Skip to main content

Molecular Biology of Actin-ADP-Ribosylating Toxins

  • Chapter
Bacterial Protein Toxins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 145))

Abstract

The actin cytoskeleton is the target of a large number of toxins. The actin network controls the shape and spatial organization of the cell and contributes to many cell functions, such as movement, cytokinesis, endocytosis, exocytosis and control of intercellular junctions. Its disorganization by toxins leads to important cell dysfunctions and induces the severe lesions which are found in the associated pathologies. Some toxins modify enzymatic regulatory proteins of actin polymerization (Rho family), including: C3 enzyme, which specifically adenosine diphosphate (ADP)—ribosylates Rho (Chap. 11); the large clostridial toxins [Clostridium difficile ToxA and ToxB, C. sordellii heat-labile toxin (LT) and hemorrhagic toxin, and C. novyi Toxα], which monoglucosylate various p21 G-proteins (Chap. 14); and cytotoxic necrotizing factor from Escherichia coli and dermonecrotizing toxin from Bordetella bronchiseptica (Chap. 13), which catalyze the deamidation of Gln-63 in Rho protein. Modification by ADP—ribosylating or glucosylating toxins traps the Rho family proteins in their inactive forms, leading to depolymerization of the actin filaments in cells. In contrast, the deamidation of Gln-63 impairs the Rho guanosine triphosphate (GTP)ase activities, and Rho is permanently active (Flatau et al. 1997; Schmidt et al. 1997). This increases the actin filaments and ruffles and blocks the cytokinesis. Other toxins act directly on the actin monomers by ADP—ribosylation, which is a common mechanism of action for many toxins (Chap. 2); thereby, they cause a complete disorganization of the actin filaments. These toxins, which are called actin-ADP—ribosylating toxins, are produced by bacteria from the Clostridium genus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barth H, Hofmann F, Olenik C, Just I, Aktories K (1998a) The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP—ribosylating C23-like fusion toxin. Infect Immun 66: 1364–1369

    PubMed  CAS  Google Scholar 

  • Barth H, Preiss JC, Hofmann F, Aktories K (1998b) Characterization of the catalytic site of the ADP—ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis..1 Biol Chem 273: 29506–29511

    CAS  Google Scholar 

  • Baudieri S, Borriello SP, Pantosti A, Luzzi I, Testore GP, Panichi G (1986) Diarrhea associated with toxigenic Clostridium spiroforme. J Infect 12: 278–279

    Article  Google Scholar 

  • Billington SJ, Wieckowski EU, Sarker MR, Bueschel D, Songer JG, McClane BA (1998) Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin gene sequences. Infect Immun 66: 4531–4536

    PubMed  CAS  Google Scholar 

  • Brefort G, Magot M, Ionesco H, Sebald M (1977) Characterization and transferability of Clostridium perfringens plasmids. Plasmid 1: 52–66

    Article  PubMed  CAS  Google Scholar 

  • Brynestad S, Iwaneko LA, Stewart SAB, Granum PE (1994) A complex array of Hpr consensus DNA recognition sequences proximal to the enterotoxin gene in Clostridium perfringens type A. Microbiol 140: 97–104

    Article  CAS  Google Scholar 

  • Brynestad S, Synstad B, Granum PE (1997) The Clostridium perfringens enterotoxin gene is on a transposable element in type-A human food poisoning strains. Microbiol 143: 2109–2115

    Article  CAS  Google Scholar 

  • Carman RJ, Perelle S, Popoff MR (1997) Binary toxins from Clostridium spiroforme and Clostridium perfringens In The Clostridia molecular biology and pathogenesis, pp 359–367. Academic Press

    Google Scholar 

  • Choe S, Bennet MJ, Fujii G, Curni PM, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357: 216–222

    Article  PubMed  CAS  Google Scholar 

  • Collie RE, McClane BA (1998) Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases. J Clin Microbiol 36: 30–36

    PubMed  CAS  Google Scholar 

  • Considine RV, Simpson LL (1991) Cellular and molecular actions of binary toxins possessing ADP—ribosyltransferase activity. Toxicon 29: 913–936

    Article  PubMed  CAS  Google Scholar 

  • Cornillot E, Saint-Joanis B, Daube G, Granum PE, Canard B, Cole ST (1995) The enterotoxin gene (cpe) of Clostridium perfringens can be chromosomal or plasmidborne. Mol Microbiol 15: 639–647

    Article  PubMed  CAS  Google Scholar 

  • Daube G, Simon P, Kaeckenbeeck A (1993) IS1151, an IS-like element of Clostridium perfringens. Nucl Acids Res 21: 352

    Article  PubMed  CAS  Google Scholar 

  • Daube G, Simon P, Limbourg B, Manteca C, Mainil J, Kaeckenbeeck A (1996) Hybridization of 2,659 Clostridium perfringens isolates with gene probes for seven toxins (a, ß, E, t, 6, p, and enterotoxin) and for sialidase. Am J Vet Res 57: 496–502

    PubMed  CAS  Google Scholar 

  • Domenighini M, Rappuoli R (1996) Three conserved consensus sequences identify the NAD-binding site of ADP—ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Mol Microbiol 21: 667–674

    Article  PubMed  CAS  Google Scholar 

  • Eklund MW, Dowell VR (1987) Avian botulism. Charles C. Thomas, Springfield, Ill Fach P, Popoff MR (1997) Detection of enterotoxigenic Clostridium perfringens in food and fecal samples with a duplex PCR and the slide agglutination test. Appl Environ Microbiol 63: 4232–4236

    Google Scholar 

  • Fernie DS, Knights JM, Thomson RO, Carman RJ (1984) Rabbit enterotoxaemia: purification and preliminary characterization of a toxin produced by Clostridium spiroforme. FEMS Microbiol Lett 21: 207–211

    Article  CAS  Google Scholar 

  • Ferreras M, Menestrina G (1997) Leukocidins and y-lysins (Staphylococcus sp.). In Guidebook to protein toxins and their use in cell biology (ed Rappuoli R, Montecucco C ), pp 94–96. Sambrook and Tooze Publication, Oxford

    Google Scholar 

  • Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P (1997) Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387: 729–733

    Article  PubMed  CAS  Google Scholar 

  • Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261: 7123–7126

    PubMed  CAS  Google Scholar 

  • Fritz G, Schroeder P, Aktories K (1995) Isolation and characterization of a Clostridium botulinum C2 toxin-resistant cell line: evidence for possible involvement of the cellular C2II receptor in growth regulation. Infect Immun 63: 2334–2340

    PubMed  CAS  Google Scholar 

  • Fujii N, Kubota T, Shirakawa S, Kimura K, Ohishi I, Moriishi K, Isogai E, Isogai H (1996) Characterization of component-I gene of botulinum C2 toxin and PCR detection of its gene in clostridia] species. Biochem. Biophys Res Commun 220: 353–359

    Google Scholar 

  • Gibert M, Perelle S, Daube G, Popoff MR (1997) Clostridium spiroforme toxin genes are related to C. perfringens iota toxin genes but have a different genomic localization. Syst Appl Microbiol 20: 337–347

    Google Scholar 

  • Katayama S, Dupuy B, Daube G, China B, Cole S (1996) Genome mapping of Clostridium perfringens strains with I-Ceul shows many virulence genes to be plamsidborne. Mol Gen Genet 251: 720–726

    PubMed  CAS  Google Scholar 

  • Kimura K, Kubota I, Isogai E, Isogai H, Fujii N (1998) The gene for component-II of botulinum C2 toxin. Vet Microbiol 62: 27–34

    Article  PubMed  CAS  Google Scholar 

  • Leppla S (1995) Anthrax toxins. In Bacterial toxins and virulence factors in disease, vol. 8 (eds Moss J, Iglewski B, Vaughnan M, Tu AT ), pp 543–572. Marcel Dekker, New York

    Google Scholar 

  • Marvaud JC, Popoff MR (1998)Structure function of the Clostridium perfringens Iota toxin and use as protein transporter. Zentbl Bakteriol S29: 72–73

    Google Scholar 

  • Mauss S, Chaponnier C, Just I, Aktories K, Gabbiani G (1990) ADP—ribosylation of actin isoforms by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Fur J Biochem 194: 237–241

    CAS  Google Scholar 

  • McDonell JL (1986) Toxins of Clostridium perfringens types A, B, C, D and E. In Pharmacology of bacterial toxins (eds Dorner F, Drews J ), pp 477–517. Pergamon Press, Oxford

    Google Scholar 

  • Minami J, Katayama S, Matsushita O, Matsushita C, Okabe A (1997) Lambda-toxin of Clostridium perfringens activates the precursor of E-toxin by releasing its N- and C-terminal peptides. Microbiol Immunol 41: 527–535

    PubMed  CAS  Google Scholar 

  • Moller K, Ahrens P (1996) Comparison of toxicity neutralization-, ELISA-, and PCR tests for typing of Clostridium perfringens and detection of the enterotoxin gene by PCR. Anaerobe 2: 103–110

    Article  Google Scholar 

  • Nakamura S, Serikawa T, Yamakawa K, Nishida S, Kozaki S, Sakaguchi 5 (1978) Sporulation and C2 toxin production by Clostridium botulinum type-C strains producing no Cl toxin. Microbiol Immunol 22: 591–596

    CAS  Google Scholar 

  • Noda M (1995) Leukocidins. In Bacterial Toxins and Virulence Factors in Disease (eds Moss J, Iglewski B, Vaughan M, Tu AT ), pp 573–588. Marcel Dekker, New York

    Google Scholar 

  • Ohishi I (1987) Activation of botulinum C2 toxin by trypsin. Infect Immun 55: 1461–1465

    PubMed  CAS  Google Scholar 

  • Ohishi I, Hama Y (1992) Purification and characterization of heterologous components Its of botulinum C2 toxin. Microbiol Immunol 36: 221–229

    PubMed  CAS  Google Scholar 

  • Ohishi I, Miyake M (1985) Binding of the two components of C2 toxin to epithelial cells and brush border of mouse intestine. Infect Immun 48: 769–775

    PubMed  CAS  Google Scholar 

  • Ohishi I, Odagiri Y (1984) Histopathological effects of botulinum C2 toxin on mouse intestines. Infect Immun 43: 54–58

    PubMed  CAS  Google Scholar 

  • Ohishi I, Okada Y (1986) Heterogeneity of two components of C2 toxin produced by Clostridium botulinum types C and D. J. Gen. Microbiol. 132: 125–131

    Google Scholar 

  • Perelle S, Gibert M, Boquet P, Popoff MR (1993) Characterization of Clostridium perfringens Iota-Toxin genes and expression in Escherichia coli. Infect Immun 61: 5147–5156

    PubMed  CAS  Google Scholar 

  • Perelle S, Domenighini M, Popoff MR (1996) Evidence that Arg-295, Glu-378 and Glu-380 are active-site residues of the ADP—ribosyltransferase activity of iota toxin. FEBS Lett 395: 191–194

    Article  PubMed  CAS  Google Scholar 

  • Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR (1997a) Production of a complete binary toxin (Actin-ADP—Ribosylating toxin) by Clostridium difficile CD196. Infect Immun 65: 1402–1407

    PubMed  CAS  Google Scholar 

  • Perelle S, Scalzo S, Kochi S, Mock M, Popoff MR (1997b) Immunological and functional comparison between Clostridium perfringens iota toxin, C. spiroforme toxin, and anthrax toxins. FEMS Microbiol Lett 146, 117–121

    Article  PubMed  CAS  Google Scholar 

  • Petosa C, Collier JR, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax-toxin protective antigen. Nature 385: 833–938

    Article  PubMed  CAS  Google Scholar 

  • Popoff MR, Boquet P (1988) Clostridium spiroforme toxin is a binary toxin which ADP—ribosylates cellular actin. Biochem Biophys Res Commun 152: 1361–1368

    Google Scholar 

  • Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP—ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56: 2299–2306

    PubMed  CAS  Google Scholar 

  • Popoff MR, Milward FW, Bancillon B. Boquet P (1989) Purification of the Clostridium.spiroforme binary toxin and activity of the toxin on HEp-2 cells. Infect Immun 57: 2462–2469

    PubMed  CAS  Google Scholar 

  • Popoff MR, Hauser D, Boquet P, Eklund MW, Gill DM (1991) Characterization of the C3 gene of Clostridium botulinum types C and D and its expression in Escherichia coli. Infect Immun 59: 3673–3679

    PubMed  CAS  Google Scholar 

  • Porter AG (1996) Mosquitocidal toxins, genes and bacteria: the hit squad. Parasitology Today 12: 175–179

    Article  PubMed  CAS  Google Scholar 

  • Porter AG, Davidson EW, Liu JW (1993) Mosquitocidal toxins of Bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiol Rev 57: 838–861

    PubMed  CAS  Google Scholar 

  • Prekeris R, Mayhew MW, Cooper JB, Terrian DM (1996) Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in the regulation of synaptic function. J Cell Biol 132: 77–90

    Article  PubMed  CAS  Google Scholar 

  • Rood JR (1998) Virulence genes of Clostridium perfringens. Annu Rev Microbiol 52: 333–360

    Article  PubMed  CAS  Google Scholar 

  • Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8: 148–426

    Google Scholar 

  • Saito M, Matsumoto M, Funabashi M (1992) Detection of Clostridium perfringens enterotoxin gene by the polymerase chain reaction amplification procedure. Int J Food Microbiol 17: 47–55

    Article  PubMed  CAS  Google Scholar 

  • Schmid A, Benz R, Just I, Aktories K (1994) Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes. J Biol Chem 269: 16706–16711

    PubMed  CAS  Google Scholar 

  • Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Gln63 of rho is deam- inated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387: 725–729

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Ba-Thein W, Tamaki M, Hayashi H (1994) The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. J Bacteriol 176: 1616–1623

    PubMed  CAS  Google Scholar 

  • Simpson LL (1989) The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J Pharmacol Exp Ther 251: 1223–1228

    PubMed  CAS  Google Scholar 

  • Simpson LL (1997) The role of the Clostridium botulinum C2 toxin as research tool to study eukaryotic cell biology. In Bacterial toxins: tools in cell biology and pharmacology (ed Aktories K ), pp 117–128. Chapman and Hall, Weinheim

    Chapter  Google Scholar 

  • Songer JG, Meer RR (1996) Genotyping of Clostridium perfringens by polymerase chain reaction is a useful adjunct to diagnosis of clostridial enteric disease in animals. Anaerobe 2: 197–203

    Article  CAS  Google Scholar 

  • Stiles BG, Wilkins TD (1986a) Clostridium perfringens iota toxin: synergism between two proteins. Toxicon 24: 767–773

    Google Scholar 

  • Stiles BG, Wilkins TD (1986b) Purification and characterization of Clostridium perfringens iota toxin: dependence on two non-linked proteins for biological activity. Infect Immun 54: 683–688

    PubMed  CAS  Google Scholar 

  • Sugii S, Kozaki S (1990) Hemagglutinating and binding properties of botulinum C2 toxin. Biochem. Biophys Acta 1034: 176–179

    Google Scholar 

  • Damme J, Jung M, Hofmann F, Just I, Vandekerckhove J, Aktories K (1996) Analysis of the catalytic site of the actin ADP-ribosylating Clostridium perfringens iota toxin. FEBS Lett 380: 291–295

    Article  PubMed  Google Scholar 

  • Warren G, Koziel M, Mullins MA, Nye G, Carr B, Desai N, Kostichka K, Duck N, Estruch JJ (1996) Novel pesticidal proteins and strains. World Intellectual Property Organization. Patent application WO 96 /10083

    Google Scholar 

  • Welkos SL, Lowe JR, Eden-McCutchan F, Vodkin M, Leppla SH, Schmidt JJ (1988) Sequence and analysis of the DNA encoding protective antigen of Bacillus anthracis. Gene 69: 287–300

    Article  PubMed  CAS  Google Scholar 

  • Wieckowski E, Billington S, Songer G, McClane B (1998) Clostridium perfringens type-E isolates associated with veterinary enteric infections carry silent enterotoxin gene sequences. Zentbl Bakteriol S29: 407–408

    Google Scholar 

  • Yamagishi T, Sugitani K, Tanishima K, Nakamura S (1997) Polymerase chain reaction test for differentiation of five toxin types of Clostridium perlringens. Microbiol Immunol 41: 295–299

    PubMed  CAS  Google Scholar 

  • Young M, Minton NP, Staudenbauer WL (1989) Recent advances in the genetics of the Clostridia. FEMS Microbiol Lett 63: 301–326

    Article  CAS  Google Scholar 

  • Zhao Y, Melville SB (1998) Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene (cpe) of Clostridium perfringens. J Bacteriol 180: 136–142

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Popoff, M.R. (2000). Molecular Biology of Actin-ADP-Ribosylating Toxins. In: Aktories, K., Just, I. (eds) Bacterial Protein Toxins. Handbook of Experimental Pharmacology, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05971-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05971-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08540-6

  • Online ISBN: 978-3-662-05971-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics