Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 272))

Abstract

Replication of the adenovirus genome is catalysed by adenovirus DNA polymerase in which the adenovirus preterminal protein acts as a protein primer. DNA polymerase and preterminal protein form a heterodimer which, in the presence of the cellular transcription factors NFI/CTFI and NFIII/Oct-1, binds to the origin of DNA replication. DNA replication is initiated by DNA polymerase mediated transfer of dCMP onto preterminal protein. Further DNA synthesis is catalysed by DNA polymerase in a strand displacement mechanism which also requires adenovirus DNA binding protein. Here, we discuss the role of individual proteins in this process as revealed by biochemical analysis, mutagenesis and molecular modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adhya S, Shneidman PS, Hurwitz J (1986) Reconstruction of adenovirus replication origins with a human nuclear factor I binding site. J Biol Chem 261: 3339–46

    PubMed  CAS  Google Scholar 

  • Altmann H, Wendler W, Winnacker EL (1994) Transcriptional activation by CTF proteins is mediated by a bipartite low-proline domain. Proc Natl Acad Sci USA 91: 3901–5

    Article  PubMed  CAS  Google Scholar 

  • Angeletti PC, Engler JA (1996) Tyrosine kinase-dependent release of an adeno- virus preterminal protein complex from the nuclear matrix. J Virol 70: 3060–7

    PubMed  CAS  Google Scholar 

  • Angeletti PC, Engler JA (1998) Adenovirus preterminal protein binds to the CAD enzyme at active sites of viral DNA replication on the nuclear matrix. J Virol 72: 2896–904

    PubMed  CAS  Google Scholar 

  • Ariga H, Klein H, Levine AJ, Horwitz MS (1980) A cleavage product of the adenovirus DNA binding protein is active in DNA replication in vitro. Virology 101: 307–10

    Article  PubMed  CAS  Google Scholar 

  • Armentero MT, Horwitz M, Mermod N (1994) Targeting of DNA polymerase to the adenovirus origin of DNA replication by interaction with nuclear factor I. Proc Natl Acad Sci USA 91: 11537–41

    Article  PubMed  CAS  Google Scholar 

  • Bailey A, Mautner V (1994) Phylogenetic relationships among adenovirus serotypes. Virology 205: 438–52

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Gronostajski RM (1994) Identification of a conserved oxidation-sensitive cysteine residue in the NFI family of DNA-binding proteins. J Biol Chem 269: 29949–55

    PubMed  CAS  Google Scholar 

  • Bosher J, Leith IR, Temperley SM, Wells M, Hay RT (1991) The DNA-binding domain of nuclear factor I is sufficient to cooperate with the adenovirus type 2 DNA-binding protein in viral DNA replication. J Gen Virol 72: 2975–80

    Article  PubMed  CAS  Google Scholar 

  • Bosher J, Robinson EC, Hay RT (1990) Interactions between the adenovirus type 2 DNA polymerase and the DNA binding domain of nuclear factor I. New Biol 2: 1083–90

    PubMed  CAS  Google Scholar 

  • Botting CH, Hay RT (1999) Characterisation of the adenovirus preterminal protein and its interaction with the POU homeodomain of NFIII (Oct-1). Nucleic Acids Res 27: 2799–805

    Article  PubMed  CAS  Google Scholar 

  • Botting CH, Hay RT (2001) Role of conserved residues in the activity of adenovirus preterminal protein. J Gen Virol 82: 1917–27

    PubMed  CAS  Google Scholar 

  • Brenkman AB, Breure EC, Van Der Vliet PC (2002) Molecular architecture of adenovirus DNA polymerase and location of the protein primer. J Virol 76: 8200–7

    Article  PubMed  CAS  Google Scholar 

  • Brenkman AB, Heideman MR, Truniger V, Salas M, Van Der Vliet PC (2001) The ( I/Y)XGG motif of adenovirus DNA polymerase affects template DNA binding and the transition from initiation to elongation. J Biol Chem 276: 29846–53

    Article  PubMed  CAS  Google Scholar 

  • Brough DE, Droguett G, Horwitz MS, Klessig DF (1993) Multiple functions of the adenovirus DNA-binding protein are required for efficient viral DNA synthesis. Virology 196: 269–81

    Article  PubMed  CAS  Google Scholar 

  • Challberg MD, Desiderio SV, Kelly TJ (1980) Adenovirus DNA replication in vitro: Characterisation of a protein covalently linked to nascent DNA strands. Proc Natl Acad Sci USA 77: 5105–9

    Article  PubMed  CAS  Google Scholar 

  • Challberg MD, Kelly TJ (1979) Adenovirus DNA replication in vitro: origin and direction of daughter strand synthesis. J Mol Biol 135: 999–1012

    Article  PubMed  CAS  Google Scholar 

  • Challberg MD, Kelly TJ (1989) Animal virus replication. Annual Reviews in Biochemistry 58: 671–717

    Article  CAS  Google Scholar 

  • Challberg MD, Rawlins DR (1984) Template requirements for the initiation of adenovirus DNA replication. Proc Natl Acad Sci USA 81: 100–4

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Ramachandra M, Padmanabhan R (1994) Biochemical characterization of a temperature-sensitive adenovirus DNA polymerase. Virology 205: 364–70

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Horwitz MS (1989) Dissection of functional domains of adenovirus DNA polymerase by linker-insertion mutagenesis. Proc Natl Acad Sci USA 86: 6116–20

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Mermod N, Horwitz MS (1990) Protein-protein interactions between adenovirus DNA polymerase and nuclear factor I mediate formation of the DNA replication preinitiation complex. J Biol Chem 265: 18634–42

    PubMed  CAS  Google Scholar 

  • Cleat PH, Hay RT (1989) Co-operative interactions between NFI and the adenovirus DNA binding protein at the adenovirus origin of replication. EMBO J 8: 1841–8

    PubMed  CAS  Google Scholar 

  • Cleghon V, Piderit A, Brough DE, Klessig DF (1993) Phosphorylation of the adenovirus DNA-binding protein and epitope mapping of monoclonal antibodies against it. Virology 197: 564–75

    Article  PubMed  CAS  Google Scholar 

  • Coenjaerts FE, De Vries E, Pruijn GJ, Van Driel W, Bloemers SM et al. (1991) Enhancement of DNA replication by transcription factors NFI and NFIII/Oct-1 depends critically on the positions of their binding sites in the adenovirus origin of replication. Biochim Biophys Acta 1090: 61–9

    Article  PubMed  CAS  Google Scholar 

  • Coenjaerts FE, Van Der Vliet PC (1994) Early dissociation of nuclear factor I from the origin during initiation of adenovirus DNA replication studied by origin immobilization. Nucleic Acids Res 22: 5235–40

    Article  PubMed  CAS  Google Scholar 

  • Coenjaerts FE, Van Oosterhout JA, Van Der Vliet PC (1994) The Oct-1 POU domain stimulates adenovirus DNA replication by a direct interaction between the viral precursor terminal protein-DNA polymerase complex and the POU homeodomain. EMBO J 13: 5401–9

    PubMed  CAS  Google Scholar 

  • Cotten M, Weber JM (1995) The adenovirus protease is required for virus entry into host cells. Virology 213: 494–502

    Article  PubMed  CAS  Google Scholar 

  • De Jong RN, Mysiak Me, Meijer LA, Van Der Linden M, Van Der Vliet PC (2002) Recruitment of the priming protein pTP and DNA binding occur by overlapping Oct-1 POU homeodomain surfaces. EMBO J 21: 725–35

    Article  PubMed  Google Scholar 

  • De Jong RN, Van Der Vliet PC (1999) Mechanism of DNA replication in eukaryotic cells:cellular host factors stimulating adenovirus DNA replication. Gene 236: 1–12

    Article  PubMed  Google Scholar 

  • De Vries E, Bloemers SM, Van Der Vliet PC (1987) Incorporation of 5-bromodeoxycytidine in the adenovirus 2 replication origin interferes with nuclear factor 1 binding. Nucleic Acids Res 15: 7223–34

    Article  PubMed  Google Scholar 

  • De Vries E, Van Driel W, Tromp M, Van Boom J, VAN Der Vliet PC (1985) Adenovirus DNA replication in vitro: site-directed mutagenesis of the nuclear factor I binding site of the Ad2 origin. Nucleic Acids Res 13: 4935–52

    Article  PubMed  Google Scholar 

  • De Vries EW Van Driel W, Bergsma WG, Arnberg AC, Van Der Vliet PC (1989) Hela nuclear protein recognising DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J Mol Biol 208: 65–78

    Article  Google Scholar 

  • Dekker J, Kanellopoulos PN, Loonstra AK, Van Oosterhout JA, Leonard K et al. (1997) Multimerization of the adenovirus DNA-binding protein is the driving force for ATP-independent DNA unwinding during strand displacement synthesis. EMBO J 16: 1455–63

    Article  PubMed  CAS  Google Scholar 

  • Dekker J, Kanellopoulos PN, Van Oosterhout JA, Stier G, Tucker PA, Van Der Vliet PC (1998) ATP-independent DNA unwinding by the adenovirus single-stranded DNA binding protein requires a flexible DNA binding loop. J Mol Biol 277: 825–38

    Article  PubMed  CAS  Google Scholar 

  • Dekker J, Van Oosterhout JA, Van Der Vliet PC (1996) Two regions within the DNA binding domain of nuclear factor I interact with DNA and stimulate adenovirus DNA replication independently. Mol Cell Biol 16: 4073–80

    PubMed  CAS  Google Scholar 

  • Ding J, Mcgrath WJ, Sweet RM, Mangel WF (1996) Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. EMBO J 15: 1778–83

    PubMed  CAS  Google Scholar 

  • Eagle PA, Klessig DF (1992) A zinc-binding motif located between amino acids 273 and 286 in the adenovirus DNA-binding protein is necessary for ssDNA binding. Virology 187: 777–87

    Article  PubMed  CAS  Google Scholar 

  • Enomoto T, Licht JH, Ikeda JE, Hurwitz J (1981) Adenovirus DNA replication in vitro: purification of the terminal protein in a functional form. Proc Natl Acad Sci USA 78: 6779–83

    Article  PubMed  CAS  Google Scholar 

  • Field J, Gronostajski RM, Hurwitz J (1984) Properties of the adenovirus DNA polymerase. J Biol Chem 259: 9487–95

    PubMed  CAS  Google Scholar 

  • Franklin MC, Wang J, Steitz TA (2001) Structure of the replicating complex of a pol alpha family DNA polymerase. Cell 105: 657–67

    Article  PubMed  CAS  Google Scholar 

  • Fredman JN, Engler JA (1993) Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro. J Virol 67: 3384–95

    PubMed  CAS  Google Scholar 

  • Fredman JN, Pettit SC, Horwitz MS, Engler JA (1991) Linker insertion mutations in the adenovirus preterminal protein that affect DNA replication activity in vivo and in vitro. J Virol 65: 4591–7

    PubMed  CAS  Google Scholar 

  • Freimuth PI, Ginsberg HS (1986) Codon insertion mutants of the adenovirus terminal protein. Proc Natl Acad Sci USA 83: 7816–20

    Article  PubMed  CAS  Google Scholar 

  • Friefeld BR, Krevolin MD, Horwitz MS (1983) Effects of the adenovirus H5ts125 and H5ts107 DNA binding proteins on DNA replication in vitro. Virology 124: 380–9

    Article  PubMed  CAS  Google Scholar 

  • Gounari F, De Francesco R, Schmitt J, Van Der Vliet P, Cortese R, Stunnen-Berg H (1990) Amino-terminal domain of NF1 binds to DNA as a dimer and activates adenovirus DNA replication. EMBO J 9: 559–66

    PubMed  CAS  Google Scholar 

  • Greber UF, Webster P, Weber J, Helenius A (1996) The role of the adenovirus protease on virus entry into cells. EMBO J 15: 1766–77

    PubMed  CAS  Google Scholar 

  • Guggenheimer RA, Stillman BW, Nagata K, Tamanoi F, Hurwitz J (1984) DNA sequences required for the in vitro replication of adenovirus DNA. Proc Natl Acad Sci USA 81: 3069–73

    Article  PubMed  CAS  Google Scholar 

  • Harfst E, Leppard KN (1999) A comparative analysis of the phosphorylation and biochemical properties of wild type and host range variant DNA binding proteins of human adenovirus 5. Virus Genes 18: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Harris MP, Hay RT (1988) DNA sequences required for the initiation of adenovirus type 4 DNA replication in vitro. J Mol Biol 201: 57–67

    Article  PubMed  CAS  Google Scholar 

  • Hatfield L, Hearing P (1993) The NFIII/OCT-1 binding site stimulates adenovirus DNA replication in vivo and is functionally redundant with adjacent sequences. J Virol 67: 3931–9

    PubMed  CAS  Google Scholar 

  • Hay RH (1996) Adenovirus DNA replication. In: DNA Deplication in Eukaryotic Cells, ed. ML DePamphilis, pp 699–719. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press

    Google Scholar 

  • Hay RT (1985 a) Origin of adenovirus DNA replication. Role of the nuclear factor I binding site in vivo. J Mol Biol 186: 129–36

    Google Scholar 

  • Hay RT (1985b) The origin of adenovirus DNA replication: minimal DNA sequence requirement in vivo. EMBO J 4: 421–6

    PubMed  CAS  Google Scholar 

  • Hay RT, Clark AM, Cleat PH, Harris MPG, Robertson EC, Watson CJ (1988) Requirements for the initiation of adenovirus type 2 and 4 DNA replication. Cancer Cells 6:71–5

    CAS  Google Scholar 

  • Hay RT, Freeman A, Leith I, Monaghan A, Webster A (1995) Molecular interac-tions during adenovirus DNA replication. Curr Top Microbiol Immunol 199: 31–48

    Article  PubMed  CAS  Google Scholar 

  • Hay RT, Mcdougall IM (1986) Viable viruses with deletions in the left inverted terminal repeat define the adenovirus origin of DNA replication. J Gen Virol 67: 321–32

    Article  PubMed  CAS  Google Scholar 

  • Hay RT, Russell WC (1989) Recognition mechanisms in the synthesis of animal virus DNA. Biochem J 258: 3–16

    PubMed  CAS  Google Scholar 

  • Hay RT, Stow ND, MCDOUGALL IM (1984) Replication of adenovirus mini-chromosomes. J Mol Biol 175: 493–510

    Article  PubMed  CAS  Google Scholar 

  • Herr W, Sturm RA, Clerc RG, Corcoran LM, Baltimore D et al. (1988) The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. Genes Dev 2: 1513–6

    Article  PubMed  CAS  Google Scholar 

  • Hwang CB, Ruffner KL, Coen DM (1992) A point mutation within a distinct conserved region of the herpes simplex virus DNA polymerase gene confers drug resistance. J Virol 66: 1774–6

    PubMed  CAS  Google Scholar 

  • Ikeda JE, Enomoto T, Hurwitz J (1981) Replication of adenovirus DNA-protein complex with purified proteins. Proc Natl Acad Sci USA 78: 884–8

    Article  PubMed  CAS  Google Scholar 

  • Ikeda JE, Enomoto T, Hurwitz J (1982) Adenoviral protein-primed initiation of DNA chains in vitro. Proc Natl Acad Sci USA 79: 2442–6

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Tomizawa JI (1977) Involvement of DNA gyrase in bacteriophage T7 DNA replication. Nature 270: 78–80

    Article  PubMed  CAS  Google Scholar 

  • Jones KA, Kadonaga JT, Rosenfeld PJ, Kelly TJ, Than R (1987) A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 48: 79–89

    Article  PubMed  CAS  Google Scholar 

  • Joung I, Engler JA (1992) Mutations in two cysteine-histidine-rich clusters in adenovirus type 2 DNA polymerase affect DNA binding. J Virol 66: 5788–96

    PubMed  CAS  Google Scholar 

  • Joung I, Horwitz MS, Engler JA (1991) Mutagenesis of conserved region I in the DNA polymerase from human adenovirus serotype 2. Virology 184: 235–41

    Article  PubMed  CAS  Google Scholar 

  • Joyce CM, Steitz TA (1994) Function and structure relationships in DNA polymer-ases. Annu Rev Biochem 63: 777–822

    Article  PubMed  CAS  Google Scholar 

  • Kanellopoulos PN, Van Der Zandt H, Tsernoglou D, Van Der Vliet PC, Tucker PA (1995) Crystallization and preliminary X-ray crystallographic studies on the adenovirus ssDNA binding protein in complex with ssDNA. J Struct Biol 115: 113–6

    Article  PubMed  CAS  Google Scholar 

  • Kenny MK, Hurwitz J (1988) Initiation of adenovirus DNA replication. II. Structural requirements using synthetic oligonucleotide adenovirus templates. J Biol Chem 263: 9809–17

    Google Scholar 

  • Khittoo G, Delorme L, Dery CV, Tremblay ML, Weber JM et al. (1986) Role of the nuclear matrix in adenovirus maturation. Virus Res 4: 391–403

    Article  PubMed  CAS  Google Scholar 

  • King AJ, Teertstra WR,Van Der Vliet PC (1997) Dissociation of the protein primer and DNA polymerase after initiation of adenovirus DNA replication. J Biol Chem 272: 24617–23

    CAS  Google Scholar 

  • King AJ, Van Der Vliet PC (1994) A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism. EMBO J 13: 5786–92

    PubMed  CAS  Google Scholar 

  • Kitchingman GR (1985) Sequence of the DNA-binding protein of a human subgroup E adenovirus (type 4): comparisons with subgroup A (type 12), subgroup B (type 7), and subgroup C (type 5). Virology 146: 90–101

    CAS  Google Scholar 

  • Kitchingman GR (1995) Mutations in the adenovirus-encoded single-stranded DNA binding protein that result in altered accumulation of early and late viral RNAs. Virology 212: 91–101

    Article  PubMed  CAS  Google Scholar 

  • Klein H, Maltzman W, Levin AJ (1979) Structure function relationships of the adenovirus DNA-binding protein. Journal of Biological Chemistry 254: 11051–60

    PubMed  CAS  Google Scholar 

  • Klemm JD, Rould MA, Aurora R, Herr W, Pabo CO (1994) Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77: 21–32

    Google Scholar 

  • Knopf CW (1998) Evolution of viral DNA-dependent DNA polymerases. Virus Genes 16: 47–58

    Article  PubMed  CAS  Google Scholar 

  • Kusukawa J, Ramachandra M, Nakano R, Padmanabhan R (1994) Phosphory-lation-dependent interaction of adenovirus preterminal protein with the viral origin of DNA replication. J Biol Chem 269: 2189–96

    PubMed  CAS  Google Scholar 

  • Leegwater PA, Van Driel W, Van Der Vliet PC (1985) Recognition site of nuclear factor I, a sequence-specific DNA-binding protein from HeLa cells that stimulates adenovirus DNA replication. EMBO J 4: 1515–21

    PubMed  CAS  Google Scholar 

  • Lichy JH, Field J, Horwitz MS, Hurwitz J (1982) Separation of the adenovirus terminal protein precursor from its associated DNA polymerase: role of both proteins in the initiation of adenovirus DNA replication. Proc Natl Acad Sci USA 79: 5225–9

    Article  PubMed  CAS  Google Scholar 

  • Lindenbaum JO, Field J, Hurwitz J (1986) The adenovirus DNA binding protein and adenovirus DNA polymerase interact to catalyze elongation of primed DNA templates. J Biol Chem 261: 10218–27

    PubMed  CAS  Google Scholar 

  • Liu H, Naismith JH, Hay RT (2000) Identification of conserved residues contributing to the activities of adenovirus DNA polymerase. J Virol 74: 11681–9

    Article  PubMed  CAS  Google Scholar 

  • Mangel WF, Mcgrath WJ, Toledo DL, Anderson CW (1993) Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361: 274–5

    Article  PubMed  CAS  Google Scholar 

  • Matthews DA, Russell WC (1995) Adenovirus protein-protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23 K protease. J Gen Virol 76: 1959–69

    Article  PubMed  CAS  Google Scholar 

  • Meisterernst M, Rogge L, Foeckler R, Karaghiosoff M, Winnacker EL (1989) Structural and functional organization of a porcine gene coding for nuclear factor I. Biochemistry 28: 8191–200

    Article  PubMed  CAS  Google Scholar 

  • Mermod N, O’neill EA, Kelly TJ, Tjian R (1989) The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58: 741–53

    Article  PubMed  CAS  Google Scholar 

  • Monaghan A, Webster A, Hay RT (1994) Adenovirus DNA binding protein: helix destabilising properties. Nucleic Acids Res 22: 742–8

    Article  PubMed  CAS  Google Scholar 

  • Mul YM, Van Der Vliet PC (1992) Nuclear factor I enhances adenovirus DNA repli- cation by increasing the stability of a preinitiation complex. EMBO J 11: 751–60

    PubMed  CAS  Google Scholar 

  • Mul YM, Van Der Vliet PC (1993) The adenovirus DNA binding protein effects the kinetics of DNA replication by a mechanism distinct from NFJ or Oct-1. Nucleic Acids Res 21: 641–7

    Article  PubMed  CAS  Google Scholar 

  • MUL YM, Verrijzer CP, Van Der Vliet PC (1990) Transcription factors NFI and NFIII/oct-1 function independently, employing different mechanisms to enhance adenovirus DNA replication. J Virol 64: 5510–8

    PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Enomoto T, Lichy JH, Hurwitz J (1982) Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci USA 79: 6438–42

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Hurwitz J (1983a) Adenovirus DNA replication in vitro: synthesis of full-length DNA with purified proteins. Proc Natl Acad Sci USA 80: 4266–70

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Hurwitz J (1983b) Specific binding of a cellular DNA replication protein to the origin of replication of adenovirus DNA. Proc Natl Acad Sci USA 80: 6177–81

    Article  PubMed  CAS  Google Scholar 

  • Neale GA, Kitchingman GR (1989) Biochemical analysis of adenovirus type 5 DNA-binding protein mutants. J Biol Chem 264: 3153–9

    PubMed  CAS  Google Scholar 

  • Neale GA, Kitchingman GR (1990) Conserved region 3 of the adenovirus type 5 DNA-binding protein is important for interaction with single-stranded DNA. J Virol 64: 630–8

    PubMed  CAS  Google Scholar 

  • O’neill EA, Fletcher C, Burrow CR, Heintz N, Roeder RG, Kelly TJ (1988) Transcription factor OTF-1 is functionally identical to the DNA replication factor NF-III. Science 241: 1210–3

    Article  PubMed  Google Scholar 

  • O’neill EA, Kelly TJ (1988) Purification and characterization of nuclear factor III (origin recognition protein C), a sequence-specific DNA binding protein required for efficient initiation of adenovirus DNA replication. J Biol Chem 263: 931–7

    PubMed  Google Scholar 

  • Paonessa G, Gounari F, Frank R, Cortese R (1988) Purification of a NF1-like DNA-binding protein from rat liver and cloning of the corresponding cDNA. EMBO J 7: 3115–23

    PubMed  CAS  Google Scholar 

  • Parker EJ, Botting CH, Webster A, Hay RT (1998) Adenovirus DNA polymerase: domain organisation and interaction with preterminal protein. Nucleic Acids Res 26: 1240–7

    Article  PubMed  CAS  Google Scholar 

  • Pettit SC, Horwitz MS, Engler JA (1988) Adenovirus preterminal protein synthesized in COS cells from cloned DNA is active in DNA replication in vitro. J Virol 62: 496–500

    PubMed  CAS  Google Scholar 

  • Pettit SC, Horwitz MS, Engler JA (1989) Mutations of the precursor to the terminal protein of adenovirus serotypes 2 and 5. J Virol 63: 5244–50

    PubMed  CAS  Google Scholar 

  • Pronk R, Stuiver MH, VAN Der Vliet PC (1992) Adenovirus DNA replication: the function of the covalently bound terminal protein. Chromosoma 102: S39–45

    Article  PubMed  CAS  Google Scholar 

  • Pronk R, Van Der Vliet PC (1993) The adenovirus terminal protein influences binding of replication proteins and changes the origin structure. Nucleic Acids Res 21: 2293–300

    Article  PubMed  CAS  Google Scholar 

  • Pronk R, Van Driel W, Van Der Vliet PC (1994) Replication of adenovirus DNA in vitro is ATP-independent. FEBS Lett 337: 33–8

    Article  PubMed  CAS  Google Scholar 

  • Pruijn GJ, Van Driel W, Van Der Vliet PC (1986) Nuclear factor III, a novel sequence-specific DNA-binding protein from HeLa cells stimulating adenovirus DNA replication. Nature 322: 656–9

    Article  PubMed  CAS  Google Scholar 

  • Ramachandra M, Nakano R, Mohan PM, Rawitch AB, Padmanabhan R (1993) Adenovirus DNA polymerase is a phosphoprotein. J Biol Chem 268: 442–8

    PubMed  CAS  Google Scholar 

  • Ramachandra M, Padmanabhan R (1993) Adenovirus DNA polymerase is phosphorylated by a stably associated histone H1 kinase. J Biol Chem 268: 17448–56

    PubMed  CAS  Google Scholar 

  • Rancourt C, Keyvani-Amineh H, Diouri M, Weber JM (1996) Mutagenesis of conserved residues of the adenovirus protease. Virology 224: 561–3

    Article  PubMed  CAS  Google Scholar 

  • Rancourt C, Tihanyi K, Bourbonniere M, Weber JM (1994) Identification of active-site residues of the adenovirus endopeptidase. Proc Natl Acad Sci USA 91: 844–7

    Article  PubMed  CAS  Google Scholar 

  • Rawlins DR, Rosenfeld PJ, Wides RJ, Challberg MD, Kelly TJ (1984) Structure and function of the adenovirus origin of replication. Cell 37: 309–19

    Article  PubMed  CAS  Google Scholar 

  • Ricigliano JW, Brough DE, Klessig DF (1994) Identification of a high-molecularweight cellular protein complex containing the adenovirus DNA binding protein. Virology 202: 715–23

    Article  PubMed  CAS  Google Scholar 

  • Robinson AJ, Younghusband HB, Bellett AJ (1973) A circular DNA-protein complex from adenoviruses. Virology 56: 54–69

    Article  PubMed  CAS  Google Scholar 

  • Roovers DJ, Van Der Lee FM, Van Der Wees J, Sussenbach JS (1993) Analysis of the adenovirus type 5 terminal protein precursor and DNA polymerase by linker insertion mutagenesis. J Virol 67: 265–76

    PubMed  CAS  Google Scholar 

  • Rosenfeld PI, O’neill EA, Wides RJ, Kelly TJ (1987) Sequence-specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication. Mol Cell Biol 7: 875–86

    PubMed  CAS  Google Scholar 

  • Ruzindana-Umunyana A, Sircar S, Weber JM (2000) The effect of mutant peptide cofactors on adenovirus protease activity and virus infection. Virology 270: 173–9

    Article  PubMed  CAS  Google Scholar 

  • Santoro C, Mermod N, Andrews PC, Tjian R (1988) A family of human CCAATbox-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs. Nature 334: 218–24

    Article  PubMed  CAS  Google Scholar 

  • Saturno J, Lazaro JM, Blanco L, Salas M (1998) Role of the first aspartate residue of the „YxDTDS“ motif of phi29 DNA polymerase as a metal ligand during both TP-primed and DNA-primed DNA synthesis. J Mol Biol 283: 633–42

    Article  PubMed  CAS  Google Scholar 

  • Schaack J, Ho WY, Freimuth P, Shenk T (1990 a) Adenovirus terminal protein mediates both nuclear matrix association and efficient transcription of adenovirus DNA. Genes Dev 4: 1197–208

    Google Scholar 

  • Schaack J, Schedl P, Shenk T (1990b) Topoisomerase I and II cleavage of adenovirus DNA in vivo: both topoisomerase activities appear to be required for adenovirus DNA replication. J Virol 64: 78–85

    PubMed  CAS  Google Scholar 

  • Shu L, Pettit SC, Engler JA (1988) The precise structure and coding capacity of mRNAs from early region 2B of human adenovirus serotype 2. Virology 165: 348–56

    Article  PubMed  CAS  Google Scholar 

  • Shu LM, Horwitz MS, Engler JA (1987) Expression of enzymatically active adenovirus DNA polymerase from cloned DNA requires sequences upstream of the main open reading frame. Virology 161: 520–6

    Article  PubMed  CAS  Google Scholar 

  • Sircar S, Ruzindana-Umunyana A, Neugebauer W, Weber JM (1998) Adenovirus endopeptidase and papain are inhibited by the same agents. Antiviral Res 40: 45–51

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA (1998) A mechanism for all polymerases. Nature 391: 231–2

    Article  PubMed  CAS  Google Scholar 

  • Stillman BW (1983) The replication of adenovirus DNA with purified proteins. Cell 35: 7–9

    Article  PubMed  CAS  Google Scholar 

  • Stillman BW, Lewis JB, Chow LT, Mathews MB, Smart JE (1981) Identification of the gene and mRNA for the adenovirus terminal protein precursor. Cell 23: 497–508

    Article  PubMed  CAS  Google Scholar 

  • Stillman BW, Tamanoi F, Mathews MB (1982a) Purification of an adenoviruscoded DNA polymerase that is required for initiation of DNA replication. Cell 31: 613–23

    Article  PubMed  CAS  Google Scholar 

  • Stillman BW, Topp WC, Engler JA (1982b) Conserved sequences at the origin of adenovirus DNA replication. J Viro! 44: 530–7

    CAS  Google Scholar 

  • Stow ND (1982) The infectivity of adenovirus genomes lacking DNA sequences from their left-hand termini. Nucleic Acids Res 10: 5105–19

    Article  PubMed  CAS  Google Scholar 

  • Stuiver MH, Bergsma WG, Arnberg AC, Van Amerongen H, Van Grondelle R, Van Der Vliet PC (1992) Structural alterations of double-stranded DNA in complex with the adenovirus DNA-binding protein. Implications for its function in DNA replication. J Mol Biol 225: 999–1011

    Article  PubMed  CAS  Google Scholar 

  • Stuiver MH, VAN Der Vliet PC (1990) Adenovirus DNA-binding protein forms a multimeric protein complex with double-stranded DNA and enhances binding of nuclear factor I. J Virol 64: 379–86

    PubMed  CAS  Google Scholar 

  • Stunnenberg HG, Lange H, Philipson L, Van Miltenburg RT, Van Der Vliet PC (1988) High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus. Nucleic Acids Res 16: 2431–44

    Article  PubMed  CAS  Google Scholar 

  • Sturm RA, Das G, Herr W (1988) The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. Genes Dev 2: 1582–99

    Article  PubMed  CAS  Google Scholar 

  • Sung MT, Cao TM, Lischwe MA, Coleman RT (1983) Molecular processing of adeno-virus proteins. J Biol Chem 258: 8266–72

    PubMed  CAS  Google Scholar 

  • Tamanoi F, Stillman BW (1982) Function of adenovirus terminal protein in the initiation of DNA replication. Proc Natl Acad Sci USA 79: 2221–5

    Article  PubMed  CAS  Google Scholar 

  • Temperley SM, Burrow CR, Kelly TJ, Hay RT (1991) Identification of two distinct regions within the adenovirus minimal origin of replication that are required for adenovirus type 4 DNA replication in vitro. J Virol 65: 5037–44

    PubMed  CAS  Google Scholar 

  • Temperley SM, Hay RT (1991) Replication of adenovirus type 4 DNA by a purified fraction from infected cells. Nucleic Acids Res 19: 3243–9

    Article  PubMed  CAS  Google Scholar 

  • Temperley SM, Hay RT (1992) Recognition of the adenovirus type 2 origin of DNA replication by the virally encoded DNA polymerase and preterminal proteins. EMBO J 11: 761–8

    PubMed  CAS  Google Scholar 

  • Tihanyi K, Bourbonniere M, Houde A, Rancourt C, Weber JM (1993) Isolation and properties of adenovirus type 2 proteinase. J Biol Chem 268: 1780–5

    PubMed  CAS  Google Scholar 

  • Truniger V, Blanco L, Salas M (1999) Role of the “YxGG/A” motif of Phi29 DNA polymerase in protein-primed replication. J Mol Biol 286: 57–69

    Article  PubMed  CAS  Google Scholar 

  • Tucker PA, Tsernoglou D, Tucker AD, Coenjaerts FE, Leenders H, Van Der Vliet PC (1994) Crystal structure of the adenovirus DNA binding protein reveals a hook-on model for cooperative DNA binding. EMBO J 13: 2994–3002

    PubMed  CAS  Google Scholar 

  • Van Bergen BG, Van Der Ley PA, Van Driel W Van Mansfeld AD, Van Der Vliet PC (1983) Replication of origin containing adenovirus DNA fragments that do not carry the terminal protein. Nucleic Acids Res 11: 1975–89

    Article  PubMed  Google Scholar 

  • Van Breukelen B, Kanellopoulos PN, Tucker PA, Van Der Vliet PC (2000) The Formation of a Flexible DNA-binding Protein Chain Is Required for Efficient DNA Unwinding and Adenovirus DNA Chain Elongation. J Biol Chem 275: 40897–903

    Article  PubMed  Google Scholar 

  • Van Der Vliet PC (1995) Adenovirus DNA Replication. Current Topics in Microbiology and Immunology: 1030

    Google Scholar 

  • Van Der Vliet PC (1996) Roles of transcription factors in DNA replication. In: DNA Replication in Eukaryotic Cells, ed. ML DePamphilis, pp 87–118. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press

    Google Scholar 

  • Van Der Vliet PC, Levine AJ (1973) DNA binding proteins specific for cells infected by adenovirus. Nat New Biol 246: 170–4

    PubMed  Google Scholar 

  • Van Leeuwen HC, Rensen M, Van Der Vliet PC (1997) The Oct-1 POU homeodomain stabilizes the adenovirus preinitiation complex via a direct interaction with the priming protein and is displaced when the replication fork passes. J Biol Chem 272: 3398–405

    Article  PubMed  Google Scholar 

  • Van Leeuwen HC, Strating MJ, Cox M, Kaptein R, Van Der Vliet PC (1995) Mutation of the Oct-1 POU-specific recognition helix leads to altered DNA binding and influences enhancement of adenovirus DNA replication. Nucleic Acids Res 23: 3189–97

    Article  PubMed  Google Scholar 

  • Verrijzer CP, Kal AJ, Van Der Vliet PC (1990) The DNA binding domain (POU domain) of transcription factor oct-1 suffices for stimulation of DNA replication. EMBO J 9: 1883–8

    PubMed  CAS  Google Scholar 

  • Verrijzer CP, Van Oosterhout JA, Van Weperen WW, Van Der Vliet PC (1991) POU proteins bend DNA via the POU-specific domain. Embo J 10: 3007–14

    PubMed  CAS  Google Scholar 

  • Vos HL, Van Der Lee FM, Reemst AM, Van Loon AE, Sussenbach JS (1988) The genes encoding the DNA binding protein and the 23 K protease of adenovirus types 40 and 41. Virology 163: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sat Tar AK, Wang CC, Karam JD, Konigsberg WH, Steitz TA (1997) Crystal structure of a poi alpha family replication DNA polymerase from bacteriophage RB69. Cell 89: 1087–99

    Article  PubMed  CAS  Google Scholar 

  • Watson CJ, Hay RT (1990) Expression of adenovirus type 2 DNA polymerase in insect cells infected with a recombinant baculovirus. Nucleic Acids Res 18:1167–73

    Article  PubMed  CAS  Google Scholar 

  • Weber J (1990) The adenovirus proteinases. Semin Virol 1: 379–84

    CAS  Google Scholar 

  • Webster A, Hay RT, Kemp G (1993) The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 72: 97–104

    Article  PubMed  CAS  Google Scholar 

  • Webster A, Leith IR, Hay RT (1994) Activation of adenovirus-coded protease and processing of preterminal protein. J Virol 68: 7292–300

    PubMed  CAS  Google Scholar 

  • Webster A, Leith IR, Hay RT (1997a) Domain organization of the adenovirus pre-terminal protein. J Virol 71: 539–47

    PubMed  CAS  Google Scholar 

  • Webster A, Leith IR, Nicholson J, Hounsell J, Hay RT (1997b) Role of preterminal protein processing in adenovirus replication. J Virol 71: 6381–9

    PubMed  CAS  Google Scholar 

  • Webster A, Russell S, Talbot P, Russell WC, Kemp GD (1989) Characterization of the adenovirus proteinase: substrate specificity. J Gen Viro! 70: 3225–34

    Article  CAS  Google Scholar 

  • Wenzelides S, Altmann H, Wendler W, Winnacker EL (1996) CTF5-a new transcriptional activator of the NFI/CTF family. Nucleic Acids Res 24: 2416–21

    Article  PubMed  CAS  Google Scholar 

  • Wides RJ, Challberg MD, Rawlins DR, Kelly TJ (1987) Adenovirus origin of DNA replication: sequence requirements for replication in vitro. Mol Cell Biol 7: 864–74

    PubMed  CAS  Google Scholar 

  • Wong ML, Hsu MT (1990) Involvement of topoisomerases in replication, transcription, and packaging of the linear adenovirus genome. J Virol 64: 691–9

    PubMed  CAS  Google Scholar 

  • Zhao LJ, Padmanabhan R (1988) Nuclear transport of adenovirus DNA polymerase is facilitated by interaction with preterminal protein. Cell 55: 1005–15

    Article  PubMed  CAS  Google Scholar 

  • Zijderveld DC, D’adda DI Fagagna F, Giacca M, Timmers HT, Van Der Vliet PC (1994) Stimulation of the adenovirus major late promoter in vitro by transcription factor USF is enhanced by the adenovirus DNA binding protein. J Virol 68: 8288–95

    PubMed  CAS  Google Scholar 

  • Zijderveld DC, Stuiver MH, Van Der Vliet PC (1993) The adenovirus DNA binding protein enhances intermolecular DNA renaturation but inhibits intramolecular DNA renaturation. Nucleic Acids Research 21: 2591–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, H., Naismith, J.H., Hay, R.T. (2003). Adenovirus DNA Replication. In: Doerfler, W., Böhm, P. (eds) Adenoviruses: Model and Vectors in Virus-Host Interactions. Current Topics in Microbiology and Immunology, vol 272. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05597-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05597-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05517-1

  • Online ISBN: 978-3-662-05597-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics