Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 50))

Abstract

The Field Ion Microscope (FIM) introduced by E.W. Müller was the first instrument capable of imaging metal surfaces with atomic resolution in real space [1–7]. The FIM was originally employed to solve problems related to surface physics and crystallography. The field of application substantially widened when the imaging mode was supplemented by the atom probe mode. This technique finally gives the chemical composition of a sample volume with atomic spatial resolution, and the sensitivity of the chemical analysis does not depend on the atom species. These advantages led to increasing and fruitful use of the method in metal physics, materials science and engineering. While the in-depth resolution corresponds to the atomic plane distance parallel to the sample axis, the lateral resolution is essentially determined by the structure of position-sensitive ion detectors that monitor the original atom positions at the sample surface before field evaporation. Such detectors, although well known for many years in numerous areas of application, have been improved substantially for use in atom probes during the past decade. In parallel, fast and extended data acquisition and handling systems have also been developed. This chapter reviews this development and presents a number of results from materials research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Müller E.W., Tsong T.T. (1969) Field Ion Microscopy-Principles and Applications. American Elsevier Publ Comp, New York

    Google Scholar 

  2. Bowkett K.M., Smith D.A. (1970) Field—Ion Microscopy. In: Amelinckx S., Gevers R., Nihoul J (Eds.) Defects in crystalline Solids Vol 2, North—Holland Publishing Company-Amsterdam. London

    Google Scholar 

  3. Wagner R. (1982) Field Ion Microscopy in Materials Science. Crystals, Vol. 6, ed. Freyhardt H.C., Springer—Verlag, Berlin

    Google Scholar 

  4. Haasen P., Wagner R. (1985) Application of analytical field—ion microscopy to the decomposition of alloys, Ann Rev Mater Sci, 15: 43

    Article  CAS  Google Scholar 

  5. Sakurai T., Sakai A., Pickering H.W. (1988) Atom—Probe Field Ion Microscopy and its Application (Review), Part I and II. Technical Report of ISSP; Ser A No 1904 and 1905, The University of Tokyo, Tokyo

    Google Scholar 

  6. Miller M.K., Smith G.D.W. ( 1989, 1992) Atom Probe Microanalysis, 1st and 2nd edn. Materials Research Society, Pittsburgh, PA

    Google Scholar 

  7. Miller M.K., Cerezo A., Hetherington M.G., Smith G.D.W. (1996) Atom Probe Microanalysis. Monographs on the Physics and Chemistry of Materials, 52. Clarendon Press, Oxford

    Google Scholar 

  8. Walko R.J., Müller E.W. (1972) Self—imaging of a surface by field desorption. Physica Stat Sol (a) 9: K9

    Article  CAS  Google Scholar 

  9. Panitz J.A. (1973) The 10 cm atom probe. Rev Sci Instrum 44: 1034

    Article  CAS  Google Scholar 

  10. Cerezo A., Godfrey T.J., Smith G.D.W. (1988) Development and initial applications of a position—sensitive atom probe. J de Phys C66, 49: 25

    Google Scholar 

  11. Cerezo A., Godfrey T.J., Smith G.D.W. (1988) Application of a position—sensitive detector to atom probe microanalysis. Rev Sci Instrum 59 (6): 862

    Article  Google Scholar 

  12. Cerezo A., Godfrey T.J., Grovner C.R.M., Hetherington M.G., Hoyle R.M., Jakubovics J.P., Liddle J.A., Smith G.D.W., Worrall G.M. (1989) Materials analysis with a position—sensitive atom probe. Journal of Microscopy, Vol 154: 215

    Google Scholar 

  13. Miller M.K. (1992) Implementation of the optical atom probe. Surf Sci 266: 494

    Article  CAS  Google Scholar 

  14. Leisch M. (1994) Three—dimensional field ion mass spectrometry. Fresenius J Anal Chem, 349: 102

    Article  CAS  Google Scholar 

  15. Hostel A., Blavette D., Menand A., Sarrau J.M. (1989) Toward a tomographic atom probe. J de Phys C8, 50: 501

    Google Scholar 

  16. Tomography by Atom Probe 317

    Google Scholar 

  17. Blavette D., Deconihout B., Bostel A., Sarrau J.M., Bouet M., Menand A. (1993) The tomographic atom probe: A quantitative three—dimensional nanoanalytical instrument on an atomic scale. Rev Sci Instrum 64 (10): 2911

    Article  CAS  Google Scholar 

  18. Miller M.K. (1991) Concepts in atom probe designs. Surf Sci, 246: 428–33

    Article  CAS  Google Scholar 

  19. Martin C., Jelinsky P., Lampton M., Malina R.F., Anger H.O. (1981) Wedgeand—strip anodes for centroid—finding position—sensitive photon and particle detectors. Rev Sci Instr 52: 1067

    Article  CAS  Google Scholar 

  20. Bas—Chambreland P. (1997) Reconstruction Tridimensionelle des Images de Tomographie Atomique. PhD Thesis, University of Rouen, France

    Google Scholar 

  21. Cerezo A., Godfrey T.J., Hyde J.M., Sijbrandij S.J., Smith G.D.W. (1994) Improvements in three—dimensional atom probe design. Applied Surface Science, 76 /77: 374

    Article  Google Scholar 

  22. Cerezo A., J.M. Hyde J.M., Sijbrandij S.J., Smith G.D.W. (1996) Data analysis in the optical PoSAP. Appl Surf Sci 94 /95: 457

    Google Scholar 

  23. Deconihout B., Renaud L., Da Costa G., Bouet M., Bostel A., Blavette D. (1998) Implementation of an optical TAP: preliminary results. Ultramicroscopy vol 1–4: 253

    Article  Google Scholar 

  24. Sijbrandij S.J., Cerezo A., Godfrey T.J., Smith G.D.W. (1996) Improvements in the mass resolution of the three—dimensional atom probe. Applied Surface Science, 94 /95: 428

    Article  Google Scholar 

  25. Cerezo A., Godfrey T.J., Sijbrandij S.J., Smith G.D.W., Warren P.J. (1998) Performance of an energy—compensated three—dimensional atom probe. Rev Sci Instrum 69: 49

    Article  CAS  Google Scholar 

  26. Sijbrandij S.J., Cerezo A., Deconihout B., Godfrey T.J., Smith G.D.W. (1996) Characterization of efficiency enhancement in microchannel plate detectors. J de Physique I V C5: 297

    Google Scholar 

  27. Deconihout B., Gerard P., Bouet M., Bostel A. (1996) Improvement of the detection efficieny of channel plate electron multiplier for atom probe application. Appl Sur Sci 94 /95: 422

    Article  Google Scholar 

  28. Smith R., Walls J.M. (1978) Ion trajectories in the field—ion microscope. J Phys D: Appl Phys, 11: 409

    Google Scholar 

  29. Cerezo A., P.J. Warren P.J., Smith G.D.W. (1999) Some aspects of image projection in the field—ion microscope. Ultramicroscopy 79: 251

    Article  CAS  Google Scholar 

  30. Waugh A.R., Boyes E.D., Southon M.J. (1976) Investigations of field evaporation with a field—desorption microscope. Surf Sci 61: 109

    Article  CAS  Google Scholar 

  31. Southworth H.N., Ralph B. (1970) Image formation from ordered alloys in the field ion microscope. Phil Mag 21: 23

    Article  CAS  Google Scholar 

  32. Berg H, Tsong T.T., Cohen J.B. (1973) Local atomic arrangements in partially ordered CoPt II Field—ion microscopy. Acta Metall 21: 1589

    Article  CAS  Google Scholar 

  33. Vurpillot F., Bostel A., Menand A., Blavette D. (1999) Trajectories of field emitted ions in 3D atom—probe. Eur Phys J AP 6: 217

    Article  CAS  Google Scholar 

  34. Newman R.W., Sonwald R.C., Hren J.J. (1967) A method of indexing field ion micrographs. J Sci Instr 44: 127

    Article  Google Scholar 

  35. Wilkes T.J., Smith G.D.W., Smith D.A. (1974) Quantitative analysis of field—ion micrographs. Metallography 7: 403

    Article  CAS  Google Scholar 

  36. Bas P., Bostel A., Deconihout B., Blavette D. (1995) A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87 /88: 298

    Article  Google Scholar 

  37. Al-Kassab T., R. Kirchheim R., Investigation of phase decomposition in alloys with the tomographic atom probe. Materials Sci and Eng A, in press 318 T. Al-Kassab et al.

    Google Scholar 

  38. Warren P.J., Cerezo A., Smith G.D.W. (1998) Observation of atomic planes in 3DAP analysis. Ultramicroscopy 73: 261

    Article  CAS  Google Scholar 

  39. Al-Kassab T., Kirchheim R., to be published

    Google Scholar 

  40. Blavette D., Duval P., Letellier L., Guttmann M. (1996) Atomic—scale APFIM and TEM investigation of grain boundary microchemistry in astroloy nickel base superalloys. Acta Mater 44: 4995

    Article  CAS  Google Scholar 

  41. Jeske T., Schmitz G., Influence of the microstructure on the interreaction of Al/Ni investigated by tomographic atom probe. Mater Sci and Eng A, in press

    Google Scholar 

  42. Al-Kassab T., Macht M.-P., Wollenberger H. (1995) FIM/AP analysis of Cu-Pd multilayers. Applied Surface Science 87 /88: 329

    Article  Google Scholar 

  43. Al-Kassab T., Wollenberger H., Blavette D. (1997) Application of the tomographic atom probe to selected problems in materials science. Z Metallkd 88: 2

    Google Scholar 

  44. Lyon O., Simon J.P. (1988) An analysis of the partial structure function in unmixed Cu-Ni-Fe alloys studied by anomalous small—angle X—ray scattering. J Phys F: Met Phys 18: 1787

    Google Scholar 

  45. Rozdilkski I., Cerezo A., Smith G.D.W., Watson A. (1998) Atomic scale study of precipitate/matrix interfaces in a metallic alloy. In: Ma E., Bellon P., Atz-mon M., Trivedi R. (Eds.) Phase Transformation and System Driven far from Equilibrium, Boston, December 1–5, 1997. Symposium Mater Res Soc, Warrendale, PA, 481: 521

    Google Scholar 

  46. Blavette D., Deconihout B., Chambreland S., Bostel A. (1998) Three—dimensional imaging of chemical order with the tomographic atom probe. Ultramicroscopy 70: 113

    Article  Google Scholar 

  47. Reich L., Murayama M., Hono K. (1998) Evolution of Q—phase in an Al-CuMg-Ag alloy - a three—dimensional atom probe study. Acta Materialia 46: 6053

    Article  CAS  Google Scholar 

  48. Zhang Y., Czubayko U., Wanderka N., Zhu F., Wollenberger H. (2000) Effect of gold addition on the nanostructure of amorphous Fe-Zr-B alloy. J Mater Res 15: 1271

    Article  CAS  Google Scholar 

  49. Al-Kassab T., Macht M.-P., Naundorf V., Wollenberger H., Chambreland S., Danoix F., Blavette D. (1996) Characterization of sputter—deposited multilayers of Ni and Zr with APFIM/TAP. Applied Surface Science 94 /95: 306

    Article  Google Scholar 

  50. Samwer K., Fecht H.J., Johnson W.L. (1994) Amorphization in metallic systems. In: Beck A., Güntherodt H.J. (Eds.) Glassy Metals III, Vol 72 of Topics in Applied Physics, Springer, Berlin:5

    Google Scholar 

  51. Fu—rong—Ding, Averback R.S., Hahn H. (1988) Radiation—enhanced diffusion in Ni/Zr diffusion couples. J Appl Phys 64: 1785

    Article  Google Scholar 

  52. Nishimaki J., Hono K., Hasegawa N., Sakurai T. and M. (1996) Three—dimensional atom probe analysis of Co-Cr-Ta thin film. Appl Phys Lett 69: 3095

    Article  CAS  Google Scholar 

  53. Ouchi K., Iwasaki S. (1982) Perpendicular magnetization structure of Co-Cr films. IEEE Trans Mag MAG-18: 1110

    Google Scholar 

  54. Färber B., Cadel E., Menand A., Schmitz G., Kirchheim R. (2000) Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe ( TAP ). Acta Materiallia 48: 789

    Google Scholar 

  55. Müller F. (1996) Herstellung, Mikrostuktur und Eigenschaften von außen-stromlos abgeschiedenen Nickel—Phosphor—Schichten mit nanokristallinem Aufbau. PhD Thesis. Fortshr.—Ber. VDI—Reihe 5 Nr. 427, VDI—Verlag, Düsseldorf

    Google Scholar 

  56. Mehta S.C., Smith D.A., Erb U. (1995) Study of grain growth in electrode-posited nanocrystalline nickel 1.2 wt% phosphorus alloy. Materials Sci and Eng A 204: 227

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Al-Kassab, T., Wollenberger, H., Schmitz, G., Kirchheim, R. (2003). Tomography by Atom Probe Field Ion Microscopy. In: Ernst, F., Rühle, M. (eds) High-Resolution Imaging and Spectrometry of Materials. Springer Series in Materials Science, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07766-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07766-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07525-4

  • Online ISBN: 978-3-662-07766-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics