Skip to main content

Introduction to the Chemolithotrophic Bacteria

  • Chapter
The Prokaryotes

Abstract

The term chemolithotrophy describes the energy metabolism of bacteria that can, in the absence of light, use the oxidation of inorganic substances as a source of energy for cell biosynthesis and maintenance (Rittenberg, 1969). Chemolithotrophs include organisms that exhibit extraordinary diversity in the range of substrates metabolized by different genera, in their modes of carbon nutrition, and in the variety of morphology and habitat. The grouping of the chemolithotrophs as a taxonomic unit is thus at least as artificial as most taxonomic devices in that representatives of virtually the whole range of possible morphology and physiology among bacteria are included. Such taxonomic “lumping” does have value since some fundamental aspects of carbon and energy metabolism unify many of chemolithotrophs into an acceptable physiological family.

Ihre Lebensprozesse spielen sich nach einem viel einfacheren Schema ab; durch einen rein anorganischen chemischen Prozess ... werden alle ihre Lebensbewegungen im Gange erhalten.

(Winogradsky, 1887)1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature Cited

  • Aleem, M. I. H. 1970. Oxidation of inorganic nitrogen compounds. Annual Review of Plant Physiology 21:67–90.

    Article  CAS  Google Scholar 

  • Aleem, M. I. H. 1975. Biochemical reaction mechanisms in sulphur oxidation by chemosynthetic bacteria. Plant and Soil 43:587–601.

    Article  CAS  Google Scholar 

  • Aleem, M. I. H., Hoch, G. E., Varner, J. E. 1965. Water as the source of oxidant and reductant in bacterial chemosynthesis. Proceedings of the National Academy of Sciences of the United States of America 54:869–873.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, M., Barton, L. L. 1977. Evidence for the presence of phosphoriboisomerase and ribulose-1,5-diphosphate carboxylase in extracts of Desulfovibrio vulgaris. Journal of Bacteriology 131:133–135.

    PubMed  CAS  Google Scholar 

  • Baas Becking, L. G. M., Parks, G. S. 1927. Energy relations in the metabolism of autotrophic bacteria. Physiological Reviews 7:85–106.

    CAS  Google Scholar 

  • Badziong, W., Thauer, R. K. 1978. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Archives of Microbiology 117:209–214.

    Article  PubMed  CAS  Google Scholar 

  • Badziong, W., Thauer, R. K., Zeikus, J. G. 1978. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Archives of Microbiology 116:41–49.

    Article  PubMed  CAS  Google Scholar 

  • Brierley, J. A., Norris, P. R., Kelly, D. P., Le Roux, N. W. 1978. Characteristics of a moderately thermophilic and acidophilic iron-oxidizing Thiobacillus. European Journal of Applied Microbiology and Biotechnology 5:291–299.

    Article  CAS  Google Scholar 

  • Brierley, C. L., Brierley, J. A., Norris, P. R., Kelly, D. P. 1980. Metal-tolerant microorganisms of hot, acid environments, pp. 39–51. In: Gould, G. W., Corry, J. E. L. (eds.), Microbial growth and survival in extremes of environment. Society for Applied Bacteriology Technical Series No. 15. London: Academic Press.

    Google Scholar 

  • Brock, T. D., Gustafson, J. 1976. Ferric iron reduction by sulfur-and iron-oxidizing bacteria. Applied and Environmental Microbiology 32:567–571.

    PubMed  CAS  Google Scholar 

  • Broda, E. 1977a. The position of nitrate respiration in evolution. Origins of Life 8:173–174.

    Article  PubMed  CAS  Google Scholar 

  • Broda, E. 1977b. Two kinds of lithotrophs missing in nature. Zeitschrift für Allgemeine Mikrobiologie 17:491–493.

    Article  PubMed  CAS  Google Scholar 

  • Eccleston, M., Kelly, D. P. 1978. Oxidation kinetics and chemo-stat growth kinetics of Thiobacillus ferrooxidans on tetrathio-nate and thiosulfate. Journal of Bacteriology 134:718–727.

    PubMed  CAS  Google Scholar 

  • Fromageot, C., Senez, J. C.1960. Aerobic and anaerobic reactions of inorganic substances, pp. 347–409. In: Florkin, M., Mason, H. S. (eds.), Comparative biochemistry, vol. 1. New York: Academic Press.

    Google Scholar 

  • Hempfling, W. P., Vishniac, W. 1967. Yield coefficients of Thiobacillus neapolitanus in continuous culture. Journal of Bacteriology 93:874–878.

    PubMed  CAS  Google Scholar 

  • Jones, C. A. 1974. Thiobacillus ferrooxidans: A study of some of the factors governing the growth and physiology of continuous and batch cultures on ferrous iron. Ph.D. Thesis. University of London, London, England.

    Google Scholar 

  • Justin, P., Kelly, D. P. 1978. Growth kinetics of Thiobacillus denitrificans in anaerobic and aerobic chemostat culture. Journal of General Microbiology 107:123–130.

    Article  CAS  Google Scholar 

  • Kelly, D. P. 1967. Problems of the autotrophic microorganisms. Science Progress 55:35–51.

    PubMed  CAS  Google Scholar 

  • Kelly, D. P. 1971. Autotrophy: Concepts of lithotrophic bacteria and their organic metabolism. Annual Review of Microbiology 25:177–210.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, D. P. 1978. Bioenergetics of chemolithotrophic bacteria, pp. 363–386 In: Bull, A. T., Meadow, P. M. (eds.), Companion to microbiology. London: Longman.

    Google Scholar 

  • Kelly, D. P., Eccleston, M., Jones, C. A. 1977. Evaluation of continuous chemostat cultivation of Thiobacillus ferrooxidans on ferrous iron or tetrathionate, pp. 1–7. In: Schwartz, W., (ed.), Bacterial leaching. Weinheim: Verlag Chemie.

    Google Scholar 

  • Kelly, D. P., Wood, A. P., Gottschal, J. C., Kuenen, J. G. 1979. Autotrophic metabolism of formate by Thiobacillus strain A2. Journal of General Microbiology 114:1–13.

    Article  CAS  Google Scholar 

  • Kondratieva, E. N., Zhukov, V. G., Ivanovsky, R. N., Petushkova, Yu. P., Monosov, E. Z. 1976. The capacity of photo-trophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Archives of Microbiology 108:287–292.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, A. J., Miller, D. J. D. 1977. Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans. Canadian Journal of Microbiology 23:319–324.

    Article  PubMed  CAS  Google Scholar 

  • London, J., Rittenberg, S. C. 1966. Effects of organic matter on the growth of Thiobacillus intermedius. Journal of Bacteriology 91:1062–1069.

    PubMed  CAS  Google Scholar 

  • Lyalikova, N. N. 1972. Oxidation of trivalent antimony up to higher oxides as a source of energy for the development of a new autotrophic organism, Stibiobacter, gen. no v. [in Russian, with English summary.] Doklady Akademii Nauk SSSR 205:1228–1229.

    CAS  Google Scholar 

  • McFadden, B. A., Denend, A. R. 1972. Ribulose diphosphate carboxylase from autotrophic microorganisms. Journal of Bacteriology 110:633–642.

    PubMed  CAS  Google Scholar 

  • Meyer, O., Schlegel, H. G. 1978. Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov. Archives of Microbiology 118:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Peck, H. D. 1962. Comparative metabolism of inorganic sulphur compounds in microorganisms. Bacteriological Reviews 26:67–94.

    PubMed  CAS  Google Scholar 

  • Peck, H. D. 1968. Energy-coupling mechanisms in chemolithotrophic bacteria. Annual Review of Microbiology 22:489–518.

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer, W. 1897. Pflanzenphysiologie, vol. I. Leipzig: Engel-mann.

    Google Scholar 

  • Rittenberg, S. C. 1969. The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. Advances in Microbial Physiology 3:159–196.

    Article  CAS  Google Scholar 

  • Rittenberg, SC. 1972. The obligate autotroph—the demise of a concept. Antonie van Leeuwenhoek Journal of Microbiology and Serology 38:457–478.

    Article  CAS  Google Scholar 

  • Schlegel, H. G. 1975. Mechanisms of chemoautotrophy, pp. 9–60. In: Kinne, O. (ed.) Marine ecology, vol. 2, part I. London: John Wiley & Sons.

    Google Scholar 

  • Smith, A. J., Hoare, D. S. 1977. Specialist phototrophs, litho-trophs, and methylotrophs: A unity among a diversity of pro-caryotes? Bacteriological Reviews 41:419–448.

    PubMed  CAS  Google Scholar 

  • Suzuki, I. 1974. Mechanisms of inorganic oxidations and energy coupling. Annual Review of Microbiology 28:85–101.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S. 1977. Evidence for the presence of ribulose 1,5-bisphos-phate carboxylase and phosphoribulokinase in Methylo-coccus capsulatus (Bath). FEMS Microbiology Letters 2: 305–307.

    Article  CAS  Google Scholar 

  • Thauer, R. K., Jungermann, K., Decker, K. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews 41:100–180.

    PubMed  CAS  Google Scholar 

  • Timmer-ten-Hoor, A. 1976. Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus denitrificans. Antonie van Leeuwenhoek Journal of Microbiology and Serology 42:483–492.

    Article  CAS  Google Scholar 

  • Trudinger, P. A. 1967. The metabolism of inorganic sulphur compounds by thiobacilli. Reviews of Pure and Applied Chemistry 17:1–24.

    CAS  Google Scholar 

  • Tuovinen, O. H., Kelly, D. P. 1972. Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Zeitschrift für Allgemeine Mikrobiologie 12:311–346.

    Article  PubMed  CAS  Google Scholar 

  • van Verseveld, H. W., Stouthamer, A. H. 1978. Growth yields and the efficiency of oxidative phosphorylation during autotrophic growth of Paracoccus denitrificans on methanol and formate. Archives of Microbiology 118:21–26.

    Article  PubMed  Google Scholar 

  • Whittenbury, R., Kelly, D. P. 1977. Autotrophy: A conceptual phoenix. Symposium of the Society for General Microbiology 27:121–149.

    CAS  Google Scholar 

  • Winogradsky, S. 1887. Über Schwefelbacterien. Botanische Zeitung 45:489–600, 606–616.

    Google Scholar 

  • Winogradsky, S. 1922. Eisenbakterien als Anorgoxydanten. Centralblatt für Bakteriologie und Parasitenkunde, Abt. 2 57:1–21.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kelly, D.P. (1981). Introduction to the Chemolithotrophic Bacteria. In: Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., Schlegel, H.G. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13187-9_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13187-9_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13189-3

  • Online ISBN: 978-3-662-13187-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics