Skip to main content

Wafer Direct Bonding for High-Brightness Light-Emitting Diodes and Vertical-Cavity Surface-Emitting Lasers

  • Chapter
Wafer Bonding

Part of the book series: Springer Series in MATERIALS SCIENCE ((SSMATERIALS,volume 75))

Abstract

Light-emitting diodes (LEDs) are semiconductor devices that convert electrical energy into optical radiation by electroluminescence. Although semiconductor electroluminescence was described almost a century ago [1], only in the 1960s did it start to be investigated thoroughly and industrially manufactured LEDs become available. For most of the time, their use was confined to indicator lamps in electronic consumer appliances. When in the 1990s the organo-metallic growth [2,3] of high-quality A1GaInP and GaInN layers became viable, this materials science breakthrough opened up a whole range of new applications for the LED. With the advent of these high-brightness LEDs the entire visible emission spectrum is being covered: A1GaInP ranging from red to yellow, GaInN from green to violet. Hence white light can be generated, be it through a combination of red green and blue LEDs or through the partial conversion of blue or violet light by combination with a phosphor, and this gives LEDs access to the emerging field of semiconductor illumination and lighting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Round HJ (1907) A note on carborundum. Electrical World 49: 309

    Google Scholar 

  2. Stringfellow GB, Craford MG (eds) (1997) Semiconductors and Semimetals vol 48: High Brightness Light-emitting Diodes. Academic Press, San Diego

    Google Scholar 

  3. Nakamura S, Pearton S, Fasol G (2000) The blue laser diode: the complete story, 2nd edn. Springer, Berlin

    Google Scholar 

  4. Bergh AA, Dean PJ (1976) Light-emitting diodes. Clarendon, Oxford

    Google Scholar 

  5. Streubel K, Linder N, Wirth R, Jaeger A. (2002) High brightness AlGaInP light-emitting diodes. IEEE Journal of Selected Topics in Quantum Electronics 8: 321–32

    Article  Google Scholar 

  6. Madelung 0 (1996) Semiconductors - basic data, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  7. Carr WN (1966) Photometric figures of merit for semiconductor luminescent sources operating in spontaneous mode. Infrared Physics 6: 1–19

    Article  ADS  Google Scholar 

  8. Kish FA, DeFevere DA, Vanderwater DA, Trott GR, Weiss RJ, Major JS Jr (1994) High luminous flux semiconductor wafer-bonded A1GaInP/GaP large-area emitters. Electron Lett 30: 1790–1792

    Article  Google Scholar 

  9. Kish FA, Steranka FM, DeFevere DC, Vanderwater DA, Park KG, Kuo CP, Osentowski TD, Peanasky MJ, Yu JG, Fletcher RM, Steigerwald DA, Craford MG, Robbins VM (1994b) Very high-efficiency semiconductor wafer-bonded transparent-substrate (Al Gai_X)o.sIno.5P/GaP light-emitting diodes. Appl Phys Lett 64: 2839–2841

    Article  ADS  Google Scholar 

  10. P1501 A (2001): Verfahren zum Herstellen eines optoelektronischen Bauelements. Patent Application: DE19959I82A1 Offenlegungsschrift

    Google Scholar 

  11. Streubel K (2001): Verfahren zum Herstellen eines optisch transparenten substrates and Verfahren zum Herstellen eines lichtemittierenden Halbleiterchips. Patent Application: DE10008583A1 Offenlegungsschrift

    Google Scholar 

  12. Sheu JK, Su YK, Chang SJ, Jou MJ, Liu CC, Chi GC (1998) Investigation of wafer-bonded (AlxGal—x)0.5In0.5P/GaP light-emitting diodes. IEE ProceedingsOptoelectronics 145: 248–252

    Article  Google Scholar 

  13. Ascheron C (1991) Proton beam modification of selected AmBv compounds. Phys Status Solidi A 124: 11–55

    Article  ADS  Google Scholar 

  14. Kish FA, Fletcher RM (1997) AIGaInP Light-emitting diodes. In: Stringfellow GB, Craford MG (eds) Semiconductor and Semimetals, Vol 48: High Brightness Light-emitting Diodes. Academic Press, San Diego

    Google Scholar 

  15. Gardner NF, Chui HC, Chen EI, Krames MR, Huang J-W, Kish FA, Stockman SA, Kocot CP, Tan TS, Moll N (1999) 1.4* efficiency improvement in transparent-substrate (A1XGaI_x)o.5In05P light-emitting diodes with thin (__2000A) active regions. Appl Phys Lett 74:2230–2232

    Google Scholar 

  16. Krames MR, Ochiai-Holcomb M, Höfler GE, Carter-Coman C, Chen EI, Tan I-H, Grillot P, Gardner NF, Chui HC, Huang J-W, Stockman SA, Kish FA, Craford MG, Tan TS, Kocot CP, Hueschen M, Posselt J, Loh B, Sasser G, Collins D (1999) High-power truncated-inverted-pyramid (Al Gai_z)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency. Appl Phys Lett 75: 2365–2367

    Article  ADS  Google Scholar 

  17. Akatsu T, Plö131 A, Stenzel H, Gösele U (1999) GaAs wafer bonding by atomic hydrogen surface cleaning. J Appl Phys 86: 7146–7150

    Article  ADS  Google Scholar 

  18. Watanabe M, Takiguchi H (1994): A method for producing a light-emitting diode having a transparent substrate. (assigned to Sharp Kabushiki Kaisha) Application: Japan 22946 /93, 10 Feb 1993. European Patent 611131B1, issued 17 Aug 1994.

    Google Scholar 

  19. Shoon-Jinn Chang, Jinn-Kong Sheu, Yan-Kuin Su, Ming-Jiunn Jou, Gou-Chung Chi (1996) AlGaInP/GaP light-emitting diodes fabricated by wafer direct bonding technology. Jpn J Appl Phys 1, Regul Pap Short Notes Rev Pap 35: 4199–4202

    Google Scholar 

  20. Kish FA, Vanderwater DA, Peanasky MJ, Ludowise MJ, Hummel SG, Rosner SJ (1995) Low-resistance ohmic conduction across compound semiconductor wafer-bonded interfaces. Appl Phys Lett 67: 2060–2062

    Article  ADS  Google Scholar 

  21. Babic DI, Bowers JE, Hu EL, Yang L, Carey K (1997) Wafer fusion for surface-normal optoelectronic device applications. lot J High Speed Electron Syst 8: 357–376

    Google Scholar 

  22. O’Shea JJ, Camras MD, Wynne D, Höfler GE (2001) Evidence for voltage drops at misaligned wafer-bonded interfaces of AlGahiP light-emitting diodes by electrostatic force microscopy. J Appl Phys 90: 4791–4795

    Article  ADS  Google Scholar 

  23. Srikant V, Clarke DR, Evans PV (1996) Simulation of electron transport across charged grain boundaries. Appl Phys Lett 69: 1755–1757

    Article  ADS  Google Scholar 

  24. Srikant V, Clarke DK (1998) On the equilibrium charge density at tilt grain boundaries. J Appl Phys 83: 5515–5521

    Article  ADS  Google Scholar 

  25. Höfler GE, Vanderwater DA, DeFevere DC, Kish FA, Camras MD, Steranka FM, Tan I-H (1996) Wafer bonding of 50—mm diameter GaP to AlGaInP-GaP light-emitting diode wafers. Appl Phys Lett 69: 803–805

    Article  ADS  Google Scholar 

  26. Yablonovitch E, Gmitter T, Harbison JP, Bhat R (1987) Extreme selectivity in the liftoff of epitaxial GaAs films. Appl Phys Lett 51: 2222–2224

    Article  ADS  Google Scholar 

  27. Schnitzler I, Yablonovitch E, Caneau C, Gmitter TJ (1993) Ultra-high spontaneous emission quantum efficiency, 99.7 internally and 72 externally, from AlGaAs/GaAs/AlGaAs heterostructures. Appl Phys Lett 62: 131–133

    Article  ADS  Google Scholar 

  28. Hill A, Wallach ER (1989) Modelling solid-state diffusion bonding. Acta Metallurgica 37: 2425–2437

    Article  Google Scholar 

  29. Bernstein L (1966) Semiconductor joining by the solid-liquid-interdiffusion (SLID) process. J Electrochem Soc 113: 1282–1288

    Article  Google Scholar 

  30. Schmid-Fetzer R (1995) Fundamentals of bonding by isothermal solidifiaction for high temperature semiconductor applications. In: Lin RY, Chang YA, Reddy RG, Liu CT (eds) Design Fundamentals of High Temperature Composites, Intermetallics, and Metal-Ceramics Systems. The Minerals, Metals & Materials Society

    Google Scholar 

  31. Chen TD, Spaziani SM, Vaccaro K, Lorenzo JP, Jokerst NM (2000) Epilayer transfer for integration of III—V photodetectors onto a silicon platform using Au-Sn and Pd-Ge bonding. In: International Conference on Indium Phosphide and Related Materials. IEEE, Piscataway, NJ, USA (Williamsburg, VA, USA, 14–18 May 2000), pp. 502505

    Google Scholar 

  32. Horng RH, Wuu DS, Wei SC, Huang MF, Chang KH, Liu PH, Lin KC (1999) A1GaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology. Appl Phys Lett 75: 154–156

    Article  ADS  Google Scholar 

  33. Horng RH, Wuu DS, Wei SC, Tseng CY, Huang MF, Chang KH, Liu PH, Lin KC (1999) AIGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding. Appl Phys Lett 75: 3054–3056

    Article  ADS  Google Scholar 

  34. Horng R, Wuu D, Peng W, Huang M, Liu P, Seieh C, Lin K (2000) Performance and reliability of wafer-bonded A1GaInP/mirror/Si light-emitting diodes. Proc SPIE 4078: 507–513

    Article  Google Scholar 

  35. Shoou-Jinn Chang, Yan-Kuin Su, Yang T, Chih-Sung Chang, Tzer-Peng Chen, KuoHsin Huang (2002) A1GaInP-sapphire glue bonded light-emitting diodes. IEEE Journal of Quantum Electronics 38: 1390–1394

    Article  ADS  Google Scholar 

  36. Arokiaraj J, Ishikawa H, Soga T, Egawa T, Jimba T, Umeno M (2000) Bonding of GaN with Si using selenium sulphide (SeS2) and laser lift-off. Proceedings of International Workshop on Nitride Semiconductors. Inst Pure & Appl Phys, pp. 754–7

    Google Scholar 

  37. Arokiaraj J, Okui H, Taguchi H, Soga T, Jimbo T, Umeno M (2000) Electrical characteristics of GaAs bonded to Si using SeS2 technique. Jpn J Appl Phys 39: L911 — L913

    Article  ADS  Google Scholar 

  38. Wong WS, Sands T, Cheung NW, Kneissl M, Bour DP, Mei P, Romano LT, Johnson NM (1999) Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl Phys Lett 75: 1360–1362

    Article  ADS  Google Scholar 

  39. Illek S, Iakob U, Plössl A, Stauß P, Streubel K, Wegleiter W, Wirth R (2003) Buried micro-reflectors boost performance of AlGatnP LEDs. Compound Semiconductor 8: 3942

    Google Scholar 

  40. Illek S, Pietzonka I, Plössl A, Stauss P, Wegleiter W, Windisch R, Wirth R, Zull H, Streubel K (2003) Scalability of buried micro-reflector light-emitting diodes for high-current applications. In: Schubert EF, Yao HW, Linden KJ, McGraw DJ (eds) Proceedings of SPIE, 4996: Light-emitting diodes: research, manufacturing, and applications VII. SPIE, Bellingham, WA, USA, pp. 18–25

    Chapter  Google Scholar 

  41. Kelly MK, Ambacher O, Dimitrov R, Handschuh R, Stutzmann M (1997). Phys Status Solidi A 159: R3

    Article  ADS  Google Scholar 

  42. Wong WS, Sands T, Cheung NW (1998) Damage-free separation of GaN thin films from sapphire substrates. Appl Phys Lett 72: 599–601

    Article  ADS  Google Scholar 

  43. Härle V, Hahn B, Kaiser S, Weimar A, Eisert D, Bader S, Plössl A, Eberhard F (2003) Light extraction technologies for high-efficiency GaInN-LED devices. In: Schubert EF, 356 A. Plößl Yao HW, Linden KJ, McGraw DJ (eds) Proceedings of SPIE, 4996: Light-emitting diodes: research, manufacturing, and applications VII. SPIE, Bellingham, WA, USA, pp. 133–138

    Google Scholar 

  44. Flandorfer H (2002) Phase relationships in the In-rich part of the In-Pd system. Journal of Alloys and Compounds 336: 176–180

    Article  Google Scholar 

  45. Quitoriano NJ, Wong WS, Tsakalakos L, Cho Y, Sands T (2001) Kinetics of the Pd/In thin-film bilayer reaction: Implications for transient-liquid-phase wafer bonding. J Electron Mater 30: 1471–1475

    Google Scholar 

  46. Li HE, Iga K (eds) (2001) Springer Series in Photonics, Vol 6: Vertical-cavity surface-emitting laser devices. Springer, Berlin

    Google Scholar 

  47. Soda H, Iga K, Kitahara C, Suematsu Y (1979). Japanese Journal of Applied Physics 18: 2329–2330

    Article  ADS  Google Scholar 

  48. Rakic AD, Majewski ML (2001) Cavity and mirror design for vertical-cavity surface emitting lasers. In: Li H, Iga K (eds) Vertical-cavity surface emitting laser devices. Springer, Berlin

    Google Scholar 

  49. Piprek J, Yoo SJB (1994) Thermal comparison of long-wavelength vertical-cavity surface-emitting laser diodes. Electron Lett 30: 866–868

    Article  ADS  Google Scholar 

  50. Dudley JJ, Babic DI, Mirin R, Yang L, Miller BI, Ram RJ, Reynolds T, Hu EL, Bowers JE (1994) Low threshold, wafer fused long wavelength vertical cavity lasers. Appl Phys Lett 64: 1463–1465

    Article  ADS  Google Scholar 

  51. Dudley JJ, Ishikawa M, Babic D1, Miller BI, Mirin R, Jiang WB, Bowers JE, Hu EL (1992) 144 °C operation of 1.3 µm InGaAsP vertical cavity lasers on GaAs substrates. Appl Phys Lett 61: 3095–3097

    Google Scholar 

  52. Babic DI, Streubel K, Mirin RP, Margalit NM, Bowers JE, Hu EL, Mars DE, Long Yang, Carey K (1995) Room-temperature continuous-wave operation of 1.54— µm vertical-cavity lasers. IEEE Photonics Technology Letters 7: 1225–1227

    Article  ADS  Google Scholar 

  53. Ohiso Y, Amano C, Itoh Y, Tateno K, Tadokoro T, Takenouchi H, Kurokawa T (1996) 1.55 µm vertical-cavity surface-emitting lasers with wafer-fused InGaAsP/InPGâAs/ALAS DBRs. Electron Lett 32: 1483–1484

    Google Scholar 

  54. Margalit NM, Babic DI, Streubel K, Mirin RP, Naone RL, Bowers JE, Hu EL (1996) Submilliamp long wavelength vertical cavity lasers. Electron Lett 32: 1675–1677

    Article  Google Scholar 

  55. Black KA, Abraham P, Margalit NM, Hegblom ER, Chiu YJ, Piprek J, Bowers JE, Hu EL (1998) Double-fused 1.5 µm vertical cavity lasers with record high To of 132 K at room temperature. Electron Lett 34: 1947–1949

    Article  Google Scholar 

  56. Jayaraman V, Geske JC, MacDougal MH, Peters FH, Lowes TD, Char TT (1998) Uniform threshold current, continuous-wave, singlemode 1300 nm vertical cavity lasers from 0 to 70°C. Electron Lett 34: 1405–1407

    Article  Google Scholar 

  57. Jayaraman V, Goodnough TJ, Beam TL, Ahedo FM, Maurice RA (2000) Continuous-wave operation of single-transverse-mode 1310—nm VCSELs up to 115°C. IEEE Photonics Technology Letters 12: 1595–1597

    Article  ADS  Google Scholar 

  58. Syrbu AV, Iakovlev VP, Berseth C-A, Dehaese O, Rudra A, Kapon E, Jacquet J, Boucart J, Stark C, Gaborit F, Sagnes I, Harmand JC, Raj R (1998) 30° C CW operation of 1.52 µm InGaAsP/ A1GaAs vertical cavity lasers with in situ built-in lateral current confinement by localised fusion. Electron Lett 34: 1744–1745

    Google Scholar 

  59. Qian Y, Zhu ZH, Lo YH, Huffaker DL, Deppe DG, Hou HQ, Hammons BE, Lin W, Tu YK (1997) Long wavelength (1.3 µm) vertical-cavity surface-emitting lasers with a wafer-bonded mirror and an oxygen-implanted confinement region. Appl Phys Lett 71: 25–27

    Article  ADS  Google Scholar 

  60. Syrbu A (2002) 1 mW CW 38 nm tunable 1.5 pm VCSELS with tuning voltage below 4 V. In: European Conference on Optical Communications, Copenhagen, Denmark, Sept. 8–12, 2002, p. PD3.8

    Google Scholar 

  61. Liau ZL, Mull DE (1990) Wafer fusion: a novel technique for optoelectronic device fabrication and monolithic integration. Appl Phys Lett 56: 737–739

    Article  ADS  Google Scholar 

  62. Sagalowicz L, Rudra A, Kapon E, Hammar M, Salomonsson F, Black A, Jouneau PH, Wipijewski T (2000) Defects, structure, and chemistry of InP-GaAs interfaces obtained by wafer bonding. J Appl Phys 87: 4135–4146

    Article  ADS  Google Scholar 

  63. Salomonsson F, Streubel K, Bentell J, Hammar M, Keiper D, Westphalen R, Piprek J, Sagalowicz L, Rudra A, Behrend J (1998) Wafer fused p-InP/p-GaAs heterojunctions. J Appl Phys 83: 768–774

    Article  ADS  Google Scholar 

  64. Akatsu T, P10131 A, Scholz R, Stenzel H, Gösele U (2001) Wafer bonding of different IlI—V compound semiconductors by atomic hydrogen surface cleaning. J Appl Phys 90: 3856–3862

    Article  ADS  Google Scholar 

  65. Salomonsson F (2001) Processing technologies for long-wavelengths vertical-cavity surface-emitting lasers. Ph.D. Dissertation, Kungl Tekniska Högskolan, Stockholm.

    Google Scholar 

  66. Patriarche G, Jeannes F, Oudar J-L, Glas F (1997) Structure of the GaAs/InP interface obtained by direct wafer bonding optimised for surface emitting optical devices. J Appl Phys 82: 4892–4903

    Article  ADS  Google Scholar 

  67. Sagalowicz L, Rudra A, Kapon E, Hammar M, Salomonsson F, Black A, Jouneau PH, Wipijewski T (2000) Defects, structure, and chemistry of InP-GaAs interfaces obtained by wafer bonding. J Appl Phys 87: 4135–4146

    Article  ADS  Google Scholar 

  68. Jin-Phillipp NY, Liu B, Bowers JE, Hu EL, Kelsch M, Thomas J, Riihle M (2002) Interface of directly bonded InP wafers for vertical couplers. Appl Phys Lett 80: 13461348

    Google Scholar 

  69. Luo ZS, Cho Y, Loryuenyong V, Sands T, Cheung NW, Yoo MC (2002) Enhancement of ( InGa)N light-emitting diode performance by laser liftoff and transfer from sapphire to silicon. IEEE Photonics Technology Letters 14: 1400–1402

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plößl, A. (2004). Wafer Direct Bonding for High-Brightness Light-Emitting Diodes and Vertical-Cavity Surface-Emitting Lasers. In: Alexe, M., Gösele, U. (eds) Wafer Bonding. Springer Series in MATERIALS SCIENCE, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10827-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10827-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05915-5

  • Online ISBN: 978-3-662-10827-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics