Skip to main content

Abstract

The genus Amanita is one of the largest basidiomycetous genera with, to date, more than 400 species described worldwide. Its type species, the fly agaric Amanita muscaria (L.: Fr.) Pers. (Fig. 8.1A-I), the very embodiment of a fungus for many, made its way even into the arts, a subject of mycology as well as of mythology. The nearly cosmopolitan genus has always been of interest to mankind, as it contains delicious edible species such as Caesar’s mushroom, A. caesarea (Scop.: Fr.) Pers., but also deadly poisonous species such as the death cap, A. phalloides (Fr.) Link (Fig. 8.1S-U). Many Amanita species are known to form ectomycorrhizas (ECM) (Table 8.2). Some members of the genus, however, may not be involved in ECM associations, their sporocarps being found in the open field (Bas 1969; Bas and de Meijer 1993). It is assumed that Amanita species are locally restricted in their habitats (Singer 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilisation of peptides and proteins by ectomycorrhizal fungi. New Phytol 103: 481–493

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilization of peptides by birch (Betula pendula L.) infected with different mycorrhizal fungi. New Phytol 112: 55–60

    Article  CAS  Google Scholar 

  • Agerer R (ed) (1987–1996) Colour atlas of ectomycorrhizae. Einhorn Verlag, Schwäbisch Gmünd

    Google Scholar 

  • Agerer R, Rambold G (1996) DEEMY v. 1.0 - a DELTA-based system for characterization and DEtermination of EctoMYcorrhizae. Inst Syst Bot, Sect Mycol, University of München, München

    Google Scholar 

  • Antibus RK, Sinsabaugh RL (1993) The extraction and quantification of ergosterol from ectomycorrhizal fungi and roots. Mycorrhiza 3: 137–144

    Article  CAS  Google Scholar 

  • Antibus RK, Sinsabaugh RL, Linkins AE (1992) Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can J Bot 70: 794–801

    Article  CAS  Google Scholar 

  • Bas C (1969) Morphology and subdivision of Amanita and a monograph of its section Lepidella. Persoonia 5: 285–579

    Google Scholar 

  • Bas C, de Meijer AAR (1993) Amanita grallipes,a new species in Amanita subsection Vittadiniae from southern Brazil. Persoonia 15: 345–350

    Google Scholar 

  • Beckmann S, Haug I, Kottke I, Oberwinkler F (1998) N-Speicherung in den Mykorrhizen der Fichte. In: Raspe S, Feger KH, Zoettl HW (eds) Ökosystemforschung im Schwarzwald. Auswirkungen von atmogenen Einträgen und Restabilisierungsmaßnahmen auf den Stoffhaushalt von Fichtenwäldern. Verbundprojekt ARINUS. ecomed-Verlag, Landsberg, pp 325–335

    Google Scholar 

  • Bevege DI, Bowen GD, Skinner MF (1975) Comparative carbohydrate physiology of ecto-and endomycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 149–174

    Google Scholar 

  • Bisson LF, Fraenkel DG (1984) Expression of kinase-dependent glucose uptake in Saccharomyces cerevisae. J Bacteriol 159: 1013–1017

    PubMed  CAS  Google Scholar 

  • Brown MT, Wilkins DA (1985) Zinc tolerance of Amanita and Paxillus. Trans Br Mycol Soc 84: 367–369

    Article  Google Scholar 

  • Bruns TD, Gardes M (1993) Molecular tools for the identification of ectomycorrhizal fungi–taxon-specific oligonucleotide probes for suilloid fungi. Mol Ecol 2: 233–242

    Article  PubMed  CAS  Google Scholar 

  • Bücking H, Beckmann S, Heyser W, Kottke I (1998) Elemental contents in vacuolar granules of ectomycorrhizal fungi measured by EELS and EDXS. A comparison of different methods and preparation techniques. Micron 29: 53–61

    Google Scholar 

  • Campbell MP, Petersen RH (1975) Cultural characters of certain Amanita taxa. Mycotaxon 1: 239–258

    Google Scholar 

  • Celenza JL, Marshall-Carlson L, Carlson M (1988) The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc Natl Acad Sci USA 85: 2130–2134

    Article  PubMed  CAS  Google Scholar 

  • Chen RD, Gadal P (1990) Structure, functions and regulation of NAD and NADP dependent isocitrate dehydrogenases in higher plants and in other organisms. Plant Physiol Biochem 28: 411–427

    CAS  Google Scholar 

  • Chen X-Y, Hampp R (1993) Sugar uptake by protoplasts of the ectomycorrhizal fungus Amanita muscaria. New Phytol 125: 601–608

    Article  CAS  Google Scholar 

  • Corner EJH, Bas C (1962) The genus Amanita in Singapore and Malaya. Persoonia 2: 241–304

    Google Scholar 

  • Cripps CL, Miller OK (1995) Ectomycorrhizae formed in vitro by quaken aspen: including Inocybe lacera and Amanita pantherina. Mycorrhiza 5: 357–370

    Article  Google Scholar 

  • Cullings KW, Szaro TM, Bruns TD (1996) Evolution of extreme specialisation within a lineage of ectomycorrhizal epiparasites. Nature 379: 63–66

    Article  CAS  Google Scholar 

  • D’Enfert C (1997) Fungal spore germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Funct Gen Biol 21: 163–172

    Article  Google Scholar 

  • Dosskey MG, Boersma L, Linderman RG (1991) Role for the photosynthate demand of ectomycorrhizas in the response of Douglas fir seedlings to drying soil. New Phytol 117: 327–334

    Article  Google Scholar 

  • Eamus D, Jarvis PG (1989) The direct effects of increase in global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Adv Ecol Res 19: 1–55

    Article  Google Scholar 

  • Ekblad A, Wallander H, Näsholm T (1998) Chitin and ergosterol combined to measure total and living fungal biomass in ectomycorrhizas. New Phytol 138: 143–149

    Article  CAS  Google Scholar 

  • El-Badaoui K, Botton B (1989) Production and characterization of extracellular proteases in ectomycorrhizal fungi. Ann Sci For 46 (Suppl): 728s - 730s

    Article  Google Scholar 

  • Eugster CH (1968) Wirkstoffe aus dem Fliegenpilz. Naturwissenschaften 55: 305–313

    Article  PubMed  CAS  Google Scholar 

  • Fernandez J, Soto T, Vicente-Soler J, Cansado J, Gacto M (1996) Inhibition by polyols of the heat-shock-induced activation of trehalase in the yeast Zygosaccharomyces rouxii. Biochem Mol Biol Int 38: 43–50

    PubMed  CAS  Google Scholar 

  • François J, van Schaftingen E, Hers H-G (1984) The mechanism by which glucose increases fructose 2,6-bisphosphate concentration in Saccharomyces cerevisiae. Eur J Biochem 145: 187–193

    Article  PubMed  Google Scholar 

  • François J, Eraso P, Gancedo C (1987) Changes in the concentration of cAMP, fructose 2,6bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur J Biochem 164: 369–373

    Article  PubMed  Google Scholar 

  • Fries E (1821) Systema mycologicum I. Gryphiswaldiae

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol Ecol 2: 113–118

    Article  PubMed  CAS  Google Scholar 

  • Gardes M, Dahlberg A (1996) Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol 133: 147–157

    Article  Google Scholar 

  • Giaquinta RT (1983) Phloem loading of sucrose. Annu Rev Plant Physiol 34: 347–387

    Article  CAS  Google Scholar 

  • Godbout C, Fortin JA (1985) Synthesized ectomycorrhizae of aspen: fungal genus level of structural characterization. Can J Bot 63: 252–262

    Article  Google Scholar 

  • Gunning BE, Pate J (1974) Transfer cells. In: Robards AW (ed) Dynamic aspects of plant ultrastructure. McGraw Hill, New York, pp 441–480

    Google Scholar 

  • Guttenberger M (1989) Untersuchungen zur Biochemie der Pilz-Baumwurzel-Symbiose: Proteinanalytik im Mikromaßstab. PhD Thesis, University of Tübingen, Tübingen

    Google Scholar 

  • Hacskaylo E, Palmer JG (1955) Hymenomycetous species forming mycorrhizae with Pinus virginiana. Mycologia 47: 145–147

    Article  Google Scholar 

  • Hacskaylo E, Palmer JG, Vozzo JA (1965) Effect of temperature on growth and respiration of ectotrophic mycorrhizal fungi. Mycologia 57: 748–756

    Article  Google Scholar 

  • Hampp R, Schaeffer C (1995) Mycorrhiza–carbohydrate and energy metabolism. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin Heidellary New York, pp 267–296

    Google Scholar 

  • Hampp R, Schaeffer C, Wallenda T, Stillten C, Johann P, Einig W (1995) Changes in carbon partitioning or allocation due to ectomycorrhiza formation: biochemical evidence. Can J Bot 73 (Suppl 1): S548–5556

    Article  CAS  Google Scholar 

  • Hampp R, Ecke M, Schaeffer C, Wallenda T, Wingler A, Kottke I, Sundberg B (1996) Axenic mycorrhization of wild type and transgenic hybrid aspen expressing T-DNA indoleacetic acid-biosynthetic genes. Trees 11: 59–64

    Article  Google Scholar 

  • Hardy TA, Huang D, Roach PJ (1994) Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae. J Biol Chem 269: 27907–27913

    PubMed  CAS  Google Scholar 

  • Hers H-G, van Schaftingen E (1982) Fructose 2,6-bisphosphate 2 years after its discovery. Biochem J 206: 1–12

    PubMed  CAS  Google Scholar 

  • Hoffmann E, Wallenda T, Schaeffer C, Hampp R (1997) Cyclic AMP, a possible regulator of glycolysis in the ectomycorrhizal fungus Amanita muscaria. New Phytol 137: 351–356

    Article  CAS  Google Scholar 

  • Hutchison LJ (1990a) Studies on the systematics of ectomycorrhizal fungi in axenic culture. IV. The effect of some selected fungitoxic compounds upon linear growth. Can J Bot 68: 2172–2178

    Article  CAS  Google Scholar 

  • Hutchison LJ (1990b) Studies on the systematics of ectomycorrhizal fungi in axenic culture. V. Linear growth response to standard extreme temperatures used as a taxonomic character. Can J Bot 68: 2179–2184

    Article  Google Scholar 

  • Ineichen K, Wiemken V, Wiemken A (1995) Shoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide. Plant Cell Environ 18: 703–707

    Article  Google Scholar 

  • Ingleby K, Mason PA, Last FT, Fleming LV (1990) Identification of ectomycorrhizas. ITE Research Publication No 5. HMSO, London

    Google Scholar 

  • Jennings DH (1995) The physiology of fungal nutrition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kawase I, Shirakawa H, Watanabe M (1992) Deaths caused by Amanita subjunquillea poisoning and the distribution of this mushroom in Hokkaido. Trans Mycol Soc Jpn 33: 107–110

    Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Mol Biol 47: 509–540

    Article  CAS  Google Scholar 

  • Komor E (1983) Phloem loading and unloading. In: Esser K, Kubitzki K, Runge M, Schnepf E, Ziegler H (eds) Progress in botany, vol 45. Springer, Berlin Heidelberg New York, pp 68–75

    Google Scholar 

  • Kottke I (1986) Charakterisierung und Identifizierung von Mykorrhizen. I. Vergleich künstlich gezogener Mykorrhizen mit Formen vom Naturstandort. II. Zur Identität der “safrangelben” Mykorrhiza. In: Einsel G (ed) Das landschaftsökologische Forschungsprojekt Naturpark Schönbuch, DFG, VCH Verlagsgesellschaft, Weinheim, pp 463–485

    Google Scholar 

  • Kottke I, Oberwinkler F (1987) Cellular structure and function of the Hartig net: coenocytic and transfer cell-like organization. Nord J Bot 7: 85–95

    Article  Google Scholar 

  • Kottke I, Oberwinkler F (1989) Amplification of root-fungus interface in ectomycorrhizae by Hartig net architecture. Ann Sci For 46 (Suppl): 737s - 740s

    Article  Google Scholar 

  • Kottke I, Guttenberger M, Hampp R, Oberwinkler F (1987) An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees 1: 191–194

    Article  Google Scholar 

  • Kottke I, Holopainen T, Alanen E, Turnau K (1995) Deposition of nitrogen in vacuolar bodies of Cenococcum geophilum Fr. mycorrhizas as detected by electron energy loss spectroscopy. New Phytol 129: 411–416

    Article  CAS  Google Scholar 

  • Kottke I, Qian XM, Pritsch K, Haug I, Oberwinkler F (1998) Xerocomus badius-Picea abies, an ectomycorrhiza of high activity and element storage capacity in acidic soil. Mycorrhiza 7: 267–275

    Google Scholar 

  • Kühner R (1972) Agaricales de la zone alpine. Amanitacées. Ann Sci L’Univ Besançon 12: 31–38

    Google Scholar 

  • Lamb RJ (1974) Effect of D-glucose on utilization of single carbon sources by ectomycorrhizal fungi. Trans Br Mycol Soc 63: 295–306

    Article  Google Scholar 

  • Loewe A, Einig W, Shi L, Hampp R (1999) Mycorrhization and elevated CO, both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol. (in press)

    Google Scholar 

  • Lohaus G, Winter H, Riens B, Heldt HW (1995) Further studies of the phloem loading process in leaves of barley and spinach. The comparison of metabolite concentrations in the apoplastic compartment with those in the cytosolic compartment and in the sieve tubes. Bot Acta 108: 270–275

    Google Scholar 

  • Lundeberg G (1970) Utilisation of various nitrogen sources, in particular bound soil nitrogen, by mycorrhizal fungi. Stud For Suec 79: 1–87

    Google Scholar 

  • Madi L, McBride SA, Bailey LA, Ebbole DJ (1997) Rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics 146: 499–508

    PubMed  CAS  Google Scholar 

  • Maijala P, Fagerstedt KV, Raudaskoski M (1991) Detection of extracellular cellulolytic and proteolytic activity in ectomycorrhizal fungi and Heterobasidion annosum ( Fr.) Bref. New Phytol 117: 643–648

    Google Scholar 

  • Malajczuk N, Molina R, Trappe JM (1982) Ectomycorrhiza formation in Eucalyptus. I. Pure culture synthesis, host specificity and mycorrhizal compatibility with Pinus radiata. New Phytol 91: 467–482

    Article  Google Scholar 

  • Marger MD, Saier MH (1993) A major superfamily of transmembrane facilitators that catalyze uniport, symport and antiport. Trends Biol Sci 18: 13–20

    Article  CAS  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59: 153–163

    Google Scholar 

  • Mason P (1975) The genetics of mycorrhizal associations between Amanita muscaria and Betula verrucosa. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, London, pp 567–574

    Google Scholar 

  • Mason PA, Last FT, Wilson J, Deacon JW, Fleming LV, Fox FM (1987) Fruiting and successions of ectomycorrhizal fungi. In: Pegg GF, Ayres PG (eds) Fungal infections of plants. Cambridge University Press, New York, pp 253–268

    Google Scholar 

  • Mohan V, Natarajan K, Ingleby K (1993) Anatomical studies on ectomycorrhizas. II. The ectomycorrhizas produced by Amanita muscaria, Laccaria laccata and Suillus brevipes on Pinus patula. Mycorrhiza 3: 43–49

    Article  CAS  Google Scholar 

  • Molina R (1981) Ectomycorrhizal specificity in the genus Alnus. Can J Bot 59: 325–334

    Article  Google Scholar 

  • Molina R, Trappe JM (1982) Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. For Sci 28: 423–458

    Google Scholar 

  • Moser M (1958) Der Einfluß tiefer Temperaturen auf das Wachstum und die Lebenstätigkeit höherer Pilze mit spezieller Berücksichtigung von Mykorrhizapilzen. Sydowia 12: 386–399

    Google Scholar 

  • Moser M (1983) Die Röhrlinge und Blätterpilze (Polyporales, Boletales, Agaricales, Russulales). Kleine Kryptogamenflora. II b/2. Gustav Fischer, Stuttgart

    Google Scholar 

  • Mousseau M, Saugier B (1992) The direct effect of increased CO, on gas exchange and growth of forest tree species. J Exp Bot 43: 1121–1130

    Article  Google Scholar 

  • Namysl C, Rieger A, Hampp R, Dizengremel P (1991) Longitudinal distinction of adenine nucleotide pools in unmycorrhized and mycorrhized fine roots of spruce seedlings. Plant Physiol 96 (Suppl): 1104

    Google Scholar 

  • Nehls U, Wiese A, Guttenberger M, Hampp R (1998) Carbon allocation in ectomycorrhiza: identification and expression analysis of an A. muscaria monosaccharide transporter. Mol Plant Microb Int 11: 167–176

    Article  CAS  Google Scholar 

  • Norby RJ, O’Neill EG, Hood WG, Luxmore RBJ (1987) Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO, enrichment. Tree Physiol 3: 203–210

    Article  PubMed  Google Scholar 

  • Orlovich DA, Ashford AE (1993) Polyphosphate granules are an artefact of specimen preparation in the ectomycorrhizal fungus Pisolithus tinctorius. Protoplasma 173: 91–102

    Article  CAS  Google Scholar 

  • Özcan S, Dover J, Rosenwald AG, Wölfl S, Johnston M (1996) Two glucose transporters in Saccharomyces cerevisae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA 93: 12428–12432

    Article  PubMed  Google Scholar 

  • Palmer JG, Hacskaylo E (1970) Ectomycorrhizal fungi in pure culture. I. Growth on single carbon sources. Physiol Plant 23: 1187–1197

    Google Scholar 

  • Persoon CH (1797) Tentamen dispositionis methodicae fungorum. PP Wolf, Lipsiae

    Google Scholar 

  • Radin JW, Parker LL, Sell CR (1978) Partitioning of sugar between growth and nitrate reduction in cotton roots. Plant Physiol 62: 550–553

    Article  PubMed  CAS  Google Scholar 

  • Ramstedt M, Jirjis R, Söderhäll K (1987) Metabolism of mannitol in mycorrhizal and non-mycorrhizal fungi. New Phytol 105: 281–287

    Article  CAS  Google Scholar 

  • Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 193–216

    Google Scholar 

  • Reifenberger E, Freidel K, Ciriacy M (1995) Identification of novel HXT genes in Saccharomyces cerevisae reveals the impact of individual hexose transporters on glycolytic flux. Mol Microbiol 16: 157–167

    Article  PubMed  CAS  Google Scholar 

  • Richter DL, Bruhn JN (1989) Revival of saprotrophic and mycorrhizal basidiomycete cultures from cold storage in sterile water. Can J Microbiol 35: 1055–1060

    Article  Google Scholar 

  • Rieger A, Guttenberger M, Hampp R (1992) Soluble carbohydrates in mycorrhized and non-mycorrhized fine roots of spruce seedlings. Z Naturforsch 47c: 201–204

    CAS  Google Scholar 

  • Roze E (1876) Essai d’une nouvelle classification des Agaricacées. Bull Soc Bot Fr 23: 45–54

    Google Scholar 

  • Rudawska M, Kieliszewska-Rokicka B, Debaud JC, Lewandowski A, Gay G (1994) Enzymes of ammonium metabolism in ectendomycorrhizal and ectomycorrhizal symbionts of pine. Physiol Plant 92: 279–285

    Article  CAS  Google Scholar 

  • Salzer P, Hager A (1991) Sucrose utilization of the ectomycorrhizal fungi Amanita muscaria and Hebeloma crustuliniforme depends on the cell wall-bound invertase activity of their host Picea abies. Bot Acta 104: 439–445

    CAS  Google Scholar 

  • Samson J, Fortin JA (1986) Ectomycorrhizal fungi of Larix laricina and the interspecific and intraspecific variation in response to temperature. Can J Bot 64: 3020–3028

    Article  Google Scholar 

  • Schaeffer C, Wallenda T, Guttenberger M, Hampp R (1995) Acid invertase in mycorrhizal and non-mycorrhizal roots of Norway spruce (Picea abies [L.] Karst.) seedlings. New Phytol 129: 417–424

    Article  CAS  Google Scholar 

  • Schaeffer C, Johann P, Nehls U, Hampp R (1996) Evidence for an up-regulation of the host and a down-regulation of the fungal phosphofructokinase activity in ectomycorrhizas of Norway spruce. New Phytol 134: 697–702

    Article  CAS  Google Scholar 

  • Schiebel G (1988) Lokalisierung und Charakterisierung primär energetisierter H’-Translokasen an Membranen von Ektomykorrhizapilzen (Amanita muscaria und Hebeloma crustuliniforme). PhD Thesis, University of Tübingen, Tübingen

    Google Scholar 

  • Singer R (1986) The Agaricales in modern taxonomy. Koeltz Scientific Books, Koenigstein

    Google Scholar 

  • Söderström B (1992) The ecological potential of the ectomycorrhizal mycelium. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 77–83

    Google Scholar 

  • Söderström B, Finlay RD, Read DJ (1988) The structure and function of the vegetative mycelium of ectomycorrhizal plants. IV. Qualitative analysis of carbohydrate contents of mycelium interconnecting host plants. New Phytol 109: 163–166

    Google Scholar 

  • Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ 14: 741–762

    Article  CAS  Google Scholar 

  • Stroo HF, Reich PB, Schoettle AW, Amundson RG (1988) Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils. II. Mycorrhizal infection. Can J Bot 66: 1510–1516

    Google Scholar 

  • Sung S J-S, White LM, Marx DH, Otrosina WJ (1995) Seasonal ectomycorrhizal fungal biomass development in loblolly pine (Pinus taeda L.) seedlings. Mycorrhiza 5: 439–447

    Google Scholar 

  • Taber WA, Taber RA (1987) Carbon nutrition and respiration of Pisolithus tinctorius. Trans Br Mycol Soc 89: 13–26

    Article  CAS  Google Scholar 

  • Theodorou C, Reddell P (1991) In vitro synthesis of ectomycorrhizas on Casuarinaceae with a range of mycorrhizal fungi. New Phytol 118: 279–288

    Article  Google Scholar 

  • Trappe JM (1962) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28: 538–606

    Article  Google Scholar 

  • Wainwright M (1993) Oligotrophic growth of fungi–stress or natural state?. In: Jennings DJ (ed) Stress tolerance of fungi. Marcel Dekker, New York, pp 127–144

    Google Scholar 

  • Wallander H, Nylund JE (1991) Effects of excess nitrogen on carbohydrate concentration and mycorrhizal development of Pinus sylvestris L. seedlings. New Phytol 119: 405–411

    Article  CAS  Google Scholar 

  • Wallenda T (1992) Trehalose und andere Kohlenhydrate im Ektomykorrhizasystem Amanita muscaria/Picea abies. Diploma Thesis, University of Tübingen, Tübingen

    Google Scholar 

  • Wallenda T (1996) Untersuchungen zur Physiologie der Pilzpartner von Ektomykorrhizen der Fichte (Picea abies [L.] Karst.) PhD Thesis, University of Tübingen, Tübingen

    Google Scholar 

  • Watkinson JH (1964) A selenium-accumulating plant of the humid regions: Amanita muscaria. Nature 202: 1239–1240

    Article  PubMed  CAS  Google Scholar 

  • Watling R (1988) A mycological kaleidoscope. Trans Br Mycol Soc 90: 1–28

    Google Scholar 

  • Weiß M, Yang ZL, Oberwinkler F (1998) Molecular phylogenetic studies in the genus Amanita. Can J Bot 76: 1070–1179

    Google Scholar 

  • Wieland T (1986) Peptides of poisonous Amanita mushrooms. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Wingler A (1995) Bereitstellung von Kohlenstoffskeletten für die Stickstoffassimilation in der Fichte (Picea abies [L.] Karst.). PhD Thesis, University of Tübingen, Tübingen

    Google Scholar 

  • Wingler A, Wallenda T, Hampp R (1996) Mycorrhiza formation on Norway spruce (Picea abies) roots affects the pathway of anaplerotic CO2 fixation. Physiol Plant 96: 699–705

    Article  CAS  Google Scholar 

  • Yang ZL (1997) Die Amanita-Arten von Südwestchina. Bibl Mycol 170: 1–240

    Google Scholar 

  • Yang ZL, Oberwinkler F (1999) Die Fruchtkörperentwicklung von Amanita muscaria ( Basidiomycetes ). Nova Hedwigia 68: 411–468

    Google Scholar 

  • Ziegler H (1975) Phloem transport. Nature of transported substances. In: Zimmermann MH, Milburn JA (eds) Enclyclopedia of plant physiology, New Series, vol 1. Transport in plants. Springer, Berlin Heidelberg New York, pp 59–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, Z.L. et al. (1999). Amanita. In: Cairney, J.W.G., Chambers, S.M. (eds) Ectomycorrhizal Fungi Key Genera in Profile. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06827-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06827-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08490-4

  • Online ISBN: 978-3-662-06827-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics