Skip to main content

Engineering of Improved Biocatalysts in Bioremediation

  • Chapter
Biodegradation and Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 2))

  • 1069 Accesses

Abstract

Over the past few decades enormous quantities of industrial pollutants have been released into the environment. A large number of them, particularly those structurally related to natural compounds, are readily degraded or removed by microorganisms found in soil and water. However, superimposed on the rich variety of pollutants present in the environment are an increasing number of novel industrial compounds not found extensively in nature. A significant amount of these industrial chemicals are released into the environment deliberately, to function as pesticides or to act as wood preservatives or electrical insulators. Many of these chemicals, produced on a large scale as part of the normal activities of industrialized societies, are considered hazardous to humans, plants and animals. These xenobiotic compounds are usually removed slowly and tend to accumulate in the environment (Gibson and Parales 2000). The local concentration of these contaminants depends on the rate at which the compound is released, its stability and mobility in the environment, and its rate of biological or non-biological removal (Harayama 1997; Ellis 2000; Janssen et al. 2001). Some of these chemicals have long half-lives in the soil, e.g. the environmental persistence of the insecticide DDT ranges between 3–10 years, chlordane ranges from 2–4 years and HCH persists for up to 11 years. Due to the high degree of toxicity, their accumulation can cause severe environmental problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Appel D, Lutz-Wahl S, Fischer P, Schwaneberg U, Schmid RD (2001) A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenas and heteroarenes. J Biotechnol 88: 167–171

    Article  CAS  Google Scholar 

  • Bae W, Chen W, Mulchandani A, Mehra R (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70: 518–524

    Article  CAS  Google Scholar 

  • Bae W, Mehra R, Mulchandani A, Chen W (2001) Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67: 5335–5338

    Article  CAS  Google Scholar 

  • Bae W, Mulchandani A, Chen W (2002) Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. J Inorg Biochem 88: 223–227

    Article  CAS  Google Scholar 

  • Bae W, Wu C, Kostal J, Mulchandai A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69: 3176–3180

    Article  CAS  Google Scholar 

  • Bailey JE (1996) Metabolic engineering. Adv Mol Cell Biol 15A: 289–296

    Article  Google Scholar 

  • Bang SW, Clark DS, Keasling JD (2000) Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from Salmonella enterica serovar typhimurium in Escherichia coli. Appl Environ Microbiol 66: 3939–3944

    Article  CAS  Google Scholar 

  • Bardwell JCA (1994) Building bridges: Disulphide bond formation in the cell. Mol Microbiol 14: 199–205

    Article  CAS  Google Scholar 

  • Basnakova G, Stephens ER, Thaller MC, Rossolini GM, Macaskie LE (1998) The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Appl Microbiol Biotechnol 50: 266–272

    Article  CAS  Google Scholar 

  • Bontidean I, Berggren C, Johansson G, Csorgi E, Mattiasson B, Lloyd JR, Jakeman KJ, Brown NL (1998) Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Anal Chem 70: 4162–4169

    Article  CAS  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18: 85–90

    Article  CAS  Google Scholar 

  • Brühlmann F, Chen W (1999) Tuning biphenyl dioxygenase for extended substrate specificity. Biotechnol Bioeng 63: 544–551

    Article  Google Scholar 

  • Canada KA, Iwashita S, Shim H, Wood TK (2002) Directed evolution of toluene ortho monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J Bacteriol 184: 344–349

    Article  CAS  Google Scholar 

  • Carmichael AB, Wong LL (2001) Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur J Biochem 268: 3117–3125

    Google Scholar 

  • Crameri A, Dawes G, Rodriguez E Jr, Silver S, Stemmer WPC (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat Biotechnol 15: 436–438

    Article  CAS  Google Scholar 

  • Crameri A, Raillard S-A, Bermudez E, Stemmer WPC (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391: 288–291

    Article  CAS  Google Scholar 

  • Chen W, Mulchandani A (1998) The use of live biocatalysts for pesticides detoxification. Trends Biotechnol 16: 71–76

    Article  CAS  Google Scholar 

  • Cho CHM, Mulchandani A, Chen W (2002) Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl Environ Microbiol 68: 2026–2030

    Article  CAS  Google Scholar 

  • Cursino L, Mattos SV, Azevedo V, Galarza F, Bucker DH, Chartone-Souza E, Nascimento A (2000) Capacity of mercury volatilization by mer (from Escherichia coli) and glutathione S-transferase (from Schistosoma mansoni) genes cloned in Escherichia coli. Sci Total Environ 261: 109–113

    Article  CAS  Google Scholar 

  • Daly MJ, Ouyang L, Minton KW (1994) In vitro damage and recA-dependent repair of plasmid and chromosomal DNA in the radioresistant bacterium Dinococcus radiodurans. J Bacteriol 176: 3508–3517

    CAS  Google Scholar 

  • Diorio C, Cai J, Marmor J Shinder R, DuBow MS (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol 177: 2050–2056

    CAS  Google Scholar 

  • Ellis BML (2000) Environmental biotechnology informatics. Curr Opin Biotechnol 11: 232–235

    Article  CAS  Google Scholar 

  • Francisco JA, Stathopoulos C, Warren RAJ, Kilburn DG, Georgiou G (1993) Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Bio/Technology 11: 491–495

    Article  CAS  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution: a working biotechnology? Trends Biotechnol 11: 353–359

    Article  CAS  Google Scholar 

  • Gallardo ME, Ferrandez A, de Lorenzo V, Garcia JL, Diaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179: 7156–7160

    CAS  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbons dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11: 236–243

    Article  CAS  Google Scholar 

  • Haryama S (1998) Artificial evolution by DNA shuffling. Trends Biotechnol 16: 76–82

    Article  Google Scholar 

  • Held M, Schmid A, Kohler HP, Suske W, Witholt B, Wubbolts MG (1999) An integrated process for the production of toxic catechols from toxic phenols based on a designer biocatalyst. Biotechnol Bioeng 62: 641–648

    Article  CAS  Google Scholar 

  • Holloway P, Knoke KL, Trevors JT, Lee H (1998) Alteration of the substrate range of haloalkane dehalogenase by site-directed mutagenesis. Biotechnol Bioeng 59: 520–523

    Article  CAS  Google Scholar 

  • Janssen DB, Oppentocht JE, Poelarends G (2001). Microbial dehalogenation. Curr Opin Biotechnol 12: 254–258

    Article  CAS  Google Scholar 

  • Izumi Y, Ohshiro T, Ogino H, Hine Y, Shimao M (1994) Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis. Appl Environ Microbiol 60: 223–226

    CAS  Google Scholar 

  • Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure of an aromatic-ring-dioxygenase-naphthalene 1,2-dioxygenase. Structure 6: 571–586

    Article  CAS  Google Scholar 

  • Keasling JD, Van Dien SJ, Trelstad N, Renninger N, McMahon K (2000) Application of polyphosphate metabolism to environmental and biotechnological problems. Biochemistry 65: 324–331

    CAS  Google Scholar 

  • Kimura N, Nishi A, Goto M, Furukawa K (1997) Functional analysis of a variety of chimeric dioxygenases constructed from two biphenyl dioxygenases that are similar structurally but different functionally. J Bacteriol 179: 3996–3943

    Google Scholar 

  • Kotrba P, Doleckova L, de Lorenzo V, Ruml T (1999) Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microbiol 65: 1092–1098

    CAS  Google Scholar 

  • Kumamaru T, Suenaga H, Mitsuoka M, Watanabe M, Furukawa K (1998) Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol 16: 663–666

    Article  CAS  Google Scholar 

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite ( ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290: 1744–1747

    Google Scholar 

  • Lange CC, Wackett LP, Minton KW, Daly MJ (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 16: 929–933

    Article  CAS  Google Scholar 

  • Lee JY, Roh JR, Kim HS (1994) Metabolic engineering of Pseudomonas putida for the simultaneous biodegradation of benzene, toluene, and p-xylene mixture Biotechnol Bioeng 4: 1146–1152

    Google Scholar 

  • Luu PP, Yung CW, Sun AK, Wood TK (1995) Monitoring trichloroethylene mineralization by Pseudomonas cepacia G4 PR1. Appl Microbiol Biotechnol 44: 259–264

    Article  CAS  Google Scholar 

  • Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for excellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146: 1855–1867

    CAS  Google Scholar 

  • Mejare M, Ljung S, Bulow L (1998) Selection of cadmium specific hexapeptides and their expression as OmpA fusion proteins in Escherichia coli. Protein Eng 11: 489–494

    Article  CAS  Google Scholar 

  • Meyer A, Schmid A, Held M, Westphal AH, Rothlisberger M, Kohler HP, van Berkel WJ, Witholt B (2002) Changing the substrate reactivity of 2-hydroxybiphenyl 3monooxygenase from Pseudomonas azelaica HBP1 by directed evolution. J Biol Chem 277: 5575–5582

    Article  CAS  Google Scholar 

  • Misra TK (1992) Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid 27: 4–16

    Article  CAS  Google Scholar 

  • Mondello FJ, Turcich MP, Lobos JH, Erickson BD (1997) Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl Environ Microbiol 63: 3096–3103

    CAS  Google Scholar 

  • Mulchandani A, Kaneva I, Chen W (1999) Detoxification of organophosphorus nerve agents by immobilized Escherichia coli with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 63: 216–223

    Article  CAS  Google Scholar 

  • Nakamura K, Hagimine M, Sakai M, Furukawa K (1999) Removal of mercury from mercury-contaminated sediments using a combined method of chemical leaching and volatilization of mercury by bacteria. Biodegradation 10: 443–447

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1989) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333: 34–139

    Google Scholar 

  • O’Halloran TV, Frantz B, Shin MK, Ralston DM, Wright JG (1989) The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56: 119–129

    Article  Google Scholar 

  • Okuta A, Ohnishi K, Harayama S (1998) PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene 212: 221–228

    Article  CAS  Google Scholar 

  • Pazirandeh M, Chrisey LA, Mauro JM, Campbell JR, Gaber BP (1995) Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake. Appl Microbiol Biotechnol 43: 1112–1117

    Article  CAS  Google Scholar 

  • Parales JV, Parales RE, Resnick SM, Gibson DT (1998) Enzyme specificity of 2nitrotoluene 2,3-dioxygenase from Pseudomonas sp. strain J542 is determined by the C-terminal region of the alpha subunit of the oxygenase component. J Bacteriol 180: 1194–1199

    CAS  Google Scholar 

  • Richins R, Kaneva I, Mulchandani A, Chen W (1997) Biodegradation of Organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15: 984–987

    Article  CAS  Google Scholar 

  • Romeyer FM, Jacobs FA, Brousseau R (1988) Expression of a Neuospora crassa metallothionein and its variants in Escherichia coli. Appl Environ Microbiol 56: 2748–2754

    Google Scholar 

  • Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Appl Environ Microbiol 69: 490–494

    Article  CAS  Google Scholar 

  • Schembri MA, Kjaergaard K, Klemm P (1999) Bioaccumulation of heavy metals by fimbrial designer adhesins. FEMS Microbiol Lett 170: 363–371

    Article  CAS  Google Scholar 

  • Shimazu M, Mulchanani A, Chen W (2001) Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 76: 318–324

    Article  CAS  Google Scholar 

  • Sousa C, Cebolla A, de Lorenzo V (1996) Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nature Biotechnol 14: 1017–1020

    Article  CAS  Google Scholar 

  • Sousa C, Kotrba P, Ruml T, Cebolla A, de Lorenzo V (1998) Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J Bacteriol 180: 2280–2284

    CAS  Google Scholar 

  • Stemmer WPC (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389–391

    Article  CAS  Google Scholar 

  • Stevenson J-A, Bearpark JK, Wong LL (1998) Engineering molecular recognition in alkane oxidation catalyzed by cytochrome P450cam. New J Chem 551–552

    Google Scholar 

  • Stillman MJ, Shaw III FC, Suzuki KT (1992) Metallothioneins, VCH, Weinheim Valls M, Atrian S, de Lorenzo V, Fernandez LA (2000b) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nature Biotechol 18: 661–665

    Google Scholar 

  • Valls M, de Lorenzo V, Gonzalez-Duarte R, Atrian S (2000a) Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal bioadsorption. J Inorg Biochem 79: 219–223

    Article  CAS  Google Scholar 

  • Verschueren KHG, Selje F, Rozeboom HJ, Kalk KH, Dijkstra BW (1993) Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363: 693–698

    Article  CAS  Google Scholar 

  • Wackett LP, Sadowsky MJ, Newman LM, Hur HG, Li S (1994) Metabolism of polyhalo- genated compounds by a genetically engineered bacterium. Nature 368: 627–629

    Article  CAS  Google Scholar 

  • Wang CL, Maratukulam PDL, AM, Clark DS, Keasling JD (2000) Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface. Appl Environ Microbiol 66: 4497–4502

    Article  CAS  Google Scholar 

  • Wang AA, Mulchandani A, Chen W (2002) Specific adhesion to cellulose and hydroysis of organophosphate nerve agents by a genetically engineered E. coli with surface-expressed cellulose-binding domain and organophosphorus hydrolase. Appl Environ Microbiol 68: 1684–1689

    Article  CAS  Google Scholar 

  • White C, Gadd GM (1998) Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology 144: 1407–1415

    Article  CAS  Google Scholar 

  • Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microb 64: 112–118

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, W., Mulchandani, A. (2004). Engineering of Improved Biocatalysts in Bioremediation. In: Singh, A., Ward, O.P. (eds) Biodegradation and Bioremediation. Soil Biology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06066-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06066-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05929-2

  • Online ISBN: 978-3-662-06066-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics