Skip to main content

Klinische Indikationen

  • Chapter
PET in der Onkologie

Zusammenfassung

Das maligne Melanom ist weltweit in Zunahme begriffen. Obwohl es nur 5% aller Hauttumoren ausmacht, sind mehr als 75% aller durch Hautkrebs verursachten Todesfälle auf ein malignes Melanom zurückzuführen. Während 1935 das Risiko für einen Amerikaner, während seines Lebens an einem malignen Melanom zu erkranken, bei 1:1.500 lag, betrug es 1991 schon 1:105 und wird für das Jahr 2000 auf 1:75 geschätzt (Boring et al. 1994; Harris et al. 1995). Die Inzidenz des malignen Melanoms nimmt schneller als die jeder anderen Krebsart zu, sie stieg in den Vereinigten Staaten seit 1973 jährlich um 4–6%. In den USA erkranken derzeit jährlich etwa 32.000 Menschen, 6.500 sterben pro Jahr an einem malignen Melanom; bei Frauen ist es der häufigste Tumor zwischen 20 und 29 Jahren (Friedman et al. 1991; Katsambas u. Nicolaidou 1996; Kof 1991; Johnson et al. 1994; Schneider et al. 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Adler LP, Crowe JP, al-Kaisi NK, Sunshine JL (1993) Evaluation of breast masses and axillary lymph nodes with (F18)-2-deoxy-2-fluoro-D-Glucose PET. Radiology 187: 743–750

    PubMed  CAS  Google Scholar 

  • Armstrong BK, Kricker A (1993) How much melanoma is caused by sun exposure? Mel Res 3: 395–401

    Article  CAS  Google Scholar 

  • Balch CM (1988) The role of elective lymph node dissection in melanoma: rationale, results, and controversie. J Clin Oncol 6: 163–172

    PubMed  CAS  Google Scholar 

  • Blessing C, Feine U, Geiger L, Carl M, Rassner G, Fierlbeck G (1995) Positron emission tomography and ultrasonography — a comparative retrospective study assessing the diagnostic validity in lymph node metastases of malignant melanoma. Arch Dermatol 131: 1394–1398

    Article  PubMed  CAS  Google Scholar 

  • Böni R (1996) Whole-body positron emission tomography: an accurate staging modality for metastatic melanoma. Arch Dermatol 132: 833–834

    Article  PubMed  Google Scholar 

  • Böni R, Huch-Böni R, Steinert H, Dummer R, Burg G, von Schult-hess GK (1995a) Anti-melanoma monoclonal antibody 225.28 S immunoscintigraphy in metastatic melanoma. Dermatology 191: 119–123

    Article  PubMed  Google Scholar 

  • Böni R, Huch-Böni RA, Steinert H et al. (1995b) Staging of metastatic melanoma by whole-body positron emission tomography using 2-fluorine-18-fluoro-2-deoxy-D-glucose. Br J Dermatol 132: 556–562

    Article  PubMed  Google Scholar 

  • Böni R, Huch-Böni RA, Steinert H, von Schulthess GK, Burg G (1996) Early detection of melanoma metastasis using fludeoxy-glucose F-18 positron emission tomography. Arch Dermatol 132: 875–876

    Article  PubMed  Google Scholar 

  • Boring CC, Squires TS, Tong T, Montgomery S (1994) Cancer statistics. CA Cancer J C 44: 7–26

    Article  CAS  Google Scholar 

  • Breslow A (1970) Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg 172: 902–908

    Article  PubMed  CAS  Google Scholar 

  • Chin R, Ward R, Keyes JW et al. (1995) Mediastinal staging of non-small-cell lung cancer with positron emission tomography. Am J Respir Crit Care 152: 2090–2096

    Article  Google Scholar 

  • Divigi CR, Larson SM (1989) Radiolabelled monoclonal antibodies in the diagnosis and treatment of malignant melanoma. Semin Nucl Med: 252–261

    Google Scholar 

  • Fornage BD, Lorigan JG (1989) Sonographic detection and fine-needle aspiration biopsy of nonpalpable recurrent or metastatic melanoma in subcutaneous tissues. J Ultrasound Med 8: 421–424

    PubMed  CAS  Google Scholar 

  • Friedman RJ, Rigel DS, Silverman MK, Kopf AW, Vossaert KA (1990) Malignant melanoma in the 1990’s. CA Cancer J Clin 41: 201–206

    Article  Google Scholar 

  • Godellas CV, Berman CG, Lyman G et al. (1995) The identification and mapping of melanoma regional nodal metastases: Minimally invasive surgery for the diagnosis of nodal metastases. Am Surg 61: 97–101

    PubMed  CAS  Google Scholar 

  • Gritters LS, Francis IR, Zasadny KR, Wahl RL (1993) Initial assessment of positron emission tomography using 2-fluorine-18-fluoro-2-deoxy-d-glucose in the imaging of malignant melanoma. J Nucl Med 34: 1420–7

    PubMed  CAS  Google Scholar 

  • Grünwald F, Schomburg A, Bender H et al. (1996) Fluorine-18 fluo-rodeoxyglucose positron emission tomography in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 23: 312–319

    Article  PubMed  Google Scholar 

  • Harris MN, Shapiro RL, Roses DF (1995) Malignant melanoma primary surgical management (excision and node dissection) based on pathology and staging. Cancer Suppl 75: 715–725

    Article  CAS  Google Scholar 

  • Haubold-Reuter BG, Duewell S, Schilcher BR, Marincek B, von Schulthess GK (1993) The value of bone scintigraphy and fast spin-echo magnetic resonance imaging in staging of patients with malignant solid tumors: a prospective study. Eur J Nucl Med 20: 1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Horgan K, Hughes LE (1993) Staging of melanoma. Clin Radiol 48: 297–300

    Article  PubMed  CAS  Google Scholar 

  • Huzaid AC, Sandler AB, Mani S et al. (1993) Role of computed tomography in the staging of malignant melanoma. J Clin Oncol 11: 638–43

    Google Scholar 

  • Johnson N, Mant D, Newton J, Yudkin PL (1994) Role of primary care in the prevention of malignant melanoma. Br J Gen Pract 44: 523–526

    PubMed  CAS  Google Scholar 

  • Kagan R, Witt T, Bines S, Mesleh G, Economou S (1988) Gallium-67 scanning for malignant melanoma. Cancer 61: 272–274

    Article  PubMed  CAS  Google Scholar 

  • Katsambas A, Nicolaidou E (1996) Cutaneous malignant melanoma and sun exposure — recent developments in epidemiology. Arch Dermatol 132: 444–450

    Article  PubMed  CAS  Google Scholar 

  • Koh HK (1991) Cutaneous melanoma. N Engl J Med 325: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Kopf AW, Gross DF, Rogers GS et al. (1987) Prognostic index for malignant melanoma. Cancer 59: 1236–1241

    Article  PubMed  CAS  Google Scholar 

  • Lyons JH, Cockerell CJ (1994) Elective lymph node dissection for melanoma. J Am Acad Dermatol 30: 467–480

    Article  PubMed  Google Scholar 

  • MacKie RM, Hole DJ (1996) Incidence and thickness of primary tumours and survival of patients with cutaneous malignant melanoma in relation to socioeconomic status. BMJ 312: 1125–1128

    Article  PubMed  CAS  Google Scholar 

  • Melia J, Cooper EJ, Frost T et al. (1995) Cancer Research Campaign health education programme to promote the early detection of cutaneous malignant melanoma. II Characteristics and incidence of melanoma. Br J Dermatol 132: 414–421

    Article  PubMed  CAS  Google Scholar 

  • Rigo P, Paulus P, Kaschten BJ et al. (1996) Oncological applications of positron emission tomography with fluorine-18 fluorodeoxy-glucose. Eur J Nucl Med 23: 1641–1674

    Article  PubMed  CAS  Google Scholar 

  • Rinne D, Baum RP, Hör G, Kaufmann R (1998) Primary staging and follow-up of high-risk melanoma patients by whole-body F-18-FDG positron-emission-tomography (PET): results of a prospective study in 100 patients. Cancer 82:1664–1671 (im Druck)

    Article  PubMed  CAS  Google Scholar 

  • Rogers GS, Kopf AW, Rigel DS et al. (1983) Effect of anatomical location on prognosis in patients with clinical stage I melanoma. Arch Dermatol 119: 644–649

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Ichiya Y, Kuwabara Y et al. (1996) The usefulness of FDG positron emission tomography for the detection of lymph node metastases in patients with non-small cell lung cancer: a comparative study with X-ray computed tomography. Eur J Nucl Med 23: 741–747

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS, Moore DH, Sagebiel RW (1994) Risk factors for melanoma incidence in prospective follow-up. Arch Dermatol 130: 1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Scott WJ, Gobar LS, Terry JD, Dewan NA, Sunderland JJ (1996) Mediastinal lymph node staging of non-small-cell lung cancer: a prospective comparison of computed tomography and positron emission tomography. J Thor Cardiovasc Surg 111: 642–648

    Article  CAS  Google Scholar 

  • Scotto J, Pitcher H, Lee JAH (1991) Indications of future decreasing trends in skin-melanoma mortality among whites in the United States. Int J Cancer 49: 490–497

    Article  PubMed  CAS  Google Scholar 

  • Shreve PD, Grossman HB, Gross MD, Wahl RL (1996) Metastasic prostate cancer: initial findings of PET with 2-Deoxy-2-[F-18]fluoro-D-glucose. Radiology 199: 751–756

    PubMed  CAS  Google Scholar 

  • Steinert HC, Huch-Böni RA, Buck A et al. (1995) Malignant melanoma: staging with whole-body positron emission tomography and 2-(F-18)-Fluoro-2-deoxy-D-glucose. Radiology 195: 705–709

    PubMed  CAS  Google Scholar 

  • Steinert HC, Ullrich SP, Böni R, von Schulthess GK, Dummer R (1998) Kosteneffektivität beim Staging des malignen Melanoms: Vergleich Ganzkörper-PET versus Konventionelles Staging. Nuklearmedizin 37: A37 [Abstr]

    Google Scholar 

  • Stoelben E, Sturm J, Schmoll J, Keilholz U, Saeger HD (1995) Resektion von solitären Lebermetastasen des malignen Melanoms. Chirurg 66: 40–43

    PubMed  CAS  Google Scholar 

  • Vollmer RT (1989) Malignant melanoma: a multivariate analysis of prognostic factors. Pathol Ann 24: 383–407

    Google Scholar 

  • Yao WJ, Hoh JA, Glaspy F (1994) Whole-body FDG PET imaging for staging of malignant melanoma: is it cost effective? J Nucl Med 35: 8P

    Google Scholar 

  • Anzai Y, Carroll WR, Quint DJ et al. (1996) Recurrence of head and neck cancer after surgery or irradiation: prospective comparison of 2-deoxy-2-[F-18]fluoro-D-glucose PET and MR imaging diagnoses. Radiology 200: 135–141

    PubMed  CAS  Google Scholar 

  • Austin JR, Wong FC, Kim EE (1995) Positron emission tomography in the detection of residual laryngeal carcinoma. Otolaryngol Head Neck Surg 113: 404–407

    Article  PubMed  CAS  Google Scholar 

  • Bailet JW, Sercarz JA, Abemayor E, Anzai Y, Lufkin RB, Hoh CK (1995) The use of positron emission tomography for early detection of recurrent head and neck squamous cell carcinoma in postradiotherapy patients. Laryngoscope 105: 135–139

    Article  PubMed  CAS  Google Scholar 

  • Bailet JW, Abemayor E, Jabour BA, Hawkins RA, Ho C, Ward P H (1992) Positron emission tomography: a new, precise imaging modality for detection of primary head and neck tumors and assessment of cervical adenopathy. Laryngoscope 102: 281–288

    PubMed  CAS  Google Scholar 

  • Baredes S, Leeman DJ, Chen TS et al. (1993) Significance of tumor thickness in soft palate carcinoma. Laryngoscope 103: 389–393

    Article  PubMed  CAS  Google Scholar 

  • Batsakis JG (1984) Tumors of the head and neck: clinical and pathological considerations. Williams & Wilkens, Baltimore

    Google Scholar 

  • Benchaou M, Lehmann W, Slosman DO et al. (1996) The role of FDG-PET in the preoperative assessment of N-staging in head and neck cancer. Acta Otolaryngol Stockh 116: 332–335

    Article  PubMed  CAS  Google Scholar 

  • Berlangieri SU, Brizel DM, Scher RL et al. (1994) Pilot study of positron emission tomography in patients with advanced head and neck cancer receiving radiotherapy and chemotherapy. Head Neck 16: 340–346

    Article  PubMed  CAS  Google Scholar 

  • Black RJ, Gluckman JL, Shumrick DA (1983) Multiple primary tumors of the upper aerodigestive tract. Clin Otolaryngol All Sci 8: 277–281

    Article  CAS  Google Scholar 

  • Braams JW, Pruim J, Freling NJM et al. (1995) Detection of lymph node metastases of squamous-cell cancer of the head and neck with FDG-PET and MRI. J Nucl Med 36: 211–216

    PubMed  CAS  Google Scholar 

  • de Braud F, Al-Sarraf M (1993) Diagnosis and management of squamous cell carcinoma of unknown primary tumor site of the neck. Sem Oncol 20: 273–278

    Google Scholar 

  • van den Brekel MW, Castelijns JA, Snow GB (1994) The role of modern imaging studies in staging and therapy of head and neck neoplasms. Semin Oncol 1994; 21:340–348

    PubMed  Google Scholar 

  • Busch H, Davis JR, Honig GR, Anderson DC, Nair PV, Nyhan WL (1959) The uptake of a variety of amino-acids into nuclear proteins of tumors and other tissues. Cancer Res 19: 1030–1039

    PubMed  CAS  Google Scholar 

  • Chaiken L, Rege S, Hoh C et al. (1993) Positron emission tomography with fluorodeoxyglucose to evaluate tumor response and control after radiation therapy. Int J Radiat Oncol Biol Phys 27: 455–464

    Article  PubMed  CAS  Google Scholar 

  • Di Chiro G (1986) Positron emission tomography using (18F)fluoro-deoxyglucose in brain tumors: a powerful diagnostic and prognostic tool. Invest Radiol 22: 360–371

    Article  Google Scholar 

  • Dillon WP, Harnsberger HR (1991) The impact of radiologic imaging on staging of cancer of the head and neck. Semin Oncol 18: 64–79

    PubMed  CAS  Google Scholar 

  • Deutsche Gesellschaft für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie (1997) Leitlinie Kehlkopfkarzinom. HNO-Mitteilungen 47: 7–15 (auch aktuell jeweils abrufbar über Internet (AWMF-online: http://www.uni-duesseldorf.de/WWW/AWMF/II/hno)

  • Eichhorn T, Schroeder HG, Glanz H, Schwerk WB (1987) Histologisch kontrollierter Vergleich von Palpation und Sonographie bei der Diagnose von Halslymphknotenmetastasen. Laryngol Rhinol Otol 66: 266–274

    Article  CAS  Google Scholar 

  • van Eijkeren M, De Schryver A, Goethals P et al. (1992) Measurement of short-term 11C-thymidine activity in human head and neck tumours using positron emission tomography (PET). Acta Oncol 31: 539–543

    Article  PubMed  Google Scholar 

  • Feinmesser R, Freeman JL, Feinmesser M et al. (1992) Role of modern imaging in decision-making for elective neck dissection. Head Neck 14: 173–176

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick PJ, Tepperman BS, Deboer G (1984) Multiple primary squamous cell carcinomas in the upper digestive tract. Int J Radiat Oncol Biol Phys 10: 2273–2279

    Article  PubMed  CAS  Google Scholar 

  • Glazer H, Niemeyer JH, Blafes DM (1986) Neck neoplasms: MRI imaging part I. Initial evaluation. Radiology 160: 343–348

    PubMed  CAS  Google Scholar 

  • Greven KM, Williams D, Keyes JJ et al. (1994) Distinguishing tumor recurrence from irradiation sequelae with positron emission tomography in patients treated for larynx cancer. Int J Radiat Oncol Biol Phys 29: 841–845

    Article  PubMed  CAS  Google Scholar 

  • Greven KM, Williams D, Keyes JJ et al. (1994) Positron emission tomography of patients with head and neck carcinoma before and after high dose irradiation. Cancer 74: 1355–1359

    Article  PubMed  CAS  Google Scholar 

  • Griffeth LK, Dehdashti F, McGuire AH et al. (1992) PET evaluation of soft-tissue masses with fluorine-18 fluoro-2-deoxy-D-glu-cose. Radiology 182: 185–194

    PubMed  CAS  Google Scholar 

  • Gritzmann N (1992) Imaging procedures in diagnosis of laryngeal cancer with special reference to high resolution ultrasound. Wien Klin Wochenschr 104: 234–242

    PubMed  CAS  Google Scholar 

  • Haberkorn U, Strauss LG, Dimitrakopoulou A et al. (1993) Fluoro-deoxyglucose imaging of advanced head and neck cancer after chemotherapy. J Nucl Med 34: 12–17

    PubMed  CAS  Google Scholar 

  • Haberkorn U, Strauss LG, Reisser C et al. (1991) Glucose uptake, perfusion, and cell proliferation in head and neck tumors: relation of positron emission tomography to flow cytometry. J Nucl Med 32: 1548–1555

    PubMed  CAS  Google Scholar 

  • Hermanek P, Sobin LH (1992) TNM classification of malignant tumors, 4th ed., 2nd Revision. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jabour BA, Choi Y, Hoh CK et al. (1993) Extracranial head and neck: PET imaging with 2-[F-18]fluoro-2-deoxy-D-glucose and MR imaging correlation. Radiology 186: 27–35

    PubMed  CAS  Google Scholar 

  • Kau RJ, Alexiou C, Laubenbacher C, Ziegler S, Schwaiger M, Arnold W (1998) Positron-Emission-Tomography (PET) for the preoperative staging of head- and neck-tumours. Br J Cancer 77:12

    Google Scholar 

  • Kau RJ, Laubenbacher C, Saumweber D, Wagner-Manslau C, Schwaiger M, Arnold W (1994) Präoperatives Tumorstaging mittels Endoskopie, Magnetresonanztomographie, Somatosta-tinszintigraphie und Positronenemissionstomographie. Oto-rhinolaryngol Nova 4: 292–299

    Article  Google Scholar 

  • Kotwall C, Sako K, Razack MS et al. (1987) Metastatic patterns in squamous cell cancer of the head and neck. Am J Surg 154:439–442

    Article  PubMed  CAS  Google Scholar 

  • Lapela M, Grenman R, Kurki T et al. (1995) Head and neck cancer: detection of recurrence with PET and 2-[F-18]Fluoro-2-deoxy-D-glucose. Radiology 197 :205–211

    PubMed  CAS  Google Scholar 

  • Laubenbacher C, Saumweber D, Wagner-Manslau C, Kau RJ et al. (1995) Comparison of fluorine-18-fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamouscell carcinomas. J Nucl Med 36:1747–1757

    PubMed  CAS  Google Scholar 

  • Lenz M, Bongers H, Ozdoba C, Skalej M (1989) Klinische Wertigkeit der Computertomographie beim prätherapeutischen T-Staging von orofazialen Tumoren. RöFo 151: 138–144

    PubMed  CAS  Google Scholar 

  • Leskinen-Kallio S, Lindholm P, Lapela M, Joensuu H, Nordman E (1994) Imaging of head and neck tumors with positron emission tomography and (11 C)methionine. Int J Radiat Oncol Biol Phys 30: 1195–1199

    Article  PubMed  CAS  Google Scholar 

  • Lindholm P, Leskinen KS, Minn H et al. (1993) Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine in head and neck cancer. J Nucl Med 34: 1711–1716

    PubMed  CAS  Google Scholar 

  • Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H (1993) Influence of the blood glucose concentration on FDG uptake in cancer — a PET study. J Nucl Med 34:1–6

    PubMed  CAS  Google Scholar 

  • McGuirt WF (1982) Panendoscopy as a screening examination for simultaneous primary tumors in head and neck cancer: a prospective sequential study and review of the literature. Laryngoscope 92: 569–576

    Article  PubMed  CAS  Google Scholar 

  • McGuirt WF, Greven KM, Keyes JJ et al. (1995) Positron emission tomography in the evaluation of laryngeal carcinoma. Ann Otol Rhinol Laryngol 104: 274–278

    PubMed  CAS  Google Scholar 

  • Meyer JS, Friedman E, McCrate MM et al. (1983) Prediction of early course of breast carcinoma by thymidine labeling. Cancer 51: 1879–1886

    Article  PubMed  CAS  Google Scholar 

  • Minn H, Paul R, Ahonen A (1988) Evaluation of treatment response to radiotherapy in head and neck cancer with fluorine-18 fluorodeoxyglucose. J Nucl Med 29: 1521–1525

    PubMed  CAS  Google Scholar 

  • Minn H, Aitasalo K, Happonen RP (1993) Detection of cancer recurrence in irradiated mandible using positron emission tomography. Eur Arch Otorhinolaryngol 250: 312–315

    Article  PubMed  CAS  Google Scholar 

  • Minn H, Lapela M, Klemi PJ et al. (1997) Prediction of survival with Fluorine-18-Fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med 38: 1907–1911

    PubMed  CAS  Google Scholar 

  • Mukherji SK, Drane WE, Tart RP, Landau S, Mancuso AA (1994) Comparison of thallium-201 and F-18 FDG SPECT uptake in squamous cell carcinoma of the head and neck. Am J Neuroradiol 15: 1837–1842

    PubMed  CAS  Google Scholar 

  • Mukherji SK, Drane WE, Mancuso AA, Parsons JT, Mendenhall WM, Stringer S (1996) Occult primary tumors of the head and neck: detection with 2-[F-18] fluoro-2-deoxy-D-glucose SPECT. Radiology 199: 761–766

    PubMed  CAS  Google Scholar 

  • Okada J, Yoshikawa K, Itami M et al. (1992) Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med 33: 325–329

    PubMed  CAS  Google Scholar 

  • Quetz JU, Rohr S, Hoffmann P, Wustrow J, Mertens J (1991) B-im-age sonography in lymph node staging of the head and neck area. A comparison with palpation, computerized and magnetic resonance tomography. HNO 39: 61–63

    PubMed  CAS  Google Scholar 

  • Rege S, Maass A, Chaiken L, et al. (1994) Use of positron emission tomography with fluorodeoxyglucose in patients with extracranial head and neck cancers. Cancer 73: 3047–3058

    Article  PubMed  CAS  Google Scholar 

  • Rege SD, Chaiken L, Hoh CK et al. (1993) Change induced by radiation therapy in FDG uptake in normal and malignant structures of the head and neck: quantitation with PET. Radiology 189: 807–812

    PubMed  CAS  Google Scholar 

  • Reisser C, Haberkorn U, Dimitrakopoulou SA, Seifert E, Strauss LG (1995) Chemotherapeutic management of head and neck malignancies with positron emission tomography. Arch Otolaryngol Head Neck Surg 121: 272–276

    Article  PubMed  CAS  Google Scholar 

  • Report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Committee on Radionuclide Imaging) (1995) Task Force Report. Guidelines for Clinical Use of Cardiac Radionuclide Imaging. JACC 25: 521–527

    Article  Google Scholar 

  • Reske SN (1997) Konsensus-Onko-PET. Nuklearmedizin 36: 45–46

    Google Scholar 

  • Schipper JH, Schrader M, Arweiler D, Muller S, Sciuk J (1996) Positron emission tomography for primary tumor detection in lymph node metastases with unknown primary tumor. HNO 44: 254–257

    PubMed  CAS  Google Scholar 

  • Seifert E, Schadel A, Haberkorn U, Strauss LG (1992) Evaluating the effectiveness of chemotherapy in patients with head-neck tumors using positron emission tomography (PET scan). HNO 40: 90–93

    PubMed  CAS  Google Scholar 

  • Som PM (1992) Detection of metastasis in cervical lymph nodes: CT and MR criteria and differential diagnosis. Am J Roentgenol 156: 961–969

    Article  Google Scholar 

  • Spitz MR (1993) Epidemiology and risk factors for head and neck cancer. Sem Oncol 21: 281–288

    Google Scholar 

  • Steiner W (1993) Early detection of cancer in the upper aerodige-stive tract, Part I. HNO 41: 360–367

    PubMed  CAS  Google Scholar 

  • Steinkamp HJ, Maurer J, Heim T, Knobber D, Felix R (1993) Magnetic resonance tomography and computerized tomography in tumor staging of mouth and oropharyngeal cancer. HNO 41: 519–525

    PubMed  CAS  Google Scholar 

  • Wagner-Manslau C, Laubenbacher C, van de Flierdt E et al. (1992) MRT bei Tumoren im Kopf-Halsbereich. Röntgenpraxis 45:64–70

    PubMed  CAS  Google Scholar 

  • Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR (1993) Anatometabolic tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med 34: 1190–1197

    PubMed  CAS  Google Scholar 

  • Wong WL, Hussain K, Chevretton E et al. (1996) Validation and clinical application of computer-combined computed tomography and positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose head and neck images. Am J Surg 172:628–632

    Article  PubMed  CAS  Google Scholar 

  • Adams S, Baum R, Rink T, Schumm-Dräger PM, Usadel KH, Hör G (1998) Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med 25: 79–83

    Article  PubMed  CAS  Google Scholar 

  • Adler LP, Bloom AD (1993) Positron emission tomography of thyroid masses. Thyroid 3: 195–200

    Article  PubMed  CAS  Google Scholar 

  • Akslen LA (1993) Prognostic importance of histological grading in papillary carcinoma. Cancer 72: 2680–2685

    Article  PubMed  CAS  Google Scholar 

  • Balone HR, Fing-Bennett D, Stoffer SS (1992)99mTc-sestamibi uptake by recurrent Hürthle cell carcinoma of the thyroid. J Nucl Med 33: 1393–1395

    Google Scholar 

  • Baqai FH, Conti PS, Singer PA, Spencer CA, Wang CC, Nicoloff JT (1994) 18F-FDG-PET scanning — a diagnostic tool for detection of recurrent and metastatic differentiated thyroid cancers. Abstract, 68th annual meeting of the American Thyroid Association, Chicago, p 9

    Google Scholar 

  • Becker W, Spiegel W, Reiners C, Börner W (1986) Besonderheiten bei der Nachsorge des C-Zell-Karzinoms. Nuklearmediziner 9: 167–181

    Google Scholar 

  • Biersack HJ, Hotze A (1991) The clinician and the thyroid. Eur J Nucl Med 18: 761–778

    Article  PubMed  CAS  Google Scholar 

  • Briele B, Hotze AL, Kropp J et al. (1991) A comparison of 201T1 and 99mTc-MIBI in the follow-up of differentiated thyroid carcinoma. Nucl Med 30: 115–124

    CAS  Google Scholar 

  • Conti PS, Durski JM, Grafton ST, Singer PA (1996) PET imaging of locally recurrent and metastatic thyroid cancer. J Nucl Med 37: 135P

    Google Scholar 

  • Dadparvar S, Chevres A, Tulchinsky M, Krishna-Badrinath L, Khan AS, Slizofski WJ (1995) Clinical utility of technetium-99 m methoxisobutylisonitrile imaging in differentiated thyroid carcinoma: comparison with thallium-201 and iodine-131 Na scintigraphy, and serum thyroglobulin quantitation. Eur J Nucl Med 22: 1330–1338

    Article  PubMed  CAS  Google Scholar 

  • Dai G, Levy O, Carrasco N (1996) Cloning and characterization of the thyroid iodide transporter. Nature 379: 458–460

    Article  PubMed  CAS  Google Scholar 

  • Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H (1997) Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 24: 1342–1348

    Article  PubMed  CAS  Google Scholar 

  • Easton E, Coates D, McKusick A, Borchert R, Zuger J (1995) Concurrent FDG F-18 thyroid PET imaging in I-131 therapy patients. J Nucl Med 36: 197

    Google Scholar 

  • Feine U, Lietzenmayer R, Hanke JP, Held J, Wöhrle H, Müller-Schauenburg W (1996) Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 37: 1468–1472

    PubMed  CAS  Google Scholar 

  • Gallowitsch HJ, Kresnik E, Mikosch P, Pipam W, Gomez I, Lind P. (1996) Tc-99 m tetrofosmin scintigraphy: an alternative scintigraphic method for following up differentiated thyroid carcinoma — preliminary results. Nucl Med 35: 230–235

    CAS  Google Scholar 

  • Georgi P, Emrich D, Heidenreich P, Moser E, Reiners C, Schicha H (1992) Radiojodtherapie des differenzierten Schilddrüsenkarzinoms. Empfehlungen der Arbeitsgemeinschaft Therapie der Deutschen Gesellschaft für Nuklearmedizin. Nuklearmedizin 31: 151–153

    PubMed  CAS  Google Scholar 

  • Grünwald F, Menzel C, Bender H et al. (1998) Redifferentiation induced radioiodine uptake in thyroid cancer. J Nucl Med, im Druck

    Google Scholar 

  • Grünwald F, Menzel C, Bender H et al. (1997) Comparison of 18FDG-PET with 131Iodine and 99mTc-sestamibi scintigraphy in differentiated thyroid cancer. Thyroid 7: 327–335

    Article  PubMed  Google Scholar 

  • Grünwald F, Ruhlmann J, Ammari B, Knopp R, Hotze A, Biersack HJ (1988) Experience with a high-dose concept of differentiated metastatic thyroid cancer therapy. Nucl Med 27: 266–271

    Google Scholar 

  • Grünwald F, Schomburg A, Bender H et al. (1996) Fluorine-18 fluorodeoxyglucose positron emission tomography in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 23: 312–319

    Article  PubMed  Google Scholar 

  • Joensuu H, Ahonen A (1987) Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 28: 910–914

    PubMed  CAS  Google Scholar 

  • Konsensus — Onko-PET (1997) Ergebnisse der 2. interdisziplinären Konsensuskonferenz im Ulm, 12.9.97. Nuklearmedizin 36: 45–46

    Google Scholar 

  • Köster C, Ehrenheim C, Burchert W, Oetting G, Hundeshagen H (1996) F-18-FDG-PET, MRT und CT in der Nachsorge des medullären Schilddrüsenkarzinoms. Nuklearmedizin 35: A60

    Google Scholar 

  • Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N (1994) Microautoradiographic study for the differentiation of intratumoral macrophages, granulation tissues and cancer cells by the dynamics of fluorine-18-fluorodeoxyglucose uptake. J Nucl Med 35: 104–112

    PubMed  CAS  Google Scholar 

  • Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R, Tamahashi N (1995) Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 36: 484–492

    PubMed  CAS  Google Scholar 

  • Matthaei S, Trost B, Hamann A et al. (1995) Effect of in vivo thyroid hormone status on insuline signalling and GLUT1 and GLUT4 glucose transport systems in rat adipocytes. J Endocrinol 144: 347–357

    Article  PubMed  CAS  Google Scholar 

  • Menzel C, Grünwald F, Schomburg A, Palmedo H, Bender H, Späth G, Biersack HJ (1996) „High-dose” radioiodine therapy in advanced differentiated thyroid carcinoma. J Nucl Med 37:1496–1503

    PubMed  CAS  Google Scholar 

  • Messa C, Landoni C, Fridrich L, Lucignani G, Striano G, Riccabona G, Fazio F (1996) [F-18]FDG uptake in metastatic thyroid carcinoma prior and after I-131 therapy. Eur J Nucl Med 23: 1097

    Google Scholar 

  • Nemec J, Nyvltova O, Blazek Tb et al. (1996) Positive thyroid cancer scintigraphy using technetium-99 m methoxyisobutylisonitrile. Eur J Nucl Med 23: 69–71

    Article  PubMed  CAS  Google Scholar 

  • Pirro JP, Di Rocco RJ, Narra RK, Nunn AD (1994) Relationship between in vitro transendothelial permeability and in vivo single-pass brain extraction. J Nucl Med 35: 1514–1519

    PubMed  CAS  Google Scholar 

  • Piwinica-Worms D, Kronauge JF, Chiu ML (1990) Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium (I) in cultured chick myocardial cells, mitochondrial and plasma membrane potential dependence. Circulation 82:1826–1838

    Article  Google Scholar 

  • Platz D, Lübeck M, Beyer W, Grimm C, Beuthin-Baumann B, Gratz KF, Hotze LA (1995) Einsatz der [18F]-deoxyglucose-PET (FDG-PET) in der Nachsorge von Patienten mit differenziertem und medullärem Schilddrüsencarcinom. Nucl Med 34: 152

    Google Scholar 

  • Raue F (1997) Chemotherapie bei Schilddrüsenkarzinomen: Indikation und Ergebnisse. Onkologe 3: 55–58

    Article  Google Scholar 

  • Raue F, Frank-Raue K (1997) Gehört die Calcitoninbestimmung zur Abklärung der Struma nodosa? Dtsch Ärztebl 94: 855–856

    Google Scholar 

  • Reiners C (1993) Radiojodtherapie — Indikation, Durchführung und Risiken. Dtsch Ärztebl 90: 2217–2221

    Google Scholar 

  • Schober O, Heintz P, Schwarzrock R, Dralle H, Gratz KF, Döhring W, Hundeshagen H (1986) Schilddrüsen-Carcinom: Rezidiv-und Metastasensuche; Sonographie, Röntgen und CT. Nuklearmediziner 9: 139–148

    Google Scholar 

  • Simon D (1997) Von limitierter bis erweiterter Radikalität der Operation beim Schilddrüsenkarzinom. In: Roth et al. (eds) Klinische Onkologie. Huber, Bern: 347–357

    Google Scholar 

  • Simon D, Köhrle J, Schmutzler C, Mainz K, Reiners C, Röher HD (1996) Redifferentiation therapy of differentiated thyroid carcinoma with retinoic acid: basics and first clinical results. Exp Clin Endocrinol Diabetes 104 [Suppl 4]: 13–15

    Article  PubMed  CAS  Google Scholar 

  • Sisson JC, Ackermann RJ, Meyer MA (1993) Uptake of 18-fluoro-2-deoxy-D-glucose by thyroid cancer: implications for diagnosis and therapy. J Clin Endocrin Metabol 77: 1090–1094

    Article  CAS  Google Scholar 

  • Spiessl B, Beahrs OH, Hermanek P, Hutter RVP, Scheibe O, Sobin LH, Wagner G (1993) TNM-Atlas. Illustrierter Leitfaden zur TNM/pTNM-Klassifikation maligner Tumoren/International Union Against Cancer/Union Internationale Contre le Cancer (UICC). Springer, Berlin Heidelberg New York, p 58

    Google Scholar 

  • Tatsch K, Weber W, Rossmüller B, Langhammer H, Ziegler S, Hahn K, Schwaiger M (1996) F-18 FDG-PET in der Nachsorge von Schilddrüsencarcinom-Patienten mit hTg-Anstieg aber fehlender Iod- und Sestamibi-Speicherung. Nuklearmedizin 35: A34

    Google Scholar 

  • Yoshioka T, Takahashi H, Oikawa H et al. (1994) Accumulation of 2-deoxy-2[18F]fluoro-D-glucose in human cancer heterotransplanted in nude mice: comparison between histology and glycolytic status. J Nucl Med 35: 97–103

    PubMed  CAS  Google Scholar 

  • Abe Y, Matzuzawa T, Fujiwara T (1990) Clinical assessment of therapeutic effects on cancer using FDG and PET: preliminary study of lung cancer. Int J Radiat Oncol Bio Phys 19:1005–1010

    Article  CAS  Google Scholar 

  • Abdel-Dayem HM, Scott A, Macapinlac H, Larson S (1995) Tracer imaging in lung cancer. Eur J Nucl Med 22: 1355

    Article  Google Scholar 

  • Baum RP, Rust M, Adams S et al. (1996a) Wertigkeit der Fluor-18-Fluor-Deoxy-Glukose (FDG) Ganzkörper-PET zum präoperativen Staging von Bronchialkarzinomen und Einfluß auf das therapeutische Procedere. Nucl Med 35: A19

    Google Scholar 

  • Baum RP, Rust M, Adams S et al. (1996b) Influence on patients’ management by whole-body F-18 FDG PET for preoperative staging of non small cell lung cancer. J Nucl Med 37: 121P

    Google Scholar 

  • Bengel FM, Ziegler SI, Avril N, Weber W, Laubenbacher C, Schwaiger M (1997) Whole-body positron emission tomography in clinical oncology: comparison between attenuation-corrected and uncorrected images. Eur J Nucl Med 24: 1091–1098

    PubMed  CAS  Google Scholar 

  • Bleehan NM (1992) Current radiotherapy for non-small-cell lung cancer. Lung Cancer Ther 1: 1–3

    Google Scholar 

  • Bury T, Dowlati A, Paulus P, Hustinx R, Radermecker M, Rigo P (1996) Staging of non-small-cell lung cancer by whole-body fluorine-18 deoxyglucose positron emission tomography. Eur J Nucl Med 23: 204–106

    Article  PubMed  CAS  Google Scholar 

  • Castella J, Buj J, Puzo C, Antón PA, Burgués C (1995) Diagnosis and staging of bronchogenic carcinoma by transtracheal and trans-bronchial needle aspiration. Ann Oncol 6 [Suppl 3]: S21–S24

    Article  PubMed  Google Scholar 

  • Chin R, Ward R, Keyes JW et al. (1995) Mediastinal staging of non-small-cell lung cancer with positron emission tomography. Am J Respir Crit Care Med 152: 2090–2096

    Article  PubMed  Google Scholar 

  • Clorius HH, Lührs H (1990) Das Bronchialkarzinom — Nuklearmedizinische Diagnostik. Radiologe 30: 164–168

    PubMed  CAS  Google Scholar 

  • Crino L (1995) Chemotherapy on advanced non-small cell lung cancer. The experience of Italian Cooperative Groups. Ann Oncol 6 [Suppl 3]: S45–S47

    Article  PubMed  Google Scholar 

  • Cullen MH (1995) Adjuvant and neo-adjuvant chemotherapy of non-small cell carcinoma. Ann Oncol 6 [Suppl 1]: S43–S48

    Article  Google Scholar 

  • Dewan NA, Gupta NC, Redepenning LS, Phalen JJ, Frick MP (1993) Diagnostic efficacy of PET-FDG imaging in solitary pulmonary nodules. Potential role in evaluation and management. Chest 104/4: 997–1002

    Article  PubMed  CAS  Google Scholar 

  • Dewan NA, Reeb SD, Gupta NC, Gobar LS, Scott WJ: (1995) PET-FDG imaging and transthoracic needle lung aspiration biopsy in evaluation of pulmonary lesions. Chest 108: 441–446

    Article  PubMed  CAS  Google Scholar 

  • Duhaylongsod FG, Lowe VL, Patz EF, Vaugh AL, Coleman RE, Wolfe WG (1995) Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG PET). J Thorax Cardiovasc Surg 110: 130–140

    Article  CAS  Google Scholar 

  • Drings P, Voigt-Moykopf I (1988) Das nicht kleinzellige Bronchialkarzinom. Dtsch Ärztebl 85: B-1469-B-1473

    Google Scholar 

  • Flehinger BJ, Melamed MR (1994) Current status of screening for lung cancer. Chest Surg Clin North Am 4: 1–15

    CAS  Google Scholar 

  • Frank A, Lefkowitz D, Jaeger S (1995) Decision logic for retreatment of asymptomatic lung cancer recurrence based on positron emission tomography findings. Int J Radiat Oncol Biol Phys 32: 1495–1512

    Article  PubMed  CAS  Google Scholar 

  • Gambhir SS, Hoh CK, Phelps ME, Madar I, Maddahi J (1996) Decision tree sensitivity analysis for cost — effectiveness of FDG-PET in the staging and management of non-small-cell lung carcinoma. J Nucl Med 37:1428–1436

    PubMed  CAS  Google Scholar 

  • Ginsberg RJ (1991) Surgery of higher stage lung cancer. Chest Surg Clin North Am 1: 61–69

    Google Scholar 

  • Graham EA, Singer JJ (1933) Successfull removal of an entire lung for carcinoma of the bronchus. JAMA 101:1371

    Article  Google Scholar 

  • Guhlmann A, Storck M, Kotzerke J, Moog F, Sunder-Plassmann L, Reske SN (1997) Lymph node staging in non-small-cell lung cancer: evaluation by F-18 FDG positron emission tomography (PET). Thorax 52: 438–441

    Article  PubMed  CAS  Google Scholar 

  • Gupta NC, Frank AR, Dewan NA et al. (1992) Solitary pulmonary nodules: detection of malignancy with PET with 2-(F-18)-Fluoro-2-deoxy-D-glucose. Radiology 184: 441–444

    PubMed  CAS  Google Scholar 

  • Gupta NC, Dewan NA, Frank A (1993) Diagnostic evaluation of suspected solitary nodules (SPN) using PET FDG imaing. Chest 104:119 S

    Article  Google Scholar 

  • Gupta NC, Maloof J, Gunel E (1996) Probability of malignancy in solitary pulmonary nodules using fluorine-18-FDG and PET. J Nucl Med 37: 943–948

    PubMed  CAS  Google Scholar 

  • Hebert ME, Lowe VJ, Hoffmann JM, Patz EF, Anscher MS (1996) Positron emission tomography in the pretreatment evaluation and follow-up of non-small-cell lung cancer patients treated with radiotherapy: preliminary findings. Am J Clin Oncol 19: 416–421

    Article  PubMed  CAS  Google Scholar 

  • Hoh CK, Hawkins RA, Glaspy JA et al. (1993) Cancer detection with whole-body PET using 2-(F-18)-fluoro-2-deoxy-D-glucose. J Comput Assist Tomogr 17: 582–589

    Article  PubMed  CAS  Google Scholar 

  • Hoh CK, Schiepers C, Seltzer MA et al. (1997) PET in oncology. Will it replace the other modalities? Sem Nucl Med 27: 94–106

    Article  CAS  Google Scholar 

  • Hör G (1993) Positronen-Emissions-Tomographie (PET) — Von der Forschung zur Klinik. Dtsch Ärztebl 90: 1883–1892

    Google Scholar 

  • Hör G, Adams S, Baum RP, Hertel A, Adamietz IA, Böttcher HD, Kollath J (1994) Impact of single-photon-emission computed tomography and positron emission tomography on diagnostic oncology. Diagn Oncol 4: 297–321

    Google Scholar 

  • Hübner KF, Buonocore E, Singh SK, Gould HR, Cotten DW (1995) Characterization of chest masses by FDG positron emission tomography. Clin Nucl Med 20: 293–298

    Article  PubMed  Google Scholar 

  • Hübner KF, Buonocore E, Gould HR, Thie J, Smith GT, Stephens S, Dickey J (1996) Differentiating benign from malignant lung lesions using „quantitative” parameters of FDG PET images. Clin Nucl Med 21/12: 941–949

    Article  PubMed  Google Scholar 

  • Hughes JMB (1996) F-18-fluorodeoxyglucose PET scans in lung cancer. Thorax 51: S16-S22

    Article  PubMed  Google Scholar 

  • Ichiya Y, Kuwabara Y, Otsuka M et al. (1991) Assessment of response to cancer therapy using fluorine-18-fluorodeoxyglucose and positron emission tomography. J Nucl Med 32:1655–1660

    PubMed  CAS  Google Scholar 

  • Inoue T, Kim EE, Komaki R et al. (1995) Detection of recurrent or residual lung cancer with FDG-PET. J Nucl Med 36: 788–793

    PubMed  CAS  Google Scholar 

  • Karp JS, Muehllehner G, Qu H, Yan XH (1995) Singles transmission in volume-imaging PET with 137Cs source. Phys Med Biol 40: 929–944

    Article  PubMed  CAS  Google Scholar 

  • Knight SB, Delbeke D, Stewart JR, Sandler MP (1996) Evaluation of pulmonary lesions with FDG-PET. Chest 109: 982–988

    Article  PubMed  CAS  Google Scholar 

  • Knopp MV, Strauss LG, Haberkorn U (1990) PET of the thorax: assessment of its clinical application in tumor staging. Radiology 177: 174

    Google Scholar 

  • Knopp MV, Bischoff H, Ostertag H et al. (1992) Mediastinal lymph node mapping using F-18 deoxyglucose PET. J Nucl Med 33:828

    Google Scholar 

  • Knopp MV, Bischoff H, Oberdorfer F, van Kaick G (1992) Positronen Emissions Tomographie des Thorax. Derzeitiger klinischer Stellenwert. Radiologe 32: 290–295

    PubMed  CAS  Google Scholar 

  • Kubota K, Matsuzawa T, Fujiwara T et al. (1990) Differential diagnosis of lung tumors with positron emission tomography: a prospective study. J Nucl Med 31/12:1927–32

    PubMed  CAS  Google Scholar 

  • Kubota K, Yamada S, Ishiwata K, Ito M, Ido T (1992) Positron emission tomography for treatment evaluation and recurrence detection compared with CT in long-term follow-up cases of lung cancer. Clin Nucl Med 17: 877–881

    Article  PubMed  CAS  Google Scholar 

  • Kubota K, Yamada S, Ishiwata K et al. (1993) Evaluation of the treatment response of lung cancer with positron emission tomography and L-(methyl-C-n) methionine: a preliminary study. Eur J Nucl Med 20: 495–501

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Hong WK (1992) Prognostic factors in lung cancer. N Engl J Med 327: 47–48

    Article  PubMed  CAS  Google Scholar 

  • Lewis P, Griffin S, Marsden P, Gee T, Nunan T, Malsey M, Dussek J (1994) Whole-body F-18 fluorodeoxyglucose positron emission tomography in preoperative evaluation of lung cancer. Lancet 344: 1265–1266

    Article  PubMed  CAS  Google Scholar 

  • Lowe VJ, Hoffman JM, De Long DM, Patz EF, Coleman RE (1994) Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities. J Nucl Med 35/11: 1771–1776

    PubMed  CAS  Google Scholar 

  • Lowe VJ, De Long DM, Hoffman JM, Coleman RE (1995) Optimum scanning protocol for FDG-PET evaluation of pulmonary malignancy. J Nucl Med 36/5: 883–887

    PubMed  CAS  Google Scholar 

  • Lowe VJ, Duhaylongsod FG, Patz EF, Delong DM, Hoffmann JM, Wolfe WG, Coleman RE (1997) Pulmonary abnormalities and PET data analysis: A retrospective study. Radiology 202: 435–439

    PubMed  CAS  Google Scholar 

  • Lowe VJ, Fletcher JW, Gobar L et al. (1998) Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol 16: 1075–1084

    PubMed  CAS  Google Scholar 

  • Maul FD, Müller D, Lorenz W, Hör G (1980) Erste Erfahrungen mit Tl-201 in der szintigraphischen Diagnostik von Bronchialtumoren. Nuklearmediziner 4: 335–339

    Google Scholar 

  • Morgan WE (1995) The surgery of lung cancer. Ann Oncol 6 [Suppl 1]: S33-S36

    Article  Google Scholar 

  • Mountain CF (1986) A new international staging system for lung cancer. Chest 89 [Suppl 4]: 225S–233S

    PubMed  CAS  Google Scholar 

  • Mountain CF (1997) Revisions in the international system for staging lung cancer. Chest 111: 1710–1717

    Article  PubMed  CAS  Google Scholar 

  • Naruke T, Suemasu K, Ishikawa S (1978) Lymph node mapping and curability at various levels of metastasis in resected lung cancer. J Thor Cardiovasc Surg 76: 832–839

    CAS  Google Scholar 

  • Nolop KB, Rhodes CG, Brudin LH, Peaney RP, Krausz T, Jones T, Hughes JMB (1987) Glucose utilization in vivo by human pulmonary neoplasms. Cancer 60: 2682–2689

    Article  PubMed  CAS  Google Scholar 

  • Patz EF Jr, Lowe VJ, Hoffman JM, Paine SS, Burrowes P, Coleman RE, Goodman PC (1993) Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology 188/2: 487–490

    PubMed  Google Scholar 

  • Patz EF, Lowe VJ, Hoffmann JM, Paine SS, Harries LK, Goodman PC (1994) Persistent or recurrent bronchogenic carcinoma: detection with PET and 2-(F-18)-2-deoxy-D-glucose. Radiology 191: 379–382

    PubMed  Google Scholar 

  • Quint LE, Francis IR, Wahl RL, Gross BH, Glazer GM (1995) Preoperative staging of non-small-cell carcinoma of the lung: imaging methods. AJR 164: 1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Ramanna L (1986) Interest growing in new aerosol imaging methods. Diagn Imag Int 3/4: 3437

    Google Scholar 

  • Rege SD, Hoh CK, Glaspy JA et al. (1993) Imaging of pulmonary mass lesions with whole-body positron emission tomography and fluorodeoxyglucose. Cancer 72: 82–90

    Article  PubMed  CAS  Google Scholar 

  • Salathe M, Soler M, Bolliger CT et al. (1992) Transbronchial needle aspiration in routine fiberoptic bronchoscopy. Respiration 59: 5–8

    PubMed  CAS  Google Scholar 

  • Sasaki M, Ichiya Y, Kuwabara Y et al. (1996) The usefulness of FDG positron emission tomography for the detection of mediastinal lymph node metastases in patients with non-small-cell lung cancer: a comparative study with x-ray computed tomography. Eur J Nucl Med 23: 741–747

    Article  PubMed  CAS  Google Scholar 

  • Sazon DA, Santiago SM, Soo Hoo GW (1996) FDG-PET in the detection and staging of lung cancer. Am J Respir Crit Care Med 153: 417–421

    Article  PubMed  CAS  Google Scholar 

  • Schiepers C (1997) Role of positron emission tomography in the staging of lung cancer. Lung Cancer 17 [Suppl 1]: S29–S35

    Article  PubMed  Google Scholar 

  • Scott WJ, Schwabe JL, Gupta NC, Dewan NA, Reeb SD, Sugimoto JT (1994) Positron emission tomography of lung tumors and mediastinal lymph nodes using F-18 fluorodeoxyglucose. Ann Thorac Surg 58: 698–703

    Article  PubMed  CAS  Google Scholar 

  • Scott WJ, Gobar LS, Hauser LG, Sunderland JJ, Dewan NA, Sugimoto JT (1995) Detection of scalene lymph node metastases from lung cancer. Chest 107: 1174–1176

    Article  PubMed  CAS  Google Scholar 

  • Shreve PD, Steventon RS, Deters EC, Kison PV, Gross MD, Wahl RL (1998) Oncologic diagnosis with 2-[fluorine-18] fluoro-2-deoxy-D-glucose imaging: dual-head coincidence gamma camera versus positron emission tomographic scanner. Radiology 207: 431–437

    PubMed  CAS  Google Scholar 

  • Siegelman SS, Khouri NF, Leo FP, Fishman EK, Braverman RM, Zerhouni EA (1986) Solitary pulmonary nodules : CT assessment. Radiology 160: 307–312

    PubMed  CAS  Google Scholar 

  • Steinert HC, Hauser M, Allemann F, Engel H, Berthold T, von Schulthess GK, Weder W (1997) Non-small cell lung cancer: nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling. Radiology 202: 441–446

    PubMed  CAS  Google Scholar 

  • Steinert HC, von Schulthess GK, Wedder W (1998) Effektivität der Ganzkörper-PET mit FDG beim Staging des nicht-kleinzelligen Bronchuskarzinoms bei 100 Patienten. Nuklearmedizin 37: A37

    Google Scholar 

  • Strauss LG (1996): Die Positronen-Emissions-Tomographie in der onkologischen Therapie- kontrolle. Nuklearmediziner 19: 281–285

    Google Scholar 

  • Thatcher N, Ranson M, Lee SM, Niven R, Anderson H (1995) Chemotherapy in non-small cell lung cancer. Ann Oncol 6 [Suppl 1]: S83–S95

    Article  Google Scholar 

  • Toomes H, Delphendal A, Manke HG, Vogt-Moykopf I (1981) Der solitäre Lungenrundherd. Dtsch Ärztebl 37: 1717–1722

    Google Scholar 

  • Valk PE, Pounds TR, Tesar RD, Hopkins DM, White RI, Orringer MB (1994) Staging of mediastinal non-small-cell lung cancer with FDG-PET, CT, and fusion images: preliminary prospective evaluation. Radiology 191: 371–377

    Google Scholar 

  • Valk PE, Pounds TR, Tesar RD, Hopkins DM, Haseman MK (1996) Cost-effectiveness of PET imaging in clinical oncology. Nucl Med Biol 23: 737–743

    Article  PubMed  CAS  Google Scholar 

  • Vansteenkiste JF, Stroobants SG, De Leyn PR, Dupont PJ, Verschakelen JA, Nackaerts KL, Mortelmans LA and the Leuven Lung Cancer Study Group (1997) Mediastinal lymph node staging with FDG-PET scan in patient with potentially operable non-small-cell lung cancer. A prospective analysis of 50 cases. Chest 112: 1480–1486

    Article  PubMed  CAS  Google Scholar 

  • Wahl RL, Quint LE, Greenough RL, Meyer CR, White RI, Orringer MB (1994) Staging of mediastinal non-small cell lung cancer with FDG-PET, CT, and fusion images: preliminary prospective evaluation. Radiology 191: 371–377

    PubMed  CAS  Google Scholar 

  • Wang, KP, Kelly SJ, Britt JE (1988) Percutaneous needle aspiration biopsy of chest lesions. New instrument and new technique. Chest 93: 993–997

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Maurea S, Mainolfi C et al. (1997) Tc-99m-MIBI scintigraphy in patients with lung cancer, comparison with CT and fluorine-18 FDG PET imaging. Clin Nucl Med 22: 243–249

    Article  PubMed  CAS  Google Scholar 

  • Webb WR, Gatsonis C, Zeerhouni EA (1991) CT and MR imaging in staging of non-small cell bronchogenic carcinoma: report of the Radiological Diagnostic Oncology Group. Radiology 178: 705–713

    PubMed  CAS  Google Scholar 

  • Weber W, Voll B, Treumann T, Watzlowik P, Präuer H, Schwaiger M (1998) Positronen-Emissions-Tomographie mit C-11-Me-thionin und F-18-Fluordeoxyglukose in der Diagnostik des Bronchialkarzinoms. Nuklearmedizin 37: A37

    Google Scholar 

  • Whitehouse JMA (1994) Management of lung cancer. Standing Medical Advisory Comittee

    Google Scholar 

  • Winnig AJ, Mclvor J, Seed WA et al. (1986) Interpretation of negative results in fine needle aspiration of discrete pulmonary lesions. Thorax 41: 875–879

    Article  Google Scholar 

  • Zasadny KR, Kison PV, Quint LE, Wahl RL (1996) Untreated lung cancer: quantification of systematic distortion of tumor size and shape on non-attenuation-corrected 2-(fluorine-18) fluoro-2-deoxy-D-glucose PET scans. Radiology 201: 873–876

    PubMed  CAS  Google Scholar 

  • Adler LP, Crowe JP, al Kaisi NK, Sunshine JL (1993) Evaluation of breast masses and axillary lymph nodes with [F-18] 2-deoxy-2-fluoro-D-glucose PET. Radiology 187: 743–750

    PubMed  CAS  Google Scholar 

  • Avril N, Dose J, Janicke F et al. (1996a) Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro2-deoxy-D-glucose. J Natl Cancer Inst 88: 1204–1209

    Article  PubMed  CAS  Google Scholar 

  • Avril N, Dose J, Janicke F et al. (1996b) Metabolic characterization of breast tumors with positron emission tomography using F-18 fluorodeoxyglucose. J Clin Oncol 14: 1848–1857

    PubMed  CAS  Google Scholar 

  • Bassa P, Kim EE, Inoue T et al. (1996) Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 37: 931–938

    PubMed  CAS  Google Scholar 

  • Bastert G, Costa SD (1995) Therapie des Mammakarzinoms. In: Zeller WJ, zur Hausen H (Hrsg) Onkologie. Grundlagen, Diagnostik, Therapie, Entwicklungen. Ecomed, Landsberg

    Google Scholar 

  • Beaney RP, Lammertsma AA, Jones T, McKenzie CG, Hainan KE (1984) Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma. Lancet 1: 131–134

    Article  PubMed  CAS  Google Scholar 

  • Bender H, Kirst J, Palmedo H, Schomurg A, Wagner U, Ruhlmann J, Biersack HJ (1997) Value of 18F-fluorodeoxyglucose positron emission tomography in the staging of recurrent breast carcinoma. Anticancer Res 17: 1687–1692

    PubMed  CAS  Google Scholar 

  • Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL (1951) Intratumoral distribution of tritiated fluoro-deoxyglucosein breast carcinoma: 1. are inflammatory cells important. J Nucl Med 36: 1854–1861

    Google Scholar 

  • Brown RS, Leung Y, Fisher SJ, Frey KA, Ethier SP, Wahl RL (1996) Intratumoral distribution of tritiated-FDG in breast carcino-mae-correlation between Glut-1 expression and FDG uptake. J Nucl Med 37: 1042–1047

    PubMed  CAS  Google Scholar 

  • Bruce DM, Evans NT, Heys SD et al. (1995) Positron emission tomography: 2-deoxy-2 F18-fluoro-D-Glucose uptake in locally advnaced breast cancers. Eur J Surg Oncol 21: 280–283

    Article  PubMed  CAS  Google Scholar 

  • Chaiken L, Rege S, Hoh C et al. (1993) Positron emission tomography with fluorodeoxyglucose to evaluate tumor response and control after radiation therapy. Int J Radiat Oncol Biol Phys 27: 455–464

    Article  PubMed  CAS  Google Scholar 

  • Cherry SR, Carnochan P, Babich JW, Serafini F, Rowell NP, Watson IA (1990) Quantitative in vivo measurements of tumor perfusion using rubidium-81 and positron emission tomography. J Nucl Med 31: 1307–1315

    PubMed  CAS  Google Scholar 

  • Crowe JP Jr, Adler LP, Shenk RR, Sunshine J (1994) Positron emission tomography and breast masses: comparison with clinical, mammographic, and pathological findings. Ann Surg Oncol 1: 132–140

    Article  PubMed  Google Scholar 

  • Dedashti F, McGuire AH, Van Brocklin HF et al. (1991) Assessment of 21-[18F] fluoro-16 alphaethyl-19-norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas. J Nucl Med 32: 1532–1537

    Google Scholar 

  • Dedashti F, Mort-Imer JE, Siegel BA et al. (1995) Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med 36: 1766–1774

    Google Scholar 

  • Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of 2-Deoxy-2-(18F) fluoro-D-glucose. J Nucl Med 19:1154–1161

    PubMed  CAS  Google Scholar 

  • Gilles R, Guinebretiere JM, Lucidarme O et al. (1994) Nonpalpable breast tumors: diagnosis with contrastenhanced substraction dynamic MR imaging. Radiology 191: 625–631

    PubMed  CAS  Google Scholar 

  • Henderson IC, Harris JR, Kinne DW, Hellman S (1989) Cancer of the breast. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer. Principles and practice of oncology. Lippincott, Philadelphia, p 925X

    Google Scholar 

  • Herman G, Janus CL, Schwarz IS, Kriviski S, Bier J, Rabinowitz G (1987) Non-palpable breast lesions — accuracy of prebiopsy mammographic diagnosis. Radiology 65: 323–326

    Google Scholar 

  • Hoh CK, Hawkins RA, Glaspy JA et al. (1993) Cancer detection with whole-body PET using 2-(18F) fluor-2-deoxy-D-glucose. J. Comput Assist Tomogr 17: 582–589

    Article  PubMed  CAS  Google Scholar 

  • Holle LH, Trampert L, Lung Kurt S, Villena Heinsen CE, Puschel W, Schmidt S, Oberhausen E (1996) Investigations of breast tumors with fluorine-18-fluorodeoxyglucose and SPECT. J Nucl Med 37: 615–622

    PubMed  CAS  Google Scholar 

  • Huovinen R, Leskinen Kallio S, Nagren K, Lehikoinen P, Ruotsalainen U, Teras M (1993) Carbon-11-methionine and PET in evaluation of treatment response of breast cancer. Br J Cancer 67: 787–791

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Kim EE, Wong FC et al. (1996) Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine PET in detection of malignant tumors. J Nucl Med 37: 1472–1476

    PubMed  CAS  Google Scholar 

  • Jacobs M, Mantil J, Peterson C et al. (1995) FDG-PET in breast cancer. J Nucl Med 35: 142P

    Google Scholar 

  • Jackson VP (1990) The role of ultrasound in breast imaging. Radiology 177: 305–311

    PubMed  CAS  Google Scholar 

  • Jansson T, Westlin JE, Ahlstrom H, Lilja A, Langstrom B, Bergh J (1995) Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer — a method for early therapy evaluation? J Clin Oncol 13: 1470–1477

    PubMed  CAS  Google Scholar 

  • Kallinowski F, Schlenger KH, Runkel S, Kloes M; Stohrer M; Okunieff P; Vaupel P (1989a) Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res 49: 3759–3764

    PubMed  CAS  Google Scholar 

  • Kallinowski F, Schlenger KH, Kloes M, Stohrer M, Vaupel P (1989b) Tmor blood flow: the principle modulator of oxidative and glycolytic metabolism, and of the metabolic milieu of human tumor xenografts in vivo. Int J Cancer 44: 266–272

    Article  PubMed  CAS  Google Scholar 

  • Kubota K, Matsuzawa T, Amemiya A et al. (1989) Imaging of breast cancer with [18F]fluorodeoxyglucose and positron emission tomography. J Comput Assist Tomogr 13: 1097–1098

    PubMed  CAS  Google Scholar 

  • Leskinen Kallio S, Nagren K, Lehikoinen P, Ruotsalainen U, Joensuu H (1991) Uptake of l1C-methionine in breast cancer studied by PET. An assaciation with the size of S-phase fraction. Br J Cancer 64: 1121–1124

    Article  Google Scholar 

  • Lindholm P, Min E, Leskinen Kallio S, Bergmann J, Ruotsalainen, Joensuu H (1993) Influence of the blood glucose concentration on FDG uptake in cancer — a PET study. J Nucl Med 34: 1–6

    PubMed  CAS  Google Scholar 

  • McGuire AH, Dedashti F, Siegel BA et al. (1991) Positron tomographic assessment of 16 alpha [18F] fluoro-17 beta-estradiol uptake in metastatic breast-carcinoma. J Nucl Med 32:1526–1531

    PubMed  CAS  Google Scholar 

  • Minn H, Soini I (1989) [18F] fluorodeoxyglucose scintigraphy in diagnosis and follow up of treatment in advanced breast cancer. Eur J Nucl Med 15: 61–66

    Article  PubMed  CAS  Google Scholar 

  • Minn H, Leskinen Kallio S, Lindholm P, Bergmann J, Ruotsalainen U, Teras M, Haaparanta M (1993) (18F) fluorodeoxyglucose uptake in tumors: kinetic vs. steady-state methods with reference to plasma insulin. J Compu Assist Tomogr 17: 115–123

    Article  CAS  Google Scholar 

  • Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH, Katzenellenbogen JA (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169: 45–48

    PubMed  CAS  Google Scholar 

  • Moore MP, Kinne DW (1996) Is axillary lymph node dissection necessary in the routine management of breast cancer? Yes. Important Adv Oncol 19: 245–250

    Google Scholar 

  • Nieweg OE, Kim EE, Wong WH, Broussard WF, Singletary SE, Hor-tobagyi GN, Tilbury RS (1993) Positron emission tomography with fluorine-18-deoxyglucose in the detection and staging of breast cancer. Cancer 71: 3920–3925

    Article  PubMed  CAS  Google Scholar 

  • Palmedo H, Bender H, Grünwald F, Mallmann P, Zamora PO, Krebs D, Biersack HJ (1997) Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and technetium-99 m methoxyisobutylisonitrile scintimammography in the detection of breast tumors. J Nucl Med, in press

    Google Scholar 

  • Phelps ME, Mazziotta JC, Schelbert HR (eds) (1986) Positron emission tomography and autoradiography. In: Principles and applications for the brain and heart. Raven, New York

    Google Scholar 

  • Scheidhauer K, Scharl A, Pietrzyk U, Wagner R, Gohring UJ, Schomacker K, Schicha H (1996) Qualitative [18F] FDG positron emission tomography in primary breast cancer: clinical relevance and practicability. Eur J Nucl Med 23: 618–623

    Article  PubMed  CAS  Google Scholar 

  • Schelstraete K, Simons M, Deman J et al. (1982) Uptake of 13N-ammonia by human tumors as studied by positron emission tomography. Br J Radiol 55: 797–804

    Article  PubMed  CAS  Google Scholar 

  • Thomas DG, Duthie NL (1968) Use of 2-deoxy-D-glucose to test for the completeness of surgical vagotomy. Gut 9: 125–128

    Article  PubMed  CAS  Google Scholar 

  • Utech CI, Young CS, Winter PF (1996) Prospective evaluation of fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 23: 1588–1593

    Article  PubMed  CAS  Google Scholar 

  • Wahl RL, Kaminski MS, Ethier SP, Hutchins GD (1990) The potential of 2-deoxy-2-[i8F]fluoro-D-glucose (FDG) for the detection of tumor involvement in lymph nodes. J Nucl Med 3/1:1831–1835

    Google Scholar 

  • Wahl RL, Cody R, Hutchins G, Mudgett E (1991a) Positron emission tomographic scanning of primary and metastatic breast carcinoma with the radiolabeled glucose analogue 2-deoxy-2-[18F] fluoro-D-glucose [letter]. N Engl J Med 324: 200

    PubMed  CAS  Google Scholar 

  • Wahl RL, Cody RL, Hutchins GD, Mudgett E (1991b) Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analogue 2-[F-i8]-fluoro-2-deoxy-D-glucose. Radiology 179: 765–770

    PubMed  CAS  Google Scholar 

  • Wahl RL, Henry CA, Ethier SP (1992) Serum glucose: effect on tumor and normal tissue accumulation of 2F -[18] fluoro-2-de-oxy-D-glucose in rodents with mammary carcinoma. Radiology 183: 643–647

    PubMed  CAS  Google Scholar 

  • Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R (1993) Metabolic monitoring of breast cancer chemohormono-therapy using positron emission tomography: initial evaluation. J Clin Oncol 11: 2101–2111

    PubMed  CAS  Google Scholar 

  • Wahl RL, Helvie MA, Chang AE, Andersson I (1994) Detection of breast cancer in women after augmentation mammoplasty using fluorine-18-fluorodeoxyglucose-PET. J Nucl Med 35: 372–875

    Google Scholar 

  • Warburg O (1930) The metabolism of tumours. Constabel, London

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  • Wilson CB, Lammertsma AA, McKenzie CG, Sikora K, Jones T (1992) Measurements of blood flow and exchanging water space in breast tumors using positron emission, tomography: a rapid and noninvasive dynamic method. Cancer Res 52:1592–1597

    PubMed  CAS  Google Scholar 

  • Yang D, Kuang LR, Cherif A et al. (z) Synthesis of 18F-fluoroalanine and 18F-fluorotamoxifen for imaging breast tumors.z

    Google Scholar 

  • Yang DJ, Li C, Kuang LR et al. (1994) Imaging, biodistribution and therapy potential of halogenated tamoxifen analogues. Life Sci 55: 53–67

    Article  PubMed  CAS  Google Scholar 

  • Zincke M, Avril N, Dose J et al. (1997) PET imaging of breast cancer: comparison between FDG uptkae vs. histology and expression of the glucose transporter protein GLUT-1. J Nucl Med 38:250 A

    Google Scholar 

  • Bares R, Klever P, Hauptmann S et al. (1994) F-18 fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology 192: 79–86

    PubMed  CAS  Google Scholar 

  • Beger HG, Birk D, Bodner E, Fritsch A, Gall FP, Trede M (1995) 1st die histologische Sicherung des Pankreaskarzinoms Voraussetzung für die Pankreasresektion? Langenbecks Arch Chir 380/1: 62–66

    Article  PubMed  CAS  Google Scholar 

  • Diederichs CG, Staib L, Glatting G, Vogel J, Brambs H-J, Beger HG, Reske SN (1997) Differentiation of malignant and benign pancreatic disease. J Nucl Med 38/5: 257P (abstr)

    Google Scholar 

  • Diederichs CG, Staib L, Glatting G, Beger HG, Reske SN (1998a) FDG-PET: elevated plasma glucose reduces both uptake and detection rate of pancreatic malignancies. J Nucl Med, im Druck

    Google Scholar 

  • Diederichs CG, Sokiranski R, Pauls S, Schwarz M, Guhlmann CA, Glatting G (1998b) FDG-PET von pankreatischen Tumoren: Transmission obligat? Nuklearmedizin, im Druck

    Google Scholar 

  • Diederichs CG, Sokiranski R, Pauls S et al. (1998c) Prospective comparison of FDG-PET of pancreatic tumors with high end Spiral-CT and MRI. J Nucl Med (abstr), im Druck

    Google Scholar 

  • Diederichs CG, Pauls S, Schwarz M, (1998d) Dreiphasiges Spiral-CT und Multisequenz MRT von Pankreaskopf-Tumoren: Wozu noch FDG-PET? Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr (abstr), im Druck

    Google Scholar 

  • Friess H, Langhans J, Ebert M, Beger HG, Stollfuss J, Reske SN, Büchler MW (1995) Diagnosis of pancreatic cancer by 2[18F]-fluoro-2-deoxy-D-glucose positron emission tomography. Gut 36/5: 771–777

    Article  PubMed  CAS  Google Scholar 

  • Fröhlich A, Diederichs CG, Staib L, Beger HG, Reske SN (1997) FDG-PET in the detection of pancreatic cancer liver metastases. J Nucl Med 38/5: 145P (abstr)

    Google Scholar 

  • Higashi T, Tamaki N, Torizuka T et al. (1995) Differentiation of malignant from benign pancreatic tumors by FDG-PET: comparison with CT, US, and endoscopic ultrasonography. J Nucl Med 36: 224P (abstr)

    Google Scholar 

  • Ho CL, Dehdashti F, Griffeth LK, Buse PE, Balfe DM, Siegel BA (1996) FDG-PET evaluation of indeterminate pancreatic masses. J Comput Assist Tomogr 20/3: 363–369

    Article  PubMed  CAS  Google Scholar 

  • Inokuma T, Tamaki N, Torizuka T et al. (1995) Value of fluorine-18-fluorodeoxyglucose and thallium-201 in the detection of pancreatic cancer. J Nucl Med 36/2: 229–235

    PubMed  CAS  Google Scholar 

  • Kato T, Fukatsu H, Ito K, et al. (1995) Fluorodeoxyglucose positron emission tomography in pancreatic cancer: a unsolved problem. Eur J Nucl Med 22: 32–39

    Article  PubMed  CAS  Google Scholar 

  • Langen KH, Braun U, Kops ER, Herzog H, Kuwert T, Nebeling B, Feinendegen LE (1993) The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 34: 355–359

    PubMed  CAS  Google Scholar 

  • Ozaki H, Hojo K, Kato H, Kinoshita T, Egawa S, Kishi K (1988) Multidisciplinary treatment for resectable pancreatic cancer. Int J Pancreatol 3: 249–260

    PubMed  CAS  Google Scholar 

  • Reske SN, Grillenberger KG, Glatting G, Port M, Hildebrandt M, Gansauge F, Beger H-G (1997) Overexpression of glucose trans-porter-1 and increased FDG-uptake in pancreatic carcinoma. J Nucl Med 38: 1344–1347

    PubMed  CAS  Google Scholar 

  • Stollfuss JC, Glatting G, Friess H, Kocher F, Beger HG, Reske SN (1995) 2-(fluorine-18)-fluoro-2-deoxy-D-glucose PET in detection of pancreatic cancer: value of quantitative image interpretation [see comments]. Radiology 195/2: 339–344

    PubMed  CAS  Google Scholar 

  • Teusch M, Buell U (1996) Classification of pancreatic tumors by FDG-PET: comparison of visual and quantitative image interpretation by ROC-analysis. J Nucl Med 37/5: 140P (abstr)

    Google Scholar 

  • Zimny M, Bares R, Faß J et al. (1997) Fluorine-18 fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases. Eur J Nucl Med 24: 678–682

    PubMed  CAS  Google Scholar 

  • Falk PM, Gupta NC, Thorson AG et al. (1994) Positron emission tomography for preoperative staging of colorectal carcinoma. Dis Colon Rectum 37: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Gupta NC, Falk PM, Frank AL, Thorson AM, Frick MP, Bowman B (1993) Pre-operative staging of coloretal carcinoma using positron tomography. Nebr Med J 78/2: 30–35

    PubMed  CAS  Google Scholar 

  • Haberkorn U, Strauss LG, Dimitrakopoulou A (1991). PET Studies of FDG metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 32: 1485–1490

    PubMed  CAS  Google Scholar 

  • Ito K, Kato T, Tadokoro M (1992) Recurrent rectal cancer and scar: differentiation with PET and MR imaging. Radiology 182: 549–552

    PubMed  CAS  Google Scholar 

  • Mayer RJ Tumoren des Dünn- und Dickdarms (1995) In: Schmailzl KJG (Hrsg) Harrisons Innere Medizin Bd 2,13. Aufl. Blackwell Wiss. Verlag, S 1669–1676

    Google Scholar 

  • Miraldi F, Vesselle H, Faulhaber PF et al. (1989) Elimination of artifactual accumulation of FDG in PET imaging of colorectal cancer. Clin Nucl Med 23: 3–7

    Article  Google Scholar 

  • Ruhlmann J, Kozak B, Biersack HJ (1996). Sensitivität des PET beim frühen Nachweis des kolorektalen Karzinoms. Tumor Diagn Ther 17: 93–96

    Google Scholar 

  • Ruhlmann J, Schomburg A, Bender H, Oehr P et al. (1997) Dis Colon Rectum 40/10: 1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Schiepers C, Penninckx F, De Vadder N et al. (1995). Contribution of PET in the diagnosis of recurrent colorectal cancer: comparison with conventional imaging. Eur J Surg Oncol 21: 517–522

    Article  PubMed  CAS  Google Scholar 

  • Strauss LG, Corius JH, Schlag P (1989). Recurrence of colorectal tumors: PET evaluation. Radiology 170: 329–332

    PubMed  CAS  Google Scholar 

  • Thoeni RF (1997) Colorectal cancer. Radiologic staging. Radiol Clin North Am 35: 457–485

    PubMed  CAS  Google Scholar 

  • Valk PE, Pounds TR, Tesar RD, Hopkins DM, Haseman MK (1996). Cost-effectiveness of PET imaging in clinical oncology. Nucl Med Biol 23: 737–743

    Article  PubMed  CAS  Google Scholar 

  • Vitola JV, Delbeke D, Sandler MP et al. (1996). Am J Surg 171: 21–26

    Article  PubMed  CAS  Google Scholar 

  • Barzen G, Cordes M, Langer M, Friedmann W, Mayr AC, Felix R (1990) Wertigkeit der Radioimmunszintigraphie im Vergleich zur CT in der Diagnostik und Verlaufskontrolle des primären Ovarialkarzinoms. Fortschr Röntgenstr 153: 85–91

    Article  CAS  Google Scholar 

  • Bischof-Delaloyle A, Wahl R (1995) How high a level of FDG abdominal activity is considered normal? J Nucl Med 36: 106 (abstr)

    Google Scholar 

  • Brooks SE (1994) Preoperative evaluation of patients with suspected ovarian cancer. Gynecol Oncol 55: 80–90

    Article  Google Scholar 

  • Buist MR, Golding RP, Burger CW et al. (1994) Comparative evaluation of diagnositc modalities in ovarian carcinoma with emphasis on CT and MR. Gynecol Oncol 52: 191–198

    Article  PubMed  CAS  Google Scholar 

  • Burghardt E, Girardi F, Lahousen M et al. (1991) Patterns of pelvic and paraaortic lymphnode involvement in ovarian cancer. Gynecol Oncol 40: 103–106

    Article  PubMed  CAS  Google Scholar 

  • Buy JN, Ghossain MA, Sciot C et al. (1991) Epithelial tumors of the ovary: CT findings and correlation with US. Radiology 178: 811–818

    PubMed  CAS  Google Scholar 

  • Cannistra SA (1993) Cancer of the ovary. N Engl J Med 329: 1550–1559

    Article  PubMed  CAS  Google Scholar 

  • Carrasquillo JA, Sugarbaker P, Colcher D et al. (1988) Peritoneal carcinomatosis: imaging with intraperitoneal injection of I-131-labeled B72.3 monoclonal antibody. Radiology 167: 35–40

    PubMed  CAS  Google Scholar 

  • Casey MJ, Gupta NC, Muths CK (1994) Experience with positron emission tomography (PET) scans in patients with ovarian cancer. Gynecol Oncol 53: 331–338

    Article  PubMed  CAS  Google Scholar 

  • Chou C, Chang C, Yao B, Kuo H (z) Color Doppler ultrasonography and serum Ca 125 in the differentiation of benign and malignant ovarian tumors. J Clin Ultrasound 22: 491–496

    Google Scholar 

  • DePriest PD, Gallion HH, Pavlik EJ, Kryscio RJ, Nagell JR (1997) Transvaginal sonography as a screening method for the detection of early ovarian cancer. Gynecol Oncol 65: 408–414

    Article  PubMed  CAS  Google Scholar 

  • Forstner R, Hricak H, Icchipinti KA, Powell CB, Frankel SD, Stern JL (1995) Ovarian cancer: staging with CT and MR imaging. Radiology 197: 619–626

    PubMed  CAS  Google Scholar 

  • Ghossain MA, Buy JN, Lignères C et al. (1991) Epithelial tumors of the ovary: comparison of MR and CT findings. Radiology 181: 863–870

    PubMed  CAS  Google Scholar 

  • Giunta S, Venturo I, Mottolese M et al. (1994) Noninvasive monitoring of ovarian cancer: improved results using CT with intraperitoneal contrast combined with immunocytology. Gynecol Oncol 53: 103–108

    Article  PubMed  CAS  Google Scholar 

  • Granowska M, Mather SJ, Britton KE (1991) Diagnostiv evaluation on 111In and 99mTc radiolabeled monoclonal antibodies in ovarian and colorectal cancer: correlations with surgery. Nucl Med Biol 18: 413–424

    CAS  Google Scholar 

  • Hata K, Hata T, Manabe A, Sugimura K, Kitao M (1992) A critical evaluation of transvaginal Doppler studies, transvaginal sonography, magnetic resonance imaging, and CA 125 in detecting ovarian cancer. Obstet Gynecol 80: 922–926

    PubMed  CAS  Google Scholar 

  • Hoskins WJ (1993) Surgical staging and cytoreductive surgery of epithelial ovarain cancer. Cancer 71 [Suppl]: 1534–1540

    Article  PubMed  CAS  Google Scholar 

  • Hübner KF, McDonald TW, Niethammer JG, Smith GT, Gould HR, Buonocore E (1993) Assessment of primary and metastatic ovarian cancer by positron emission tomographic (PET) using 2-[18-F]deoxyglucose (2-[18F]FDG). Gynecol Oncol 51: 192–204

    Article  Google Scholar 

  • Karlan BY, Hoh C, Tse N, Futoran R, Hawkins R, Glaspy J (1993) Whole-body positron emission tomography with (fluorine-18)-2-deoxyglucose can detect metastatic carcinoma of the fallopian tube. Gynecol Oncol 49: 383–388

    Article  PubMed  CAS  Google Scholar 

  • Karlan BY, Platt LD (1995) Ovarian cancer screening. The role of ultrasound in early detection. Cancer 76: 2011–2015

    Article  PubMed  CAS  Google Scholar 

  • Krag DN (1993) Clinical utility of immunoscintigraphy in managing ovarian cancer. J Nucl Med 34: 545–548

    PubMed  CAS  Google Scholar 

  • Lapela M, Leskinen-Kallio S, Varpula M et al. (1995) Metabolic imaging of ovarian tumors with carbon-11-methionine: a PET study. J Nucl Med 36: 2196–2200

    PubMed  CAS  Google Scholar 

  • Method MW, Serafini AN, Averette HE, Rodriguez M, Penalver MA, Sevin BU (1996) The role of radioimmunscintigraphy and computed tomography scan prior to reassessment laparotomy of patients with ovarian carcinoma. Cancer 77: 2286–2293

    Article  PubMed  CAS  Google Scholar 

  • Miraldi F, Vesselle H, Faulhaber PF, Adler LP, Leisure GP (1998) Elimination of artifactual accumulation of FDG in PET imaging of colorectal Cancer. Clin Nucl Med 23: 3–7

    Article  PubMed  CAS  Google Scholar 

  • Römer W, Avril N, Dose J et al. (1997) Metabolische Charakterisierung von Ovarialtumoren mit der Positronen-Emissions-Tomographie und F-18-Fluordeoxyglukose. Fortschr Röntgenstr 166: 62–68

    Article  Google Scholar 

  • Sobin LH, Wittekind CH (1997) TNM classification of malignant tumours. Wiley-Liss, New York, pp 152–156

    Google Scholar 

  • Soper JT (1996) Malignancies of the ovary and Fallopian tube. In: Sevin BU (ed) Multimodality therapy in gynecologic oncology. Thieme, Stuttgart New York pp 135–190

    Google Scholar 

  • Steichen-Gersdorf E, Gallion HH, Ford D et al. (1994) Familial site-specific ovarian cancer is linked to BRCAi on 17q12–21. Am J Hum Genet 55: 870–875

    PubMed  CAS  Google Scholar 

  • Tekay A, Jouppila P (1996) Controversies in assessment of ovarian tumors with transvaginal color Doppler ultrasound. Acta Obstet Gynecol Scand 75: 316–329

    Article  PubMed  CAS  Google Scholar 

  • Tibben JG, Massuger LF, Ciaessens RA et al. (1992) Tumour detection and localization using 99Tcm-labelled OV-TL 3 Fab’ in patients suspected of ovarian cancer. Nucl Med Commun 13: 885–893

    Article  PubMed  CAS  Google Scholar 

  • Wahl RL, Hutchins GD, Buchsbaum DJ, Liebert M, Grossmann HB, Fisher S (1991) 18F-2-Deoxy-2-Fluoro-D-Glucose uptake into human tumor xenografts. Cancer 67: 1544–1550

    Article  PubMed  CAS  Google Scholar 

  • Yancik R (1993) Ovarian cancer: age contrasts in incidence, histology, disease stage at diagnosis, and mortality. Cancer 71: 517–523

    Article  PubMed  CAS  Google Scholar 

  • Zimny M, Schröder W, Wolters S, Cremerius U, Rath W, Bull U (1997a) 18F-Fluordeoxyglukose PET beim Ovarialkarzinom: Methodik und erste Ergebnisse. Nuklearmedizin 36: 228–233

    PubMed  CAS  Google Scholar 

  • Zimny M, Schröder W, Wolters S, Cremerius U, Rath W, Bull U (1997b) F-18-FDG-PET to diagnose and to stage ovarian cancer: preliminary results. Eur J Nucl Med 24: 924 (abstr)

    Google Scholar 

  • Aass N, Fossa SD, Ous S, Lien HH, Stenwig AE, Paus E, Kaalhus O (1990) Is routine primary retroperitoneal lymph node dissection still justified in patients with low stage non-seminomatous testicular cancer? Br J Urol 65: 385–390

    Article  PubMed  CAS  Google Scholar 

  • Arbeitsausschuß Positronen-Emissions-Tomographie der DGN (1997) Konsensus-Onko-PET. Nuklearmedizin 36: 45–46

    Google Scholar 

  • Bachor R, Kocher F, Gropengiesser F et al. (1995) Positron emission tomography. Introduction of a new procedure in diagnosis of urologic tumors and initial clinical results. Urologe A 34:138–142

    PubMed  CAS  Google Scholar 

  • Bender H, Schomburg A, Albers P et al. (1996) Grenzen von Ganz-körper-FDG-PET beim Staging von Hoden-Tumoren. Nuklearmedizin 35: A54

    Google Scholar 

  • Borchers H, Sohn M, Müller-Leisse C, Fischer N, Jakse G (1991) Growing teratoma syndrome. Onkologie 14 [Suppl 4]: 13

    Google Scholar 

  • Boring CC, Squires TS, Tong T (1993) Cancer statistics 1993. Ca Cancer J Clin 43: 7–26

    Article  PubMed  CAS  Google Scholar 

  • Carlsson-Farrelly E, Boquist L, Ljungberg B (1995) Accuracy of clinical staging in non-seminomatous testicular cancer — a single center experience of retroperitoneal lymph node dissection. Scand J Urol Nephrol 29: 501–506

    Article  PubMed  CAS  Google Scholar 

  • Cremerius U, Effert PJ, Adam G et al. (1998a) FDG-PET for detection and therapy control of metastatic germ cell tumor. J Nucl Med 39: 815–822

    PubMed  CAS  Google Scholar 

  • Cremerius U, Adam G, Zimny M, Jakse G, Bull U (1998b) Vergleich von FDG-PET, CT und Tumormarkern beim Hodentumor-Staging. Nuklearmedizin 37: A10

    Google Scholar 

  • Dieckmann KP, Boeckmann W, Brosig W, Jonas D, Bauer HW (1986) Bilateral testicular germ cell tumors. Cancer 57: 1254

    Article  PubMed  CAS  Google Scholar 

  • Donohue JP, Thornhill JA, Foster RS, Rowland RG, Bihrle (1993) Primary retroperitoneal lymph node dissection in clinical stage I nonseminomatous germ cell testis cancer. Br J Urol 71: 326

    Article  PubMed  CAS  Google Scholar 

  • Freedman LS, Jones WG, Peckham MJ et al. (1987) Histopathology in the prediction of relapse of patients with stage I testicular teratoma treated by orchidectomy alone. Lancet 2: 294–298

    Article  PubMed  CAS  Google Scholar 

  • Fung CY, Kalish LA, Brodsky GL, Richie JP, Garnick MB (1988) Stage I nonseminomatous germ cell testicular tumor: prediction of metastatic potential by primary histopathology. J Clin Oncol 6: 1467–1473

    PubMed  CAS  Google Scholar 

  • Garnick MB (1994) Testicular Cancer. In: Harrison’s principles of internal medicine, 13th edition. McGraw-Hill, New York pp 1858–1861

    Google Scholar 

  • Klepp O, Olsson AM, Henrikson H et al. (1990) Prognostic factors in clinical stage I non-seminomatous germ cell tumors of the testis: multivariate analysis of a prospective multicenter study. J Clin Oncol 8: 509–518

    PubMed  CAS  Google Scholar 

  • Mead GM, Stenning SP, Parkinson ML (1992) The second Medical Research Council Study of prognostic factors in nonseminomatous germ cell tumors. J Clin Oncol 10: 85–94

    PubMed  CAS  Google Scholar 

  • Moul JW, Melarthy WF, Fernendez EB, Sesterhenn JA (1994) Percentage of embryonal carcinoma and of vascular invasion predicts pathological stage I nonseminomatous testicular cancer. Cancer Res 54: 362–364

    PubMed  CAS  Google Scholar 

  • Otto T, Goepel M, Seeber S, Rübben H (1993) Delayed retroperitoneal lymph node excision in treatment of advanced nonseminomatous germinal cell tumors. I. Intraoperative findings in marker converted tumor. Urologe A 32: 189–193

    PubMed  CAS  Google Scholar 

  • Peckham MJ, Freedman LS, Jones WG et al. (1988) Der Einfluß der Histopathologic auf die Rezidivwahrscheinlichkeit bei Patienten mit nichtseminomatösen Hodenkarzinomen im Stadium I nach alleiniger Orchiektomie. In: Schmoll HJ, Weißbach L (Hrsg) Diagnostik und Therapie von Hodentumoren. Springer, Berlin Heidelberg New York Tokyo, S 152–160

    Chapter  Google Scholar 

  • Read G, Stenning SP, Cullen MH et al. (1992) Medical research council prospective study of survaillance for stage I testicular teratoma. J Clin Oncol 10: 1762

    PubMed  CAS  Google Scholar 

  • Reinhardt M, Müller-Mattheis V, Vosberg H, Ackermann R, Müller-Gärtner HW (1997) Staging retroperitonealer Lymphknoten bei Hodenkrebs mit FDG-PET. Nuklearmedizin 36: A33

    Google Scholar 

  • Reinhardt MJ, Müller-Mattheis V, Gerharz CD, Vosberg HR, Ackermann R, Müller-Gärtner HW (1997) FDG-PET evaluation of retroperitoneal metastases of testicular cancer before and after chemotherapy. J Nucl Med 38: 99–101

    PubMed  CAS  Google Scholar 

  • Schöffski P, Bokemeyer C, Harstrick A, Schmoll HJ (1991) Ätiologie und Epidemiologie von Keimzelltumoren. Onkologie 14 [Suppl 4]:11

    Google Scholar 

  • Schultz HP, Arends J, Barlebo H et al. (1984) Testicular carcinoma in Denmark 1976–1980. Stage and selected clinical parameters at presentation. Acta Radiol Oncol 23: 249–253

    Article  PubMed  CAS  Google Scholar 

  • Seppelt U (1988) Validierung verschiedener diagnostischer Methoden zur Beurteilung des Lymphknotenstatus. In: Weißbach L, Bussar-Maatz R (Hrsg) Die Diagnostik des Hodentumors und seiner Metastasen. Karger, Basel, S 154–169

    Google Scholar 

  • Stephens AW, Gonin R, Hutchins GD, Einhorn LH (1996) Positron emission tomography evaluation of residual radiographic abnormalities in postchemo-therapy germ cell tumor patients. J Clin Oncol 14: 1637–1641

    PubMed  CAS  Google Scholar 

  • Stomper PC, Fung CY, Socinsky MA, Garnick MB, Richie JP (1987) Detection of retroperitoneal metastases in early-stage nonsemi-nomatous testicular cancer analysis of different CT criteria. AJR 149: 1187–1190

    Article  PubMed  CAS  Google Scholar 

  • Wannenmacher M, Pfannmüller-Schurr EL, Bruggmoser G (1988) Adjuvante Strahlentherapie der Seminome im Stadium I. In: Schmoll HJ, Weißbach L (Hrsg) Diagnostik und Therapie von Hodentumoren. Springer, Berlin Heidelberg New York Tokyo, S 152–160

    Google Scholar 

  • Wilson CB, Young HE, Ott RJ et al. (1995) Imaging metastatic testicular germ cell tumors with 18-FDG positron emission tomography: prospects for detection and management. Eur J Nucl Med 22: 508–513

    Article  PubMed  CAS  Google Scholar 

  • Zagars GK (1991) Management of stage I seminoma: radiotherapy. In: Horwich A (ed) Testicular cancer: investigation and management. Chapman & Hall, London pp 83–107

    Google Scholar 

  • Bares R, Altehöfer C, Cremerius U, Handt S, Osieka R, Mittermayer C, Bull U (1994) FDG-PET for metabolic classification of residual lymphoma masses after chemotherapy. J Nucl Med 35: 131 P

    Google Scholar 

  • Barrington SF, Carr R (1995) Staging of Burkitfs lymphoma and response to treatment monitored by PET scanning. Clin Oncol R Coll Radiol 7: 334–335

    Article  PubMed  CAS  Google Scholar 

  • Benchaou M, Lehmann W, Slosman DO, Becker M, Lemoine R, Rufenacht D, Donath A (1996) The role of FDG-PET in the preoperative assessment of head and neck cancer. Acta Otolaryngol Stockh 116/2: 332–335

    Article  PubMed  CAS  Google Scholar 

  • Cremerius U, Bares R, Weis J et al. (1997) Fasting improves discrimination of grade 1 and atypical or malignant meningioma in FDG PET. J Nucl Med 38: 26–30

    PubMed  CAS  Google Scholar 

  • Dimitrakopoulou-Strauss A, Strauss LS, Goldschmidt H, Lorenz WJ, Maier-Borst W, van Kaick G (1995) Evaluation of tumor metabolism and multidrug resistance in patients with treated malignant lymphomas. Eur J Nucl Med 22/5: 434–442

    Article  PubMed  CAS  Google Scholar 

  • Glatz S, Kotzerke J, Mogg F, Sandherr M, Heimpel H, Reske SN (1996) Vortäuschung eines mediastinalen Non-Hodgkin-Lym-phomrezidives durch diffuse Thymushyperplasie im 18F-FDG-PET. RöFo 165: 309–310

    PubMed  CAS  Google Scholar 

  • Hiddemann W, Longo DL, Coiffier B et al. (1996) Lymphoma classification — the gap between biology and clinical management is closing. Blood 88: 4085–4089

    PubMed  CAS  Google Scholar 

  • Higashi K, Clavo A, Wahl RL (1993) Does FDG uptake measure proloferative activity of human cancer cells ? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34: 414–419

    PubMed  CAS  Google Scholar 

  • Hoekstra OS, Ossenkoppele GJ, Golding R, van Lingen A, Visser GWM, Teule GJJ, Huijgens PC (1993) Early treatment response in malignant lymphoma as determined by planar fluorine-18-fluorodeoxyglucose scintigraphy. J Nucl Med 34: 1706–1710

    PubMed  CAS  Google Scholar 

  • Hoh CK, Glaspy J, Rosen P et al. (1997) Whole body FDG PET imaging for staging of Hodgkin’s disease. J Nucl Med 38/3: 343–348

    PubMed  CAS  Google Scholar 

  • Hübner KF, Buonocore E, Singh SK, Gould HR, Cotten DW (1995) Charaterization of chest masses by FDG positron emission tomography. Clin Nucl Med 20: 293–298

    Article  PubMed  Google Scholar 

  • Hughes-Davies L, Tarbell NJ et al. (1997) Stage IA — II B Hodgkin’s disease: management and outcome of extensive thoracic involvement. Int J Radiat Oncol Biol Phys 39/2: 361–369

    Article  PubMed  CAS  Google Scholar 

  • Knopp MV, Bischoff H, Lorenz WJ, van Kaick G (1994) PET imaging of lung tumours and mediastinal lymphoma. Nucl Med Biol 21: 749–757

    Article  PubMed  CAS  Google Scholar 

  • Lapela M, Leskinen S, Minn HR et al. (1995) Increased glucose metabolism in untreated non-Hodgkin’s lymphoma: a study with positron emission tomography and fluorine-18-fluorodeoxy-glucose. Blood 86/9: 3522–3527

    PubMed  CAS  Google Scholar 

  • Lewis PJ, Salama A (1994) Uptake of fluorine-18-fluorodeoxyglu-cose in Sarcoidosis. J Nucl Med 35/10: 1647–1649

    PubMed  CAS  Google Scholar 

  • McLaughlin A, Magee MA, Greenough R et al. (1990) Current role of gallium scanning in the management of lymphoma. Eur J Nucl Med 16: 755–771

    Article  PubMed  CAS  Google Scholar 

  • Moog F, Bangerter M, Diederichs CG et al. (1997) Lymphoma: role of whole-body 2-deoxy-2-[F-18] fluoro-D-glucose (FDG) in nodal staging. Radiology 203/3: 795–800

    PubMed  CAS  Google Scholar 

  • Newman JS, Francis IR, Kaminski MS, Wahl RL (1994) Imaging of lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose: correlation with CT. Radiology 190/1: 111–116

    PubMed  CAS  Google Scholar 

  • Okada J, Yoshikawa K, Itami M et al. (1992) Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med 33/3: 325–329

    PubMed  CAS  Google Scholar 

  • Okada J, Oonishi H, Yoshikawa K, Imaseki K, Uno K, Itami J, Arimizu N (1994) FDG-PET for the evaluation of tumor viability after anticancer therapy. Ann Nucl Med 8/2: 109–113

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M, Rehn S, Ahlström H, Sundström C, Glimelius B (1995) Predicting malignance grade with PET in Non-Hodgkin’s lymphoma. J Nucl Med 36: 1790–1796

    PubMed  CAS  Google Scholar 

  • Rosenfeld SS, Hoffmann JM, Coleman RE, Glantz MJ, Hanson MW, Schild SC (1992) Studies of primary central nervous system lymphoma with fluorine-18 fluorodeoxyglucose positron emission tomography. J Nucl Med 33/4: 532–536

    PubMed  CAS  Google Scholar 

  • Sandrock D, Lastoria S, Magrath IT, Neumann RD (1993) The role of gallium-67 tumor scintigraphy in patients with small, non cleaved cell lymphoma. Eur J Nucl Med 20: 119–122

    Article  PubMed  CAS  Google Scholar 

  • Stansfield AG, Diebold J, Noel H et al. (1988) Kiel Classification. Lancet 1: 292–293

    Article  Google Scholar 

  • de Wit M, Bumann D, Beyer W, Herbst K, Clausen M, Hossfled DK (1997) Whole body positron emission tomography (PET) for diagnosis of residual mass in patients with lymphoma. Ann Oncol 8 [Suppl 1]: 57–60

    Article  PubMed  Google Scholar 

  • Zahner J, Bach D, Marms J, Schneider W, Dierckes K, Grabensee B (1997) Glomerulonephritis und malignes Lymphom. Med Klinik 92: 712–719

    Article  CAS  Google Scholar 

  • Adler LP, Blair HF, Makley JT et al. (1991) Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 32: 1508–1512

    PubMed  CAS  Google Scholar 

  • Bachor R, Kocher F, Gropengiesser F et al. (1995) Positron emission tomograpy. Introduction of a new procedure in diagnosis of urologic tumors and initial clinical results. Urol Arch 34: 138–142

    CAS  Google Scholar 

  • Bares R, Effert P, Handt S et al. (1994) Metabolic classification of untreated prostate cancer by use of FDG-PET. J Nucl Med 35: 230P

    Google Scholar 

  • Bender H, Schomburg A, Albers P et al. (1997) Possible role of FDG-PET in the evaluation of urologic malignancies. Anticancer Res 17: 1655–1660

    PubMed  CAS  Google Scholar 

  • Cronin V, Galantowicz P, Nabi HA (1997) Development of oncology protocol using fluorine-18-FDG: one center’s experience. J Nucl Med Technol 25: 66–69

    PubMed  CAS  Google Scholar 

  • Delbecke D, Meyerowitz C, Lapidus RL et al. (1995) Optimal cutoff levels of F-18 fluorodexyglucose uptake in the differentiation of low-grade from high grade brain tumors with PET. Radiology 195: 47–52

    Google Scholar 

  • Dimitrakopoulou-Strauss A, Gutzler F, Strauss LG et al. (1996) PET-Studien mit C-11-Athanol bei der intratumoralen Therapie von hepatozellularen Karzinomen. Radiologe 36: 744–749

    Article  PubMed  CAS  Google Scholar 

  • Enomoto K, Fukunaga T, Okazumi S et al. (1991) Can fluorode-oxyglucose-positron emission tomography evaluate the functional differentiation of hepatocellular carcinoma. Kaku-Igaku 28: 1353–1356

    PubMed  CAS  Google Scholar 

  • Flanagan FL, Dehdashti F, Siegel BA et al. (1997) Staging of esophageal cancer with i8F-fluorodexyglucose positron emission tomography. Am J Roentgenol 168: 417–424

    Article  CAS  Google Scholar 

  • Griffeth LK, Dehdashti F, McGuire AH et al. (1992) PET evaluation of soft-tissue masses with fluorine-18-fluoro-2-deoxy-d-glucose. Radiology 182: 185–194

    PubMed  CAS  Google Scholar 

  • Hoh CK, Rosen PJ, Belldegrun A et al. (1996) Quantitative and whole body FDG PET in the evaluation of suramine therapy in patients with metastatic prostate cancer. J Nucl Med 37: 267P

    Google Scholar 

  • Hoh CK, Figlin RA, Belldegrum A et al. (1996) Evaluation of renal cell carcinoma with whole body FDG PET. J Nucl Med 37:141P

    Google Scholar 

  • Kern KA, Brunetti A, Norton JA et al. (1988) Metabolic imaging of human extremity musculoskeletal tumors by PET. J Nucl Med 29: 181–186

    PubMed  CAS  Google Scholar 

  • Kim E, Chung SK, Hayne TP et al. (1992) Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics 12: 269–279

    PubMed  CAS  Google Scholar 

  • Kocher F, Bachor R, Stollfuss JC et al. (1995) Positron-emission-tomography of urinary bladder carcinoma. Eur J Nucl Med 20: 888

    Google Scholar 

  • Kosuda S, Grossman HB, Kison PV et al. (1996) Preliminary FDG-PET study in patients with bladder cancer. J Nucl Med 37: 260P

    Google Scholar 

  • Laubenbacher C, Hofer C, Avril N et al. (1995) F-18 FDG PET for differentiation of local recurrent prostatic cancer and scar. J Nucl Med 36: 198 P

    Google Scholar 

  • Miyauchi T, Brown RS, Grossman HB et al. (1996) Correlation between visualization of primary renal cancer by FDG-PET and histopthological findings. J Nucl Med 37: 64 P

    Google Scholar 

  • Mogard J, Kihlstrom L, Ericson K et al. (1994) Recurrent tumor vs radiation effects after gamma knife radiosurgery of intracerebral metastases: diagnosis with PET-FDG. J Comput Assist Tomogr 18: 177–181

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt M, Mueller-Matheis V, Larisch R et al. (1995) Time activity analysis improves specificity of FDG-PET in staging of pelvic lymph node metastases. Eur J Nucl Med 22: 803

    Google Scholar 

  • Shreve P, Gross MD, Wahl RL (1995) Detection of prostate cancer metastases with FDG. J Nucl Med 36: 189P

    Google Scholar 

  • Torizuka T, Tamaki N, Inokuma T et al. (1994) Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy. J Nucl Med 35: 1965–1969

    PubMed  CAS  Google Scholar 

  • Yeh SDJ, Imbriaco M, Garza D et al. (1995) Twenty percent of hormone resistant prostate cancer are detected by PET-FDG whole body scanning. J Nucl Med 36: 198 P

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alexiou, C. et al. (1998). Klinische Indikationen. In: Rühlmann, J., Oehr, P., Biersack, HJ. (eds) PET in der Onkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09242-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09242-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09243-9

  • Online ISBN: 978-3-662-09242-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics