Skip to main content

Emissions from Medical Care Units

  • Chapter
Pharmaceuticals in the Environment

Abstract

After administration, pharmaceuticals are excreted and released into the aquatic environment via wastewater effluent. Unused drugs are sometimes disposed of down drains, and, unless they are biodegraded or eliminated during sewage treatment, traces may enter the aquatic environment and eventually reach drinking water. It is also hypothesised that antibiotics and disinfectants disturb the wastewater treatment process and the microbial ecology in surface waters. Furthermore, resistant bacteria may be selected in the aeration tanks of STPs by the antibiotic substances present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aherne GW, Hardcastle A, Nield AH (1990) Cytotoxic drugs and the aquatic environment. Estimation of bleomycin in river and water samples. J Pharm Pharmacol 42: 741–742

    Google Scholar 

  • Al-Ahmad A, Kammerer K (2001) Biodegradation of the antineoplastics vindesine, vincristine and vinblastine, and toxicity against bacteria in the aquatic environment. Cancer Det Prey 25: 102–107

    CAS  Google Scholar 

  • Al-Ahmad A, Kammerer K, Schön G (1997) Biodegradation and toxicity of the antineoplastics mitoxantron hydrochloride and treosulfane in the closed bottle test. Bull Env Cont Toxicol 58: 704–711

    Article  CAS  Google Scholar 

  • Al-Ahmad A, Daschner FD, Kummerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfametohoxazole and inhibition of waste water bacteria. Arch Environ Cont Toxicol 37: 158–163

    Article  CAS  Google Scholar 

  • Al-Ahmad A, Wiedmann-Al-Ahmad M, Schön G, Daschner FD, Kammerer K (2000) The role of Acinetobacter for biodegradability of quaternary ammonium compounds. Bull Env Cont Toxicol 64: 764–770

    Article  CAS  Google Scholar 

  • Alder AC, McArdell CS, Giger W, Golet EM, Molnar E, Nipales NS (2000) Presentation held at the conference “Antibiotics in the Environment”. CWIEM East Anglian Region, 2 February 2000

    Google Scholar 

  • Alexy R, Kumpel T, Kammerer K (to be published) Assessment of degradation of 18 antibiotics in the closed bottle test

    Google Scholar 

  • Anderson PO (1990) Chlorofluorocarbons in medicinals. Am J Hosp Pharm 47: 1382–1385

    CAS  Google Scholar 

  • Augustin H, Bauer U, Bessens E, Bestmann G, Botzenhart K, Dietz F, Genth H, Gerike P, Jung KD, Kettrup A, Robra K-H, Zullei N (1982). Mikrozide Wirkstoffe als belastende Verbindungen im Wasser. Vom Wasser 58: 297–335

    CAS  Google Scholar 

  • Bau M, Dulski P (1996) Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sci Lett 143: 245–55

    Article  CAS  Google Scholar 

  • Bayer AG (1991) Aerobic metabolism of 14C-ciprofloxacin in an aquatic model ecosystem. Bayer PF-Report 3539, 29 July 1991

    Google Scholar 

  • Bayer AG (1995) Preventol R5o, preventol R8o - summary of toxicity and ecotoxicity. Technical Information. January 1995

    Google Scholar 

  • Benbrook CM (2002) Antibiotic drug use in US aquaculture. (http://www.iatp.org/library/antibiotics) Burhenne J, Ludwig M, Nikoloudis P, Spiteller M (1997a) Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. Primary photoproducts and half-lives. Environ Sci Pollut R 4:10–15

    Google Scholar 

  • Burhenne J, Ludwig M, Spiteller M (1997b) Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. Isolation and structural elucidation of polar photometabolites. Environ Sci Pollut R 4: 61–71

    Google Scholar 

  • Cooper JC (1988) Review of the environmental toxicity of quaternary ammonium halides. Ecotox Environ Safe 16: 65–71

    Article  CAS  Google Scholar 

  • Craig PJ (1986) Organomercury compounds in the environment. In: Craig PJ (ed) Organometallic components in the environment. Principles and reactions. Longman Group Ltd, Harlow

    Google Scholar 

  • De Smedt SC, Meyvis TKL, van Oostveldt P, Demeester J (1999) A new microphotolysis based approach for mapping the mobility of drugs in microscopic drug delivery devices. Pharm Res 16: 1631–1639

    Google Scholar 

  • Drewes, JE, Jekel M (1997) Untersuchungen zum Verhalten organischer Abwasserinhaltsstoffe bei der Wiederverwendung kommunaler Kläranlagenabläufe zur künstlichen Grundwasseranreicherung. gwf Wasser Abwasser 138: 223–224

    Google Scholar 

  • ECETOC (ed) (1993) DHTMAC – aquatic and terrestrial hazard assessment. CAS No. 61789–80–9. Euro– pean Center for Ecotoxicology and Toxicology of Chemicals, Brussels (Technical Report No. 53 )

    Google Scholar 

  • Erbe T, Kämmerer K, Daschner FD (1997) Antibitotika in der aquatischen Umwelt. Erhebung des Antibiotikaverbrauchs für die Bereiche Krankenhaus, Praxis und Tierhaltung unter dem Aspekt der Resistenzentwicklung in der aquatischen Umwelt. Freiburg (internal report )

    Google Scholar 

  • Erbe T, Kämmerer K, Gartiser S, Brinker L (1998) Röntgenkontrastmittel, Quelle für die AOX-Belastung durch Krankenhäuser. Fortschr Röntgenstr 169: 420–423

    Google Scholar 

  • FEDESA (European Federation of Animal Health) (1997) FEDESA press release, 6 September, Brussels FEDESA (European Federation of Animal Health) (2001) Antibiotic use in farm animals does not threaten human health. FEDESA/FEFANA press release, 13 July, Brussels

    Google Scholar 

  • Falter R, Wilken R-D (1998) Determination of rare earth elements by ICP-MS and ultrasonic nebulization in sludges of water treatment facilities. Vorn Wasser 90: 57–64

    CAS  Google Scholar 

  • Färber H (2002) Antibiotika im Krankenhausabwasser. Hyg Med 27: 35

    Google Scholar 

  • Gartiser S, Brinker L, Uhl A, Willmund R, Kämmerer K, Daschner F (1994) Untersuchung von Krankenhausabwasser am Beispiel des Universitätsklinikums Freiburg. Korresp Abw, 49: 1618–1624

    Google Scholar 

  • Gerike P (1982) Bioelimination von kationischen Tensiden. Tenside Deterg 19: 162–164

    CAS  Google Scholar 

  • Guhl W, Gode P (1989) Störungen der Funktion biologischer Kläranlagen durch Chemikalien: Vergleich der Grenzkonzentration mit Ergebnissen im Sauerstoffzehrungstest. Vom Wasser 72: 165–173

    Google Scholar 

  • Guitton J, Burronfosse T, Sanchez M, Desage M (1997) Quantification of propofol. Anal Lett 30: 1369–1378

    Article  CAS  Google Scholar 

  • Hahn M, Liebau A, Rüttinger HH, Thamm R (1994) Electrochemical investigation of chloramine T. Anal Chim Act 289: 35–42

    Article  CAS  Google Scholar 

  • Haiß A (2002) Thesis, Humboldt Universität, Berlin Haiß A, Kämmerer K (to be published) Biodegradability of the ionic iodinated X-ray contrast compound amidotrizoic acid, identification of its aerobic biodegradation products and their effects against sewage sludge micro-organisms

    Google Scholar 

  • Haiß A, Hubner P, Zipfel J, Kämmerer K (1998) AOX im Abwasser europäischer Kliniken. Vom Wasser 91: 315–323

    Google Scholar 

  • Hailing-Sorensen B, Holten-Lützhoft H-C, Andersen H R, Ingerslev F (2000) Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. J Antimicrob Chemother 46 (Suppl 1): 53–58

    Google Scholar 

  • Hammond CR (1995) Gadolinium. In: Lide DR (ed) CRC handbook of chemistry and physics, 78th edn. CRC Press Inc., Boca Raton, Florida

    Google Scholar 

  • Hartmann A, Alder AC, Koller T, Widmer R (1998) Identification of fluorochinolone antibiotics as the main source of umuC genotoxicity in native hospital waste water. Environ Toxicol Chem 17: 383–393

    Article  Google Scholar 

  • Helmers E, Kämmerer K (1999) Anthropogenic platinum fluxes: quantification of sources and sinks, and outlook. Environ Sci Pollut R 6: 29–36

    Article  CAS  Google Scholar 

  • Hingst V, Klippel KM, Sonntag H-G (1995) Untersuchungen zu Epidemiologie mikrobieller Biozidresistenzen. Zbl Hyg 197: 232–251

    CAS  Google Scholar 

  • Hirsch R (2000) Occurrence and behaviour of X-ray contrast media in sewage facilities and the aquatic environment. Environ Sci Technol 34: 2741–2748

    Article  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225: 109–118

    Article  CAS  Google Scholar 

  • Hübener B, Dornberger K, Zielke R, Gräfe U (1992) Microbial degradation of cyclosporin A. UWSF–Z Umweltchem Okotox 4: 227–230

    Article  Google Scholar 

  • Hubner P (2001) Emissions from clinical chemical laboratories. In: Kämmerer K (ed) Pharmaceuticals in the environment. Sources, fate, effects and risks. Springer-Verlag, Heidelberg New York, pp 43–48

    Google Scholar 

  • Hubner P, Mersch-Sundermann V, Bulowski I, Nahkur E, Kämmerer K (2001) Mutagene Effekte und biologische Abbaubarkeit von flüssigen Reaktionsrückständen aus Analysatoren der in-vitro Diagnostik klinisch chemischer Routinelaboratorien. Vom Wasser 96: 15–28

    CAS  Google Scholar 

  • IKSR (1994) Aktionsprogramm Rhein. Vergleich der Gewässergüte des Rheins mit den Zielvorgaben 1990–1993 - Zwischenbilanz. Internationale Kommission zum Schutz des Rheins, Technisch-wissenschaftliches Sekretariat, Koblenz

    Google Scholar 

  • Janosz-Rajczyk M (1992) Biodegradation of alkyldipolyethoxybenzylammoniumchloride. Tenside Surf Det 29: 436–441

    CAS  Google Scholar 

  • Kalsch W (1999) Biodegradation of the iodinated X-ray contrast media diatrizoate and iopromide. Sci Total Environ 225: 143–153

    Article  CAS  Google Scholar 

  • Kamphues J, Hebeler D (1999) Leistungsförderer–der Status Quo aus Sicht der Tierernährung. Übers Tierernähr 27: 1–28

    CAS  Google Scholar 

  • Koppe P, Stozek A (1993) Kommunales Abwasser - Seine Inhaltsstoffe nach Herkunft, Zusammensetzung und Reaktionen im Reinigungsprozeß einschließlich Klärschlämme. Vulkan-Verlag, Essen

    Google Scholar 

  • Kämmerer K (1998) Eintrag von Pharmaka, Diagnostika und Desinfektionsmitteln aus Krankenhäusern in die aquatische Umwelt. Habilitationschrift. Universität Freiburg.

    Google Scholar 

  • Kämmerer K (2001) Drugs in the environment: Emission of drugs, diagnostic aids, and disinfectants into wastewater by hospitals in relation to other sources–a review. Chemosphere 45: 957–969

    Article  Google Scholar 

  • Kämmerer K, Al-Ahmad A (1997) Biodegradability of the anti-tumour agents 5-fluorouracil, cytarabine and gemcitabine: Impact of the chemical structure and synergistic toxicity with hospital effluents. Acta hydrochim. hydrobiol 25: 166–172

    Google Scholar 

  • Kämmerer K, Al-Ahmad A (1998) The cancer risk for humans related to cyclophoshamide and ifosfamide excretions emitted into surface water via hospital effluents. Cancer Det Prey 22 (Suppl 1): 136

    Google Scholar 

  • Kämmerer K, Al-Ahmad A (1999) Epirubicinhydrochlorid in der aquatischen Umwelt - Biologische Abbaubarkeit und Wirkung auf aquatische Bakterien. 7. Nordwestdeutscher Zytostatika-Workshop, Hamburg-Harburg 29.-31. 01. 1999 (Proceedings, pp io-si)

    Google Scholar 

  • Kämmerer K, Helmers E (moo) Hospitals as a source of gadolinium in the aquatic environment. Environ Sci Technol 34: 573–577

    Google Scholar 

  • Kämmerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluents. Clin Microbiol Inf 9: 1203–1214

    Article  Google Scholar 

  • Kämmerer K, Al-Ahmad A, Steger-Hartmann T (1996) Verhalten des Zytostatikums Epirubicin-Hydrochlorid in der aquatischen Umwelt–erste Ergebnisse. Umweltmed Forsch Prax 1: 133–137

    Google Scholar 

  • Kämmerer K, Steger-Hartmann T, Meyer M (1997a) Biodegradability of the anti-tumour agent ifosfamide and its occurrence in hospital effluents and sewage. Wat Res 31: 2705–2710

    Article  Google Scholar 

  • Kämmerer K, Eitel A, Braun U, Hubner P, Daschner F, Mascart G, Milandri M, Reinthaler F, Verhuef J (1997b) Analysis of benzalkonium chloride in the effluent from European hospitals by solid-phase extraction and HPLC with post-column ion-pairing for fluorescence detection. J Chromatogr A 774: 281–286

    Article  Google Scholar 

  • Kämmerer K, Wallenhorst T, Kielbassa A (1997c) Mercury emissions from dental chairs and their reduction. Chemosphere 35: 827–833.

    Article  Google Scholar 

  • Kämmerer K, Erbe T, Gartiser S, Brinker L (1998) AOX-Emissions from hospitals into municipal waste water. Chemosphere 36: 2437–2445

    Article  Google Scholar 

  • Kämmerer K, Helmers E, Hubner P, Mascart G, Milandri M, Reinthaler F, Zwakenberg M (1999) European hospitals as a source for platinum in the environment: emissions with effluents–concentrations, amounts and comparison with other sources. Sci Total Environ 225: 155–165

    Article  Google Scholar 

  • Kammerer K, Al-Ahmad A, Bertram B, Wießler M (2000a) Biodegradability of antineoplastic compounds in screening tests: improvement by glucosidation and influence of stereo-chemistry. Chemosphere 40: 767–773

    Article  Google Scholar 

  • Kämmerer K, Al-Ahmad A, Mersch-Sundermann V (2000b): Biodegradability of some antibiotics, elimination of their genotoxicity and affection of waste water bacteria in a simple test. Chemosphere 40: 701–710

    Article  Google Scholar 

  • Kämmerer K, Al-Ahmad A, Henninger A (2002) Use of chemotaxonomy to study the influence of benzalkonium chloride on bacterial populations in biodegradation testing. Acta Hydroch Hydrob 30: 171–178

    Article  Google Scholar 

  • Leppold J (1997) Bestimmung von chemischem Sauerstoffbedarf und Schwermetallen im Abwasser europäischer Kliniken. Diploma thesis. University for Applied Sciences, Albstadt-Sigmaringen

    Google Scholar 

  • Lustig S, Schierl R, Alt F, Helmers E, Kämmerer K (1997) Statusbericht: Deposition und Verteilung anthropogen emittierten Platins in den Umweltkompartimenten in Bezug auf den Menschen und sein Nahrungsnetz. UWSF - Z Umweltchem Ökotox 9: 149–151

    Google Scholar 

  • Marengo JR, Kok RA, Velagaleti R, Stamm JM (1997) Aerobic degradation of “C-sarafloxacin hydrochloride in soil. Environ Toxicol Chem 16: 462–471

    CAS  Google Scholar 

  • Mellon M, Benbrook C, Benbrook KL (2001) Hogging it: estimates of antimicrobial use in livestock. Union of Concerned Scientists (http://www.ucsusa.org/publications)

  • Möller P, Dulski P, Bau M, Knappe A, Pekdeger A, Sommer-von Jarmerasted C (200o) Anthropogenic gadolinium as a conservative tracer in hydrology. J Geochem Explor 69/70:409–414

    Google Scholar 

  • Nycomed (1995) Environmental data sheet omniscan. Ismaning bei München

    Google Scholar 

  • Ohlsen K, Ternes T, Werner G, Löf ler D, Witte W, Hacker J (2003) Bedeutung von Antibiotika in Krankenhausabwässern. In: Track T, Kreysa G (eds) Spurenstoffe in Gewässern. Pharmazeutische Reststoffe und endokrin wirksame Substanzen. Wiley-VCH, Weinheim, pp 197–209

    Google Scholar 

  • Oleksy-Frenzel J, Wischnack S, Jekel M (1995) Bestimmung der oganischen Gruppenparameter AOC1, AOBr und AOJ in Kommunalabwasser. Vom Wasser 85: 59–68

    Google Scholar 

  • Russell AD, Hugo WB, Ayliffe GAJ (1992) Principles and practice of disinfection, preservation and sterilization, end edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Schecker J, Al-Ahmad A, Bauer MJ, Zellmann H, Kämmerer K (1998) Elimination des Zytostatikums Ifosfamid während der simulierten Zersetzung von Hausmüll im Labormaßstab. UWSF–Z Umweltchem Ökotox 10: 339–344

    Article  CAS  Google Scholar 

  • Schulz S, Hahn HH (1997) Der Kanal als Reaktor–Untersuchungen zur AOX-Bildung durch Wirkstoffe in Reinigungsmitteln. gwf Wasser Abwasser 138: 109–120

    CAS  Google Scholar 

  • Skov T, Lynge E, Maarup B, Olsen J, Roth M, Withereik H (1990) Risks for physicians handling antineoplastic drugs. Lancet 336: 1446

    Article  CAS  Google Scholar 

  • Steger-Hartmann T, Kämmerer K, Schecker J (1996) Trace analysis of the antineoplastics ifosfamide and cyclophosphamide in sewage water by two step solid phase extraction and GC/MS. J Chromatogr A 726: 179–184

    Article  CAS  Google Scholar 

  • Steger-Hartmann T, Kämmerer K, Hartmann A (1997) Biological degradation of cyclophosphamide and its occurrence in sewage water. Ecotox Environ Safe 36: 174–179

    Article  CAS  Google Scholar 

  • Steger-Hartmann T, Länge R, Schweinfurth H (1999) Environmental risk assessment for the widely used iodinated X-ray contrast agent iopromide ( Ultravist ). Ecotox Environ Safe 42: 274–281

    Google Scholar 

  • Tubbing DMJ, Admiraal W (1991) Inhibition of bacterial and phytoplanktonic metabolic activity in the lower river Rhine by ditallowdimethylammonium chloride. Appl Environ Microb 57: 3616–3622

    CAS  Google Scholar 

  • Union of Concerned Scientists (2001) 7o percent of all antibiotics given to healthy lifestock. Press Release, 8 January, Cambridge, MA

    Google Scholar 

  • Vivian CMG (1986) Rare earth element content of sewage sludges dumped at sea in Liverpool Bay, U.K. Environ Techn Lett 7: 593–596

    Article  CAS  Google Scholar 

  • Wagner R, Kayser G (1991) Laboruntersuchungen zum Einfluß von mikrobiziden Stoffen in Verbindung mit wasch-und reinigungsmittelrelevanten Substanzen sowie von Tensidabbauprodukten auf die Nitrifikation. Projekt Wasser-Abfall-Boden, Baden-Württemberg, Förderkennzeichen 88 068, Stuttgart and Karlsruhe

    Google Scholar 

  • Weerasinghe CA, Towner D (1997) Aerobic biodegradation of virginiamycin in soil. Environ Toxicol Chem 16: 1873–1876

    Article  CAS  Google Scholar 

  • Wiethan J, Al-Ahmad A, Henninger A, Kämmerer K (2000) Simulation des Selektionsdrucks der Antibiotika Ciprofloxacin und Ceftazidim in Oberflächengewässern mittels klassischer Methoden. Vom Wasser 95: 107–118

    CAS  Google Scholar 

  • Winckler C, Grafe A (2000) Charakterisierung und Verwertung von Abfällen aus der Massentierhaltung unter Berücksichtigung verschiedener Böden. Umweltbundesamt, Berlin (Texte 44/00)

    Google Scholar 

  • Wise R (2002) Antimicrobial resistance: priorities for action. J Antimicrob Chemother 49: 585–586

    Article  CAS  Google Scholar 

  • Ziegler M, Schulze Karal C, Steiof M, Rüden H (1997) Reduzierung der AOX-Fracht von Krankenhäusern durch Minimierung des Eintrags iodorganischer Röntgenkontrastmittel. Korresp Abw 44: 1404–1408

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kümmerer, K. (2004). Emissions from Medical Care Units. In: Kümmerer, K. (eds) Pharmaceuticals in the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09259-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09259-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09261-3

  • Online ISBN: 978-3-662-09259-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics