMed  CAS  Google Scholar 

  246. Monsma FJ, McVittie LD, Gerfen CR et al. Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 1989; 342: 926–928.

    PubMed  CAS  Google Scholar 

  247. Dal Toso R, Sommer B, Ewert M et al. The dopamine D2 receptor: two molecular forms generated by alternative splicing. EMBO J 1989; 8: 4025–4034.

    Google Scholar 

  248. Montmayeur J-P, Borrelli E. Transcription mediated by a cAMP-responsive promoter element is reduced upon activation of dopamine D2 receptors. Proc Natl Acad Sci USA 1991; 88: 3135–3139.

    PubMed  CAS  Google Scholar 

  249. Hayes G, Biden TJ, Selbie LA et al. Structural subtypes of the dopamine D2 receptor are functionally distinct: expression of the cloned D2A and D2B subtypes in a heterologous cell line. Mol Endocrinol 1992; 6: 920–926.

    PubMed  CAS  Google Scholar 

  250. Namba T, Sugimoto Y, Negishi M et al. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 1993; 365: 166–170.

    CAS  Google Scholar 

  251. Irie A, Sugimoto Y, Namba T et al. Third isoform of the prostaglandin-E-receptor EP3 subtype with different C-terminal tail coupling to both stimulation and inhibition of adenylate cyclase. Eur J Biochem 1993; 217: 313–318.

    PubMed  CAS  Google Scholar 

  252. Levy NS, Bakalyar HA, Reed RR. Signal transduction in olfactory neurons. J Steroid Biochem 1991; 39: 633–637.

    CAS  Google Scholar 

  253. Parmentier M, Libert F, Schurmans S et al. Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 1992; 355: 453–455.

    PubMed  CAS  Google Scholar 

  254. Matsuoka I, Mori T, Aoki J et al. Identification of novel members of G-protein coupled receptor superfamily expressed in bovine taste tissue. Biochem Biophys Res Commun 1993; 194: 504–511.

    PubMed  CAS  Google Scholar 

  255. Salesse R, Remy JJ, Levin JM et al. Towards understanding the glycoprotein hormone receptors. Biochimie 1991; 73: 109–120.

    PubMed  CAS  Google Scholar 

  256. Lin HY, Harris TL, Flannery MS et al. Expression cloning of an adenylate cyclasecoupled calcitonin receptor. Science 1991; 254: 1022–1024.

    PubMed  CAS  Google Scholar 

  257. Jelinek LJ, Lok S, Rosenberg GB et al. Expression cloning and signaling properties of the rat glucagon receptor. Science 1993; 259: 1614–1616.

    PubMed  CAS  Google Scholar 

  258. Abou-Samra A-B, Jüppner H, Force T et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol triphosphates and increases intracellular free calcium. Proc Natl Acad Sci USA 1992; 89: 2732–2736.

    PubMed  CAS  Google Scholar 

  259. Segre GV, Goldring SR. Receptors for se-cretin, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagonlike peptide 1, growth hormone-releasing hormone, and glucagon belong to a newly discovered G-protein-linked receptor family. Trends Endocrinol Metab 1993; 4: 309–314.

    PubMed  CAS  Google Scholar 

  260. Reagan JD. Expression cloning of an insect diuretic hormone receptor. A member of the calcitonin/secretin receptor family. J Biol Chem 1994; 269: 9–12.

    PubMed  CAS  Google Scholar 

  261. Taylor EW, Agarwal A. Sequence homology between bacteriorhodopsin and G-protein coupled receptors: exon shuffling or evolution by duplication? FEBS Lett 1993; 325: 161–166.

    PubMed  CAS  Google Scholar 

  262. Khorana HG. Rhodopsin, photoreceptor of the rod cell. J Biol Chem 1992; 267: 1–4.

    PubMed  CAS  Google Scholar 

  263. Yokoyama S, Isenberg KE, Wright AF. Adaptive evolution of G-protein coupled receptor genes. Mol Biol Evol 1989; 6: 342–353.

    PubMed  CAS  Google Scholar 

  264. Klein PS, Sun TJ, Saxe CL et al. A chemoattractant receptor controls development in Dictyostelium discoideum. Science 1988; 241: 1467–1472.

    PubMed  CAS  Google Scholar 

  265. Burkholder AC, Hartwell LH. The yeast a-factor receptor: structural properties deduced from the sequence of the STE2 gene. Nucleic Acids Res 1985; 13: 8463–8475.

    PubMed  CAS  Google Scholar 

  266. Marsh L, Herskowitz I. STE2 protein of Saccharomyces kluyveri is a member of the rhodopsin/ß-adrenergic receptor family and is responsible for recognition of the peptide ligand a factor. Proc Natl Acad Sci USA 1988; 85: 3855–3859.

    PubMed  CAS  Google Scholar 

  267. Nakayama N, Miyajima A, Arai K. Nucleotide sequence of STE2 and STE3, cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J 1985; 4: 2643–2648.

    PubMed  CAS  Google Scholar 

  268. Ohno S. Evolution by gene duplication. New York: Springer, 1970.

    Google Scholar 

  269. Brosius J. Retroposons - seeds of evolution. Science 1991; 251: 753.

    PubMed  CAS  Google Scholar 

  270. Schaffner W, Kunz G, Daetwyler H et al. Genes and spacers of cloned sea urchin histone DNA analyzed by sequencing. Cell 1978; 14: 655–671.

    PubMed  CAS  Google Scholar 

  271. Nagata S, Mantei N, Weissmann C. The structure of one of the eight or more distinct chromosomal genes for human interferon-alpha. Nature 1980; 287: 401–408.

    PubMed  CAS  Google Scholar 

  272. Lawn RM, Adelman J, Franke AE et al. Human fibroblast interferon gene lacks introns. Nucleic Acids Res 1981; 9: 1045–1052.

    PubMed  CAS  Google Scholar 

  273. Ninomiya Y, Gordon M, van der Rest M et al. The developmentally regulated type X collagen gene contains a long open reading frame without introns. J Biol Chem 1986; 261: 5041–5050.

    PubMed  CAS  Google Scholar 

  274. Song I, Brown DR, Wiltshire RN et al. The human gastrin/cholecystokinin type B receptor gene: alternative splice donor site in exon 4 generates two variant mRNAs. Proc Natl Acad Sci USA 1993; 90: 9085–9089.

    PubMed  CAS  Google Scholar 

  275. Hosoda K, Nakao K, Tamura N et al. Organization, structure, chromosomal assignment, and expression of the gene encoding the human endothelin-A receptor. J Biol Chem 1992; 267: 18797–18804.

    PubMed  CAS  Google Scholar 

  276. Arai H, Nakao K, Takaya K et al. The human endothelin-B receptor gene. Structural organization and chromosomal assignment. J Biol Chem 1993; 268: 3463–3470.

    PubMed  CAS  Google Scholar 

  277. Eva C, Oberto A, Sprengel R et al. The murine NPY-1 receptor gene. Structure and delineation of tissue-specific expression. FEBS Lett 1992; 314: 285–288.

    PubMed  CAS  Google Scholar 

  278. Herzog H, Baumgartner M, Vivero C et al. Genomic organization, localization, and allelic differences in the gene for the human neuropeptide Y Yl receptor. J Biol Chem 1993; 268: 6703–6707.

    PubMed  CAS  Google Scholar 

  279. Heckert LL, Daley IJ, Griswold MD. Structural organization of the follicle-stimulating hormone receptor gene. Mol Endocrinol 1992; 6: 70–80.

    PubMed  CAS  Google Scholar 

  280. Ramarao CS, Kincade Denker JM, Perez D et al. Genomic organization and expression of the human a,B-adrenergic receptor. J Biol Chem 1992; 267: 21936–21945.

    PubMed  CAS  Google Scholar 

  281. Granneman JG, Lahners KN, Rao DD. Rodent and human ß3-adrenergic receptor genes contain an intron within the protein-coding block. Mol Pharmacol 1992; 42: 964–970.

    PubMed  CAS  Google Scholar 

  282. Chen K, Yang W, Grimsby J et al. The human 5-HT2 receptor is encoded by a multiple intron-exon gene. Mol Brain Res 1992; 14: 20–26.

    PubMed  CAS  Google Scholar 

  283. Stam NJ, Van Huizen F, Van Alebeek C et al. Genomic organization, coding sequence and functional expression of human 5-HT2 and 5-HT,A receptor genes. Eur J Pharmacol 1992; 227: 153–162.

    PubMed  CAS  Google Scholar 

  284. Shen Y, Monsma FJ, Metcalf MA et al. Molecular cloning and expression of a 5hydroxytryptamine7 serotonin receptor subtype. J Biol Chem 1993; 24: 18200–18204.

    Google Scholar 

  285. Ruat M, Traiffort E, Leurs R et al. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5HT7) activating cAMP formation. Proc Natl Acad Sci USA 1993; 90: 8547–8551.

    PubMed  CAS  Google Scholar 

  286. Julius D. Molecular biology of serotonin receptors. Annu Rev Neurosci 1991; 14: 335–360.

    PubMed  CAS  Google Scholar 

  287. Kobilka BK, Frielle T, Dohlman HG et al. Delineation of the intronless nature of the genes for the human and hamster 132-adrenergic receptor and their putative promoter regions. J Biol Chem 1987; 262: 7321–7327.

    PubMed  CAS  Google Scholar 

  288. Buck LB. The olfactory multigene family. Curr Opin Neurobiol 1992; 2: 467–473.

    CAS  Google Scholar 

  289. Curnow KM, Pascoe L, White PC. Genetic analysis of the human type-1 angiotensin II receptor. Mol Endocrinol 1992; 6: 1113–1118.

    PubMed  CAS  Google Scholar 

  290. Takeuchi K, Alexander RW, Nakamura Y et al. Molecular structure and transcriptional function of the rat vascular AT,, angiotensin receptor gene. Circulation Res 1993; 73: 612–621.

    PubMed  CAS  Google Scholar 

  291. Ichiki T, Herold CL, Kambayashi Y et al. Cloning of the cDNA and the genomic DNA of the mouse angiotensin II type 2 receptor. Biochim Biophys Acta 1994; 1189: 247–250.

    PubMed  CAS  Google Scholar 

  292. Eggerickx D, Raspe E, Bertrand D et al. Molecular cloning, functional expression and pharmacological characterization of a human bradykinin B2 receptor gene. Biochem Biophys Res Commun 1992; 187: 1306–1313.

    PubMed  CAS  Google Scholar 

  293. Peralta EG, Winslow JW, Peterson GL et al. Primary structure and biochemical properties of an M2 muscarinic receptor. Science 1987; 236: 600–605.

    PubMed  CAS  Google Scholar 

  294. Murphy PM, Tiffany HL, McDermott D et al. Sequence and organization of the human N-formyl peptide receptor-encoding gene. Gene 1993; 133: 285–290.

    PubMed  CAS  Google Scholar 

  295. Mutoh H, Bito H, Minami M et al. Two different promoters direct expression of two distinct forms of mRNAs of human platelet-activating factor receptor. FEBS Lett 1993; 322: 129–134.

    PubMed  CAS  Google Scholar 

  296. Ren H, Stiles GL. Characterization of the human Ai adenosine receptor gene. Evidence for alternative spicing. J Biol Chem 1994; 269: 3104–3110.

    PubMed  CAS  Google Scholar 

  297. Cheng H-F, Su Y-M, Chang K-J. Alternative transcript of the nonselective-type endothelin receptor from rat brain. Mol Pharmacol 1993; 44: 533–538.

    PubMed  CAS  Google Scholar 

  298. Nüsing RM, Hirata M, Kakizuka A et al. Characterization and chromosomal mapping of the human thromboxane A2 receptor gene. J Biol Chem 1993; 268: 25253–25259.

    PubMed  Google Scholar 

  299. Montmayeur JP, Bausero P, Amlaiky N et al. Differential expression of the mouse D2 dopamine receptor isoforms. FEBS Lett 1991; 278: 239–243.

    PubMed  CAS  Google Scholar 

  300. Vanetti M, Vogt G, Höllt V. The two isoforms of the mouse somatostatin receptor (mSSTR2A and mSSTR2B) differ in coupling efficiency to adenylate cyclase and in agonist-induced receptor desensitization. FEBS Lett 1993; 331: 260–266.

    PubMed  CAS  Google Scholar 

  301. Sugimoto U, Negishi M, Hayashi Y et al. Two isoforms of the EP3 receptor with different carboxyl-terminal domains. Identical ligand binding properties and different coupling with G, proteins. J Biol Chem 1993; 268: 2712–2718.

    PubMed  CAS  Google Scholar 

  302. Fong TM, Anderson SA, Yu H et al. Differential activation of intracellular effector by two isoforms of human neurokinin-1 receptor. Mol Pharmacol 1992; 41: 24–30.

    PubMed  CAS  Google Scholar 

  303. de la Pena P, Delgado LM, del Camino D et al. Two isoforms of the thyrotropin-releasing hormone receptor generated by alternative splicing have indistinguishable functional properties. J Biol Chem 1992; 267: 25703–25708.

    PubMed  CAS  Google Scholar 

  304. Charo IF, Myers SJ, Herman A et al. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci USA 1994; 91: 2752–2756.

    PubMed  CAS  Google Scholar 

  305. Breyer RM, Emeson RB, Tarng J-L et al. Alternative splicing generates multiple isoforms of a rabbit prostaglandin E2 receptor. J Biol Chem 1994; 269: 6163–6169.

    PubMed  CAS  Google Scholar 

  306. Pagliusi S, Chollet-Daemerius A, Losberger C et al. Characterization of a novel exon within the D3 receptor gene giving rise to an mRNA isoform expressed in rat brain. Biochem Biophys Res Commun 1993; 194: 465–471.

    PubMed  CAS  Google Scholar 

  307. Giros B, Martres M-P, Pilon C et al. Shorter variants of the D3 dopamine receptor produced through various patterns of alternative splicing. Biochem Biophys Res Commun 1991; 176: 1584–1592.

    PubMed  CAS  Google Scholar 

  308. Snyder LA, Roberts JL, Sealfon SC. Alternative transcripts of the rat and human dopamine D3 receptor. Biochem Biophys Res Commun 1991; 180: 1031–1035.

    PubMed  CAS  Google Scholar 

  309. Nagai Y, Ueno S, Saeki Y et al. Expression of the D3 dopamine receptor gene and a novel variant transcript generated by alternative splicing in human peripheral blood lymphocytes. Biochem Biophys Res Commun 1993; 194: 368–374.

    PubMed  CAS  Google Scholar 

  310. Khan H, Yarney TA, Sairam MR. Cloning of alternately spliced mRNA transcripts coding for variants of ovine testicular follitropin receptor lacking the G protein coupling domains. Biochem Biophys Res Commun 1993; 190: 888–894.

    PubMed  CAS  Google Scholar 

  311. Loosfelt H, Misrahi M, Atger M et al. Cloning and sequencing of porcine LH-hCG receptor cDNA: variants lacking transmembrane domain. Science 1989; 245: 525–528.

    PubMed  CAS  Google Scholar 

  312. Tsai-Morris CH, Buczko E, Wang W et al. Intronic nature of the rat luteinizing hormone receptor gene defines a soluble receptor subspecies with hormone binding activity. J Biol Chem 1990; 265: 19385–19388.

    PubMed  CAS  Google Scholar 

  313. Tilly JL, Aihara T, Nishimori K et al. Expression of recombinant human follicle-stimulating hormone receptor: species-specific ligand binding, signal transduction, and identification of multiple ovarian messenger ribonucleic acid transcripts. Endocrinology 1992; 131: 799–806.

    PubMed  CAS  Google Scholar 

  314. O’Shaughnessy PJ, Dudley K. Discrete splicing alternatives in mRNA encoding the extracellular domain of the testis FSH receptor in the normal and hypogonadal (hpg) mouse. J Mol Endocrinol 1993; 10: 363–366.

    PubMed  Google Scholar 

  315. Minegish T, Nakamura K, Takakura Y et al. Cloning and sequencing of human LH/ hCG receptor cDNA. Biochem Biophys Res Commun 1990; 172: 1049–1054.

    CAS  Google Scholar 

  316. Catalano M, Nobile M, Novelli E et al. Distribution of a novel mutation in the first exon of the human dopamine D4 receptor gene in psychotic patients. Biol Psychiatry 1993; 34: 459–464.

    PubMed  CAS  Google Scholar 

  317. Van Tol HHM, Wu CM, Guan H-C et al. Multiple dopamine D4 receptor variants in the human population. Nature 1992; 358: 149–152.

    PubMed  Google Scholar 

  318. Lichter JB, Barr CL, Kennedy JL et al. A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet 1993; 2: 767–773.

    PubMed  CAS  Google Scholar 

  319. Civelli O, Bunzow JR, Grandy DK. Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol 1993; 32: 281–307.

    Google Scholar 

  320. Green SA, Cole G, Jacinto M et al. A polymorphism of the human ß2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 1993; 268: 23116–23121.

    PubMed  CAS  Google Scholar 

  321. Yang-Feng TL, Xue F, Zhong W et al. Chromosomal organization of adrenergic receptor genes. Proc Natl Acad Sci USA 1990; 87: 1516–1520.

    PubMed  CAS  Google Scholar 

  322. Yang-Feng TL, Han H, Lomasney JW et al. Localization of the cDNA for an a1-adrenergic receptor subtype (ADRAID) to chromosome band 20p13. Cytogenet Cell Genet 1994; 66: 170–171.

    PubMed  CAS  Google Scholar 

  323. Oakey RJ, Caron MG, Lefkowitz RJ et al. Genomic organization of adrenergic and serotonin receptors in the mouse: linkage mapping of sequence-related genes provides a method for examining mammalian chromosome evolution. Genomics 1991; 10: 338–344.

    PubMed  CAS  Google Scholar 

  324. Copeland NG, Jenkins NA, Gilbert DJ et al. A genetic linkage map of the mouse: current applications and future prospects. Science 1993; 262: 57–66.

    PubMed  CAS  Google Scholar 

  325. Lolait SJ, O’Carroll A-M, McBride OW et al. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 1992; 357: 336–339.

    PubMed  CAS  Google Scholar 

  326. Bonner TI. The molecular basis of muscarinic receptor diversity. Trends Neurosci 1989; 12: 148–152.

    PubMed  CAS  Google Scholar 

  327. Hayes G, Shine J. Dopamine receptor diversity. Today’s Life Science 1992; 4: 16–22.

    Google Scholar 

  328. Collis MG, Hourani SMO. Adenosine receptor subtypes. Trends Pharmacol Sci 1993; 14: 360–366.

    PubMed  CAS  Google Scholar 

  329. Hausdorff WP, Caron MG, Lefkowitz RJ. Turning off the signal: desensitization of ßadrenergic receptor function. FASEB J 1990; 4:2881–2889. Erratum FASEB J 4: 3049.

    Google Scholar 

  330. Summers RJ, McMartin LR. Adrenoceptors and their second messengers. J Neurochem 1993; 60: 10–23.

    PubMed  CAS  Google Scholar 

  331. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science 1992; 258: 597–603.

    PubMed  CAS  Google Scholar 

  332. Mills A, Duggan MJ. Orphan seven trans-membrane domain receptors: reversing pharmacology. Trends Pharmacol Sci 1993; 14: 394–396.

    PubMed  CAS  Google Scholar 

  333. Rimland J, Xin W, Sweetnam P et al. Sequence and expression of a neuropeptide Y receptor cDNA. Mol Pharmacol 1991; 40: 869–875.

    PubMed  CAS  Google Scholar 

  334. Jazin EE, Yoo H, Blomqvist AG et al. A proposed bovine neuropeptide Y (NPY) receptor cDNA clone, or its human homologue, confers neither NPY binding sites nor NPY responsiveness on transfected cells. Regul Pept 1993; 47: 247–258.

    PubMed  CAS  Google Scholar 

  335. Oppenheim JJ, Zachariae COC, Mukaida N et al. Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu Rev Immunol 1991; 9: 617–648.

    PubMed  CAS  Google Scholar 

  336. Kelvin DJ, Michiel DF, Johnson JA et al. Chemokines and serpentines: the molecular biology of chemokine receptors. J Leukoc Biol 1993; 54: 604–612.

    PubMed  CAS  Google Scholar 

  337. Reppert SM, Weaver DR, Stehle JH et al. Molecular cloning of a G protein-coupled receptor that is highly expressed in lymphocytes and proliferative areas of developing brain. Mol Cell Neurosci 1992; 3: 206–214.

    PubMed  CAS  Google Scholar 

  338. Federsppiel B, Melhado IG, Duncan AMV et al. Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7TMS) receptor isolated from human spleen. Genomics 1993; 16: 707–712.

    PubMed  CAS  Google Scholar 

  339. Loetscher M, Geiser T, O’Reilly T et al. Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly

    Google Scholar 

  340. expressed in leukocytes. J Biol Chem 1994; 269: 232–237.

    Google Scholar 

  341. Jackson TR, Blair LAC, Marshall J et al. The mas oncogene encodes an angiotensin receptor. Nature 1988; 335: 437–440.

    PubMed  CAS  Google Scholar 

  342. Ross PC, Figler RA, Corjay MH et al. RTA, a candidate G protein-coupled receptor: cloning, sequencing, and tissue distribution. Proc Natl Acad Sci USA 1990; 87: 3052–3056.

    PubMed  CAS  Google Scholar 

  343. Monnot C, Weber V, Stinnakre J et al. Cloning and functional characterization of a novel mas-related gene, modulating intracellular angiotensin II actions. Mol Endocrinol 1991; 5: 1477–1487.

    PubMed  CAS  Google Scholar 

  344. Cwirla SE, Peters EA, Barrett RW et al. Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci USA 1990; 87: 6378–6382.

    PubMed  CAS  Google Scholar 

  345. Devlin JJ, Panganiban LC, Devlin PE. Random peptide libraries: a source of specific protein binding molecules. Science 1990; 249: 404–406.

    PubMed  CAS  Google Scholar 

  346. Scott JK, Smith GP. Libraries of peptides and proteins displayed on filamentous phage. Science 1990; 249: 386–390.

    PubMed  CAS  Google Scholar 

  347. Smith GP, Scott JK. Libraries of peptides and proteins displayed on filamentous phage. Meth Enzymol 1993; 217: 228–257.

    PubMed  CAS  Google Scholar 

  348. Mountjoy KG, Robbins LS, Mortrud MT et al. The cloning of a family of genes that encode the melanocortin receptors. Science 1992; 257: 1248–1251.

    PubMed  CAS  Google Scholar 

  349. Hahn AWA, Jonas U, Buehler FR et al. Identification of a fourth angiotensin AT1 receptor subtype in rat. Biochem Biophys Res Commun 1993; 192: 1260–1265.

    PubMed  CAS  Google Scholar 

  350. Nakajima M, Mukoyama M, Pratt RE et al. Cloning of cDNA and analysis of the gene for mouse angiotensin II type 2 receptor. Biochem Biophys Res Commun 1993; 197: 393–399.

    PubMed  CAS  Google Scholar 

  351. Bergsman DJ, Ellis C, Nuthulaganti PR et al. Isolation and expression of a novel angiotensin II receptor from Xenopus laevis heart. Mol Pharmacol 1993; 44: 277–284.

    Google Scholar 

  352. Ji H, Sandberg K, Zhang Y et al. Molecular cloning, sequencing and functional expression of an amphibian angiotensin II receptor. Biochem Biophys Res Commun 1993; 194: 756–762.

    PubMed  CAS  Google Scholar 

  353. Young D, Waitches G, Birchmeier C et al. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 1986; 45: 711–719.

    PubMed  CAS  Google Scholar 

  354. Young D, O’Neill K, Jessell T et al. Characterisation of the rat mas oncogene and its high-level expression in the hippocampus and cerebral cortex of rat brain. Proc Natl Acad Sci USA 1988; 85: 5339–5342.

    PubMed  CAS  Google Scholar 

  355. Ambroz C, Clark AJ, Catt KJ. The mas oncogene enhances angiotensin-induced [Ca2’]; responses in cells with pre-existing angiotensin II receptors. Biochim Biophys Acta 1991; 1133: 107–111.

    PubMed  CAS  Google Scholar 

  356. Gorn AH, Lin HY, Yamin M et al. Cloning, characterization, and expression of a human calcitonin receptor from an ovarian carcinoma cell line. J Clin Invest 1992; 90: 1726–1735.

    PubMed  CAS  Google Scholar 

  357. De Weerth A, Pisegna JR, Wank SA. Guinea pig gallbladder and pancreas possess identical CCK-A receptor subtypes: receptor cloning and expression. Am J Physiol 1993; 265: G1116 - G1121.

    PubMed  Google Scholar 

  358. Elshourbagy NA, Lee JA, Korman DR et al. Molecular cloning and characterization of the major endothelin receptor subtype in porcine cerebellum. Mol Pharmacol 1991; 41: 465–473.

    Google Scholar 

  359. Gromoll J, Dankbar B, Sharma RS et al. Molecular cloning of the testicular follicle stimulating hormone receptor of the non human primate Macaca fascicularis and identification of multiple transcripts in the testis. Biochem Biophys Res Commun 1993; 196: 1066–1072.

    PubMed  CAS  Google Scholar 

  360. Yarney TA, Sairam MR, Khan H et al. Molecular cloning and expression of the ovine testicular follicle stimulating hormone receptor. Mol Cell Endocrinol 1993; 93: 219–226.

    PubMed  CAS  Google Scholar 

  361. MacNeil DJ, Occi JL, Hey PJ et al. Cloning and expression of a human glucagon receptor. Biochem Biophys Res Commun 1994; 198: 328–334.

    PubMed  CAS  Google Scholar 

  362. Thorens B, Porret A, Bühler L et al. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9–39) an antagonist of the receptor. Diabetes 1993; 42: 1678–1682.

    PubMed  CAS  Google Scholar 

  363. Thorens B. Expression cloning of the pancreatic ß cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci USA 1992; 89: 8641–8645.

    PubMed  CAS  Google Scholar 

  364. Chi L, Zhou W, Prikhozhan A et al. Cloning and characterization of the human GnRH receptor. Mol Cell Endocrinol 1993; 91: R1 - R6.

    PubMed  CAS  Google Scholar 

  365. Tsutsumi M, Zhou W, Millar RP et al. Cloning and functional expression of a mouse gonadotropin-releasing hormone receptor. Mol Endocrinol 1992; 6: 1163–1169.

    PubMed  CAS  Google Scholar 

  366. Reinhart J, Mertz LM, Catt KJ. Molecular cloning and expression of cDNA encoding the murine gonadotropin-releasing hormone receptor. J Biol Chem 1992; 267: 21281–21284.

    PubMed  CAS  Google Scholar 

  367. Illing N, Jacobs GFM, Becker II et al. Comparative sequence analysis and functional characterization of the cloned sheep gonadotropin-releasing hormone receptor reveal differences in primary structure and ligand specificity among mammalian receptors. Biochem Biophys Res Commun 1993; 196: 745–751.

    PubMed  CAS  Google Scholar 

  368. Eidne KA, Sellar RE, Couper G et al. Molecular cloning and characterisation of the rat pituitary gonadotropin-releasing hormone (GnRH) receptor. Mol Cell Endocrinol 1992; 90: R5 - R9.

    PubMed  CAS  Google Scholar 

  369. Chhajlani V, Wikberg JES. Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett 1992; 309: 417–420.

    PubMed  CAS  Google Scholar 

  370. Chhajlani V, Muceniece R, Wikberg JES. Molecular cloning of a novel human melanocortin receptor. Biochem Biophys Res Commun 1993; 195: 866–873.

    PubMed  CAS  Google Scholar 

  371. Gantz I, Konda Y, Tashiro T et al. Molecular cloning of a novel melanocortin receptor. J Biol Chem 1993; 268: 8246–8250.

    PubMed  CAS  Google Scholar 

  372. Aharony D, Little J, Thomas C et al. Isolation and pharmacological characterization of a hamster urinary bladder neurokinin A receptor cDNA. Mol Pharmacol 1993; 45: 9–19.

    Google Scholar 

  373. Li X J, Wu Y-N, North A et al. Cloning, functional expression, and developmental regulation of a neuropeptide Y receptor from Drosophila melancgaster. J Biol Chem 1992; 267: 9–12.

    PubMed  CAS  Google Scholar 

  374. Wang J-B, Johnson PS, Persico AM et al. Human g opiate receptor. cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett 1994; 338: 217–222.

    PubMed  CAS  Google Scholar 

  375. Schneider H, Feyen JHM, Seuwen K et al. Cloning and functional expression of a human parathyroid hormone receptor. Eur J Pharmacol 1993; 246: 149–155.

    PubMed  CAS  Google Scholar 

  376. Jüppner H, Abou-Samra A-B, Freeman M et al. A G protein-linked receptor for parathyroid hormone and parathyroid hor- 385. mone-related peptide. Science 1991; 254: 1024–1026.

    PubMed  Google Scholar 

  377. Pausova Z, Bourdon J, Clayton D et al. Cloning of a parathyroid hormone/parathy- roid hormone-related peptide receptor 386. (PTHR) cDNA from a rat osteosarcoma (UMR 106) cell line: chromosomal assignment of the gene in the human, mouse, and rat genomes. Genomics 1994; 20: 20–26.

    PubMed  CAS  Google Scholar 

  378. Matsumoto K, Yokogoshi Y, Fujinaka Y et al. Molecular cloning and sequencing of porcine somatostatin receptor 2’. Biochem Biophys Res Commun 1994; 199: 298–305.

    PubMed  CAS  Google Scholar 

  379. Rasmussen UB, Vouret-Craviari V, Jallat S et al. cDNA cloning and expression of a hamster a-thrombin receptor coupled to Cat’ mobilization. FEBS Lett 1991; 288: 123–128.

    PubMed  CAS  Google Scholar 

  380. Vu T-K, Hung DT, Wheaton VI et al. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64: 1057–1068.

    PubMed  CAS  Google Scholar 

  381. Duthie SM, Taylor PL, Anderson L et al. Cloning and functional characterisation of the human TRH receptor. Mol Cell Endocrinol 1993; 95: R11 - R15.

    PubMed  CAS  Google Scholar 

  382. Matre V, Karlsen HE, Wright MS et al. Molecular cloning of a functional human thyrotropin-releasing hormone receptor. Biochem Biophys Res Commun 1993; 195: 179–185.

    PubMed  CAS  Google Scholar 

  383. Yamada M, Monden T, Satoh T et al. Pituitary adenomas of patients with acromegaly express thyrotropin-releasing hormone messenger RNA: cloning and functional expres sion of the human thyrotropin-releasing hormone receptor gene. Biochem Biophys Res Commun 1993; 195: 737–745.

    PubMed  CAS  Google Scholar 

  384. Straub RE, Frech GC, Joho RH et al. Expression cloning of a cDNA encoding the mouse pituitary thyrotropin-releasing hormone receptor. Proc Natl Acad Sci USA 1990; 87: 9514–9518.

    PubMed  CAS  Google Scholar 

  385. Zhao D, Yang J, Jones KE et al. Molecular cloning of a complementary deoxyribonucleic acid encoding the thyrotropin-releasing hormone receptor and regulation of its messenger ribonucleic acid in rat GH cells. Endocrinology 1992; 130: 3529–3536.

    PubMed  CAS  Google Scholar 

  386. de la Pena P, Delgado LM, del Camino D et al. Cloning and expression of the thyrotropin-releasing hormone receptor from GH3 rat anterior pituitary cells. Biochem J 1992; 284: 891–899.

    PubMed  CAS  Google Scholar 

  387. Sellar RE, Taylor PL, Lamb RF et al. Functional expression and molecular characterization of the thyrotropin-releasing hormone receptor from the rat anterior pituitary gland. J Mol Endocrinol 1993; 10: 199–206.

    PubMed  CAS  Google Scholar 

  388. Satoh T, Feng P, Wilber JF. A truncated form of the thyrotropin-releasing hormone receptor is expressed in the rat central nervous system as well as in the pituitary gland. Mol Brain Res 1993; 20: 353–356.

    PubMed  CAS  Google Scholar 

  389. Thibonnier M, Auzan C, Madhun Z et al. Molecular cloning, sequencing, and functional expression of a cDNA encoding the human Via vasopressin receptor. J Biol Chem 1994; 269: 3304–3310.

    PubMed  CAS  Google Scholar 

  390. Mahlmann S, Meyerhof W, Hausmann H et al. Structure, function, and phylogeny of [Arga]vasotocin receptors from teleost fish and toad. Proc Natl Acad Sci USA 1994; 91: 1342–1345.

    PubMed  CAS  Google Scholar 

  391. Svensson SPS, Bailey TJ, Pepperl DJ et al. Cloning and expression of a fish a2adrenoceptor. Br J Pharmacol 1993; 110: 54–60.

    PubMed  CAS  Google Scholar 

  392. Jasper JR, Link RE, Chruscinski AJ et al. Primary structure of the mouse ßi-adrenergic receptor gene. Biochem Biophys Acta 1993; 1178: 307–309.

    PubMed  CAS  Google Scholar 

  393. Cohen JA, Baggott LA, Romano C et al. Characterization of a mouse ßi-adrenergic receptor genomic clone. DNA Cell Biol 1993; 12: 537–547.

    PubMed  CAS  Google Scholar 

  394. Yarden Y, Rodriguez H, Wong SK-F et al. The avian ß-adrenergic receptor: primary structure and membrane topology. Proc Natl Acad Sci USA 1986; 83: 6795–6799.

    PubMed  CAS  Google Scholar 

  395. Frail DE, Manelli AM, Witte DG et al. Cloning and characterization of a truncated dopamine D1 receptor from goldfish retina: stimulation of cyclic AMP production and calcium mobilization. Mol Pharmacol 1993; 44: 1113–1118.

    PubMed  CAS  Google Scholar 

  396. Martens GJM, Molhuizen HOF, Gröneveld D et al. Cloning and sequence analysis of brain cDNA encoding a Xenopus D2 dopamine receptor. FEBS Lett 1991; 281: 85–89.

    PubMed  CAS  Google Scholar 

  397. De Backer MD, Gommeren W, Moereels H et al. Genomic cloning, heterologous expression and pharmacological characterization of a human histamine H1 receptor. Biochem Biophys Res Commun 1993; 197: 1601–1608.

    PubMed  Google Scholar 

  398. Tietje KM, Nathanson NM. Embryonic chick heart expresses multiple muscarinic acetylcholine receptor subtypes. Isolation and characterization of a gene encoding a novel m2 muscarinic acetylcholine receptor with high affinity for pirenzepine. J Biol Chem 1991; 266: 17382–17387.

    PubMed  CAS  Google Scholar 

  399. Tietje KM, Goldman PS, Nathanson NM. Cloning and functional analysis of a gene encoding a novel muscarinic acetylcholine receptor expressed in chick heart and brain. J Biol Chem 1990; 265: 2828–2834.

    PubMed  CAS  Google Scholar 

  400. Onai T, FitzGerald MG, Arakawa S et al. Cloning, sequence analysis and chromosome localization of a Drosophila muscarinic acetylcholine receptor. FEBS Lett 1989; 255: 219–225.

    PubMed  CAS  Google Scholar 

  401. Shapiro RA, Wakimoto BT, Subers EM et al. Characterization and functional expression in mammalian cells of genomic and cDNA clones encoding a Drosophila muscarinic acetylcholine receptor. Proc Natl Acad Sci USA 1989; 86: 9039–9043.

    PubMed  CAS  Google Scholar 

  402. Arakawa S, Gocayne JD, McCombie WR et al. Cloning, localization, and permanent expression of a Drosophila octopamine receptor. Neuron 1990; 2: 343–354.

    Google Scholar 

  403. Saudou F, Amlaiky N, Plassat J-L et al. Cloning and characterization of a Drosophila tyramine receptor. EMBO J 1990; 9: 3611–3617.

    PubMed  CAS  Google Scholar 

  404. Cerutis DR, Hass NA, Iversen LJ et al. The cloning and expression of an OK cell cDNA encoding a 5-hydroxytryptamine,B receptor. Mol Pharmacol 1993; 45: 20–28.

    Google Scholar 

  405. Van Obberghen-Schilling E, Vouret-Craviari V, Haslam RJ et al. Cloning, functional expression and role in cell growth regulation of a hamster 5-HT2 receptor subtype. Mol Endocrinol 1991; 5: 881–889.

    PubMed  Google Scholar 

  406. Yang W, Chen K, Lan NC et al. Gene structure and expression of the mouse 5-HT2 receptor. J Neurosci Res 1992; 33: 196–204.

    PubMed  CAS  Google Scholar 

  407. Yu L, Nguyen H, Le H et al. The mouse 5HT,c receptor contains eight hydrophobic domains and is X-linked. Mol Brain Res 1991; 11: 143–149.

    PubMed  CAS  Google Scholar 

  408. Witz P, Amlaiky N, Plassat J-L et al. Cloning and characterization of a Drosophila serotonin receptor that activates adenylate cyclase. Proc Natl Acad Sci USA 1990; 87: 8940–8944.

    PubMed  CAS  Google Scholar 

  409. Saudou F, Boschert U, Amlaiky N et al. A family of Drosophila serotonin receptors with distinct intracellular signalling properties and expression patterns. EMBO J 1992; 11: 7–17.

    PubMed  CAS  Google Scholar 

  410. Sugamori KS, Sunahara RK, Guan H-C et al. Serotonin receptor cDNA cloned from Lymnaea stagnalis. Proc Natl Acad Sci USA 1993; 90: 11–15.

    PubMed  CAS  Google Scholar 

  411. Pollak MR, Brown EM, Chou Y-HW et al. Mutations in the human Cat+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993; 75: 1297–1303.

    PubMed  CAS  Google Scholar 

  412. Kunz D, Gerard NP, Gerard C. The human leukocyte platelet-activating factor receptor. cDNA cloning, cell surface expression, and construction of a novel epitope-bearing analog. J Biol Chem 1992; 267: 9101–9106.

    PubMed  CAS  Google Scholar 

  413. Ye RD, Prossnitz ER, Zou A et al. Characterization of a human cDNA that encodes a functional receptor for platelet activating factor. Biochem Biophys Res Commun 1991; 180: 105–111.

    PubMed  CAS  Google Scholar 

  414. Katsuyama M, Sugimoto Y, Namba T et al. Cloning and expression of a cDNA for the human prostacyclin receptor. FEBS Lett 1994; 344: 74–78.

    PubMed  CAS  Google Scholar 

  415. Funk CD, Furci L, FitzGerald GA et al. Cloning and expression of a cDNA for the human prostaglandin E receptor EP, subtype. J Biol Chem 1993; 268: 26767–26772.

    CAS  Google Scholar 

  416. Kunapuli SP, Mao GF, Bastepe M et al. Cloning and expression of a prostaglandin E receptor EP3 subtype from human erythroleukaemia cells. Biochem J 1994; 298: 263–267.

    CAS  Google Scholar 

  417. Adam M, Boie Y, Rushmore TH et al. Cloning and expression of three isoforms of the human EP3 prostanoid receptor. FEBS Lett 1994; 338: 170–174.

    PubMed  CAS  Google Scholar 

  418. Takeuchi K, Abe T, Takahashi N et al. Molecular cloning and intrarenal localization of rat prostaglandin E2 receptor EP3 subtype. Biochem Biophys Res Commun 1993; 194: 885–891.

    PubMed  CAS  Google Scholar 

  419. Takeuchi K, Takahashi N, Abe T et al. Two isoforms of the rat kidney EP3 receptor derived by alternative RNA splicing: intrarenal expression co-localization. Biochem Biophys Res Commun 1994; 199: 834–840.

    PubMed  CAS  Google Scholar 

  420. Sakamoto K, Ezashi T, Miwa K et al. Molecular cloning and expression of a cDNA of the bovine protaglandin Fla receptor. J Biol Chem 1994; 269: 3881–3886.

    PubMed  CAS  Google Scholar 

  421. Abramovitz M, Boie Y, Nguyen T et al. Cloning and expression of a cDNA for the human prostanoid FP receptor. J Biol Chem 1994; 269: 2632–2636.

    PubMed  CAS  Google Scholar 

  422. Sugimoto Y, Hasumoto K, Namba T et al. Cloning and expression of a cDNA for mouse prostaglandin F receptor. J Biol Chem 1994; 269: 1356–1360.

    PubMed  CAS  Google Scholar 

  423. Namba T, Sugimoto Y, Hirata M et al. Mouse thromboxane A2 receptor: cDNA cloning, expression and Northern blot analysis. Biochem Biophys Res Commun 1992; 184: 1197–1203.

    PubMed  CAS  Google Scholar 

  424. Saxe CL, Johnson R, Devreotes PN et al. Multiple genes for cell surface cAMP receptors in Dictyostelium discoideum. Devel Genet 1991; 12: 6–13.

    CAS  Google Scholar 

  425. Parr CE, Sullivan DM, Paradiso AM et al. Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc Natl Acad Sci USA 1994; 91: 3275–3279.

    PubMed  CAS  Google Scholar 

  426. Li X-J, Wolfgang W, Wu Y-N et al. Cloning, heterologous expression and developmental regulation of a Drosophila receptor for tachykinin-like peptides. EMBO J 1991; 10: 3221–3229.

    PubMed  CAS  Google Scholar 

  427. Monnier D, Colas J-F, Rosay P et al. NKD, a developmentally regulated tachykinin receptor in Drosophila. J Biol Chem 1992; 267: 1298–1302.

    PubMed  CAS  Google Scholar 

  428. Hagen DC, McCaffrey G, Sprague GF. Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc Natl Acad Sci USA 1986; 83: 1418–1422.

    PubMed  CAS  Google Scholar 

  429. Kaplan MH, Smith DI, Sundick RS. Identification of a G protein coupled receptor induced in activated T cells. J Immunol 1993; 151: 628–636.

    PubMed  CAS  Google Scholar 

  430. Njuki F, Nicholl CG, Howard A et al. A new calcitonin-receptor-like sequence in rat pulmonary blood vessels. Clin Sci 1993; 85: 385–388.

    PubMed  CAS  Google Scholar 

  431. Okazaki H, Ishizaka N, Sakurai T et al. Molecular cloning of a novel putative G protein-coupled receptor expressed in the cardiovascular system. Biochem Biophys Res Commun 1993; 190: 1104–1109.

    PubMed  CAS  Google Scholar 

  432. Dobner T, Wolf I, Emrich T et al. Differentiation-specific expression of a novel G protein-coupled receptor from Burkitt’s lymphoma. Eur J Immunol 1992; 22: 2795–2799.

    PubMed  CAS  Google Scholar 

  433. Birkenbach M, Josefsen K, Yalamanchili R et al. Epstein-Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors. J Virol 1993; 67: 2209–2220.

    PubMed  CAS  Google Scholar 

  434. Hla T, Maciag T. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similaritites to G-protein-coupled receptors. J Biol Chem 1990; 265: 9308–9313.

    PubMed  CAS  Google Scholar 

  435. Perez HD, Holmes R, Kelly E et al. Cloning of a cDNA encoding a receptor related to the formyl peptide receptor of human neutrophils. Gene 1992; 118: 303–304.

    PubMed  CAS  Google Scholar 

  436. Ye RD, Cavanagh SL, Quehenberger O et al. Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem Biophys Res Commun 1992; 184: 582–589.

    PubMed  CAS  Google Scholar 

  437. Nothacker H-P, Grimmelikhuijzen CJP. Molecular cloning of a novel, putative G protein-coupled receptor from sea anemones structurally related to members of the FSH, TSH, LH/CG receptor family from mammals. Biochem Biophys Res Commun 1993; 197: 1062–1069.

    PubMed  CAS  Google Scholar 

  438. Harrigan MT, Campbell NF, Bourgeois S. Identification of a gene induced by glucocorticoids in murine T-cells: a potential G protein-coupled receptor. Mol Endocrinol 1991; 5: 1331–1338.

    PubMed  CAS  Google Scholar 

  439. Isimaa TP, Kiefer J, Liu ML et al. Isolation and chromosomal localization of a novel human G protein-coupled receptor expressed predominantly in the central nervous system. Genomics 1994; in press.

    Google Scholar 

  440. Saeki Y, Ueno S, Mizuno R et al. Molecular cloning of a novel putative G protein-coupled receptor (GPCR21) which is expressed predominantly in mouse central nervous system. FEBS Lett 1993; 336: 317–322.

    PubMed  CAS  Google Scholar 

  441. Eidne KA, Zabavnik J, Peters T et al. Cloning, sequencing and tissue distribution of a candidate G protein-coupled receptor from rat pituitary. FEBS Lett 1991; 292: 243–248.

    PubMed  CAS  Google Scholar 

  442. Kouba M, Vanetti M, Wang X et al. Cloning of a novel putative G-protein-coupled receptor (NLR) which is expressed in neuronal and lymphatic tissue. FEBS Lett 1993; 321: 173–178.

    PubMed  CAS  Google Scholar 

  443. Sreedharan SP, Robichon A, Peterson KE et al. Cloning and expression of the human vasoactive intestinal peptide receptor. Proc Natl Acad Sci USA 1991; 88: 4986–4990.

    PubMed  CAS  Google Scholar 

  444. Cook JS, Wolsing DH, Lameh J et al. Characterization of the RDC1 gene which encodes the canine homolog of a proposed human VIP receptor. Expression does not correlate with an increase in VIP binding sites. FEBS Lett 1992; 300: 149–152.

    PubMed  CAS  Google Scholar 

  445. Fukuda K, Kato S, Mori K et al. cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett 1994; 343: 42–46.

    PubMed  CAS  Google Scholar 

  446. Chee MS, Satchwell SC, Preddie E et al. Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature 1990; 344: 774–777.

    PubMed  CAS  Google Scholar 

  447. Nicholas J, Cameron KR, Honess RW. Herpesvirus saimiri encodes homologues of G protein-coupled receptors and cyclins. Nature 1992; 355: 362–365.

    PubMed  CAS  Google Scholar 

  448. Massung RF, Jayarama V, Moyer RW. DNA sequence analysis of conserved and unique regions of swinepox virus: identification of genetic elements supporting phenotypic observations including a novel G protein-coupled receptor. Virology 1993; 197: 511–528.

    PubMed  CAS  Google Scholar 

  449. Wilkie TM, Chen Y, Gilbert DJ et al. Identification, chromosomal location, and genome organization of mammalian G-protein-coupled receptors. Genomics 1993; 18: 175–184.

    PubMed  CAS  Google Scholar 

  450. Gorbulev V, Akhundova A, Grzeschik K-H et al. Organization and chromosomal localization of the gene for the human bombesin receptor subtype expressed in pregnant uterus. FEBS Lett 1994; 340: 260–264.

    PubMed  CAS  Google Scholar 

  451. Gerard NP, Bao L, Xiao-Ping H et al. Human chemotaxis receptor genes cluster at 19g13.3–13.4. Characterization of the human C5a receptor gene. Biochemistry 1993; 32: 1243–1250.

    PubMed  CAS  Google Scholar 

  452. Stoffel M, Espinosa R, Le Beau MM et al. Human glucagon-like peptide receptor gene. Localization to chromosome band 6p21 by fluorescence in situ hybridization and linkage of a highly polymorphic simple tandem repeat DNA polymorphism to other markers on chromosome 6. Diabetes 1993; 42: 1215–1218.

    PubMed  CAS  Google Scholar 

  453. Morris SW, Nelson N, Valentine MB et al. Assignment of the genes encoding human interleukin-8 receptor types 1 and 2 and an interleukin-8 receptor pseudogene to chromosome 2q35. Genomics 1992; 14: 685–691.

    PubMed  CAS  Google Scholar 

  454. Gao J-L, Kuhns DB, Tiffany HL et al. Structure and functional expression of the human macrophage inflammatory protein la/ RANTES receptor. J Exp Med 1993; 177: 1421–1427.

    PubMed  CAS  Google Scholar 

  455. Vamvakopoulos NC, Rojas K, Overhauser J et al. Mapping the human melanocortin 2 receptor (adrenocorticotropic hormone receptor; ACTHR) gene (MC2R) to the small arm of chromosome 18 (18p11.21-pter). Genomics 1993; 18: 454–455.

    PubMed  CAS  Google Scholar 

  456. Uhl GR, Childers S, Pasternak G. An opiate-receptor gene family reunion. Trends Neurosci 1994; 17: 89–93.

    PubMed  CAS  Google Scholar 

  457. Befort K, Mattéi M-G, Roeckel N et al. Chromosomal localization of the 6 opioid receptor gene to human 1p34.3-p36.1 and mouse 4D bands by in situ hybridization. Genomics 1994; 20: 143–145.

    PubMed  CAS  Google Scholar 

  458. Nahmias C, Blin N, Elalouf J-M et al. Molecular characterization of the mouse ß3adrenergic receptor: relationship with the atypical receptor of adipocytes. EMBO J 1991; 10: 3721–3727.

    PubMed  CAS  Google Scholar 

  459. Grandy DK, Civelli O. G-protein-coupled receptors: the new dopamine receptor subtypes. Curr Opin Cell Biol 1992; 2: 275–281.

    CAS  Google Scholar 

  460. Schwengel DA, Nouri N, Meyers DA et al. Linkage mapping of the human thromboxane A2 receptor (TBXA2R) to chromosome 19p13.3 using transcribed 3’ untranslated DNA sequence polymorphisms. Genomics 1993; 18: 212–215.

    PubMed  CAS  Google Scholar 

  461. Fitzgibbon J, Appukuttan B, Gayther S et al. Localization of the human blue cone pigment gene to chromosome band 7q31.3–32. Human Genetics 1994; 93: 79–80.

    PubMed  CAS  Google Scholar 

  462. Nathans J, Thomas D, Hogness DS. Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science 1986; 232: 193–202.

    PubMed  CAS  Google Scholar 

  463. Krause JE, Bu J-Y, Takeda Y et al. Structure, expression and second messenger-mediated regulation of the human and rat substance P receptors and their genes. Regul Pept 1993; 46: 59–66.

    PubMed  CAS  Google Scholar 

  464. Gerard NP, Eddy RL, Shows TB et al. The human neurokinin A (substance K) receptor. Molecular cloning of the gene, chromosome localization, and isolation of cDNA from tracheal and gastric tissues. J Biol Chem 1990; 265: 20455–20462.

    PubMed  CAS  Google Scholar 

  465. Buell G, Schulz MF, Arkinstall SJ et al. Molecular characterisation, expression and localisation of human neurokinin-3 receptor. FEBS Lett 1992; 299: 90–95.

    PubMed  CAS  Google Scholar 

  466. Seibold A, Brabet P, Rosenthal W et al. Structure and chromosomal localization of the human antidiuretic hormone receptor gene. Am J Hum Genet 1992; 51: 1078–1083.

    PubMed  CAS  Google Scholar 

  467. Bao B, Kunoa G. Isolation and characterization of the gene encoding the rat a,B adrenergic receptor. Gene 1993; 131: 243–247.

    Google Scholar 

  468. Granneman JG, Lahners KN, Chaudry A. Characterization of the human ß3-adrenergic receptor gene. Mol Pharmacol 1993; 44: 264–270.

    PubMed  CAS  Google Scholar 

  469. Van Spronsen A, Nahmias C, Krief S et al. The promoter and intron/exon structure of the human and mouse ß3-adrenergicreceptor genes. Eur J Biochem 1993; 213: 1117–1124.

    PubMed  Google Scholar 

  470. Bensaid M, Kaghad M, Rodriguez M et al. The rat 133-adrenergic receptor gene contains an intron. FEBS Lett 1993; 318: 223–226.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iismaa, T.P., Biden, T.J., Shine, J. (1995). Cell Surface Receptors and the G Protein-Coupled Receptor Superfamily. In: G Protein-Coupled Receptors. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21930-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21930-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21932-4

  • Online ISBN: 978-3-662-21930-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics