Skip to main content

Regulation of mRNA Production by the Adenoviral E1B 55-kDa and E4 Orf6 Proteins

  • Chapter
Adenoviruses: Model and Vectors in Virus-Host Interactions

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 272))

Abstract

The E1B 55-kDa and E4 Orf6 proteins of human subgroup C adenoviruses both counter host cell defenses mediated by the cellular p53 protein and regulate viral late gene expression. A complex containing the two proteins has been implicated in induction of selective export of viral late mRNAs from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of newly synthesized cellular mRNAs. The molecular mechanisms by which these viral proteins subvert cellular pathways of nuclear export are not yet clear. Here, we review recent efforts to identify molecular and biochemical functions of the E1B 55-kDa and E4 Orf6 proteins required for regulation of mRNA export, the several difficulties and discrepancies that have been encountered in studies of these viral proteins, and evidence indicating that the reorganization of the infected cell nucleus and production of viral late mRNA at specific intra-nuclear sites are important determinants of selective mRNA export in infected cells. In our view, it is not yet possible to propose a coherent molecular model for regulation of mRNA export by the ElB 55-kDa and E4 Orf6 proteins. However, it should now be possible to address specific questions about the roles of potentially relevant properties of these viral proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson CW, Baum PR, Gesteland RF (1973) Processing of adenovirus 2-induced proteins. J Virol 12: 241–252

    PubMed  CAS  Google Scholar 

  • Aspegren A, Rabino C, Bridge E (1998) Organization of splicing factors in adenovirus-infected cells reflects changes in gene expression during the early to late phase transition. Exp Cell Res 245: 203–213

    Article  PubMed  CAS  Google Scholar 

  • Babich A, Feldman CT, Nevins JR, Darnell JE, Weinberger C (1983) Effect of adenovirus on metabolism of specific host mRNAs: transport and specific translational discrimination. Mol Cell Biol 3: 1212–1221

    PubMed  CAS  Google Scholar 

  • Babiss LE, Ginsberg HS, Darnell JE (1985) Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol 5: 2552–2558

    PubMed  CAS  Google Scholar 

  • Bachi A, Braun IC, Rodrigues JP, Pante N, Ribbeck K, von Kobbe C, Kutay U, Wilm M, Gorlich D, Carmo-Fonseca M, Izaurralde E (2000) The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA 6: 136–158

    Article  PubMed  CAS  Google Scholar 

  • Barker DD, Berk AJ (1987) Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156: 107–121

    Article  PubMed  CAS  Google Scholar 

  • Beltz GA, Flint SJ (1979) Inhibition of HeLa cell protein synthesis during adenovirus infection: restriction of cellular messenger RNA sequences to the nucleus. J Mol Biol 131: 353–373

    Article  PubMed  CAS  Google Scholar 

  • Beyer AL, Osheim YN (1988) Splice site selection, rate of splicing and alternative splicing on nascent transcripts. Genes Dev 2: 754–765

    Article  PubMed  CAS  Google Scholar 

  • Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, NG L, Nye JA, Sampson-Johannes A, Fattaey A, Mccormick F (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274: 373–376

    Article  PubMed  CAS  Google Scholar 

  • Blair-Zajdel ME, Blair GE (1988) The intracellular distribution of the transformation-associated protein p53 in adenovirus-transformed rodent cells. Oncogene 2: 579–584

    PubMed  CAS  Google Scholar 

  • Boivin D, Morrison MR, Marcellus RC, Querido E, Branton PE (1999) Analysis of synthesis, stability, phosphorylation, and interacting polypeptides of the 34kilodalton product of open reading frame 6 of the early region 4 protein of human adenovirus type 5. J Virol 73: 1245–1253

    PubMed  CAS  Google Scholar 

  • Boyer JL, Ketner G (2000) Genetic analysis of a potential zinc-binding domain of the adenovirus E4 34 k protein. J Biol Chem 275: 14969–14978

    Article  PubMed  CAS  Google Scholar 

  • Boyer TG, Martin ME, Lees E, Ricciardi RP, Berk AJ (1999) Mammalian Srb/Mediator complex is targeted by adenovirus El A protein. Nature 399: 276–279

    Article  PubMed  CAS  Google Scholar 

  • Braithwaite A, Nelson C, Skulimowski A, Mcgovern J, Pigott D, Jenkins J (1990) Transactivation of the p53 oncogene by Ela gene products. Virology 177: 595–605

    Article  PubMed  CAS  Google Scholar 

  • Braun IC, Rohrbach E, Schmitt C, Izaurralde E (1999) TAP binds to the constitutive transport element ( CTE) through a novel RNA-binding motif that is sufficient to promote CTE-dependent RNA export from the nucleus. EMBO J 18: 1953–1965

    Google Scholar 

  • Bridge E (2000) Letter to the Editor. J Virol 74: 1200–1201

    Article  Google Scholar 

  • Bridge E, Hemstrom C, PetterssonU (1991) Differential regulation of adenovirus late transcriptional units by the products of early region. Virology 183: 260–266.

    Article  PubMed  CAS  Google Scholar 

  • Bridge E, Ketner G (1989) Redundant control of adenovirus late gene expression by early region 4. J Virol 63: 631–638

    PubMed  CAS  Google Scholar 

  • Bridge E, Ketner G (1990) Interaction of adenoviral E4 and Elb products in late gene expression. Virology 174: 345–343

    Article  PubMed  CAS  Google Scholar 

  • Bridge E, Medghalchi S, Ubol S, Leesong M, Ketner G (1993) Adenovirus earlyregion 4 and viral DNA-synthesis. Virology 193:794–801

    Google Scholar 

  • Bridge E, Pettersson U (1996) Nuclear organization of adenovirus RNA biogenesis. Exp Cell Res 229: 233–239

    Article  PubMed  CAS  Google Scholar 

  • Bridge E, Riedel KU, Johansson BM, Pettersson U (1996) Spliced exons of adenovirus late RNAs colocalize with snRNP in a specific nuclear domain. J Cell Biol 135: 303–314

    Article  PubMed  CAS  Google Scholar 

  • Bridge E, Xia DX, Carmo-Fonesca M, Cardinali B, Lamond AI, Pettersson U (1995) Dynamic organization of splicing factors in adenovirus-infected cells. J Virol 69: 281–290

    PubMed  CAS  Google Scholar 

  • Brown LM, Gonzalez RA, Novotny J, Flint SJ (2001) The structure of the adenovirus E4 Orf 6 protein predicted by fold recognition and comparative protein modeling. Proteins 44: 97–109

    Article  PubMed  CAS  Google Scholar 

  • Carvalho T, Seeler JS, Ohman K, Jordan P, Pettersson U, Akusjärvi G, Carmo-Fonseca M, Dejean A (1995) Targeting of adenovirus El A and E4–ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol 131: 45–56

    Article  PubMed  CAS  Google Scholar 

  • Castiglia CL, Flint Si (1983) Effects of adenovirus infection on rRNA synthesis and maturation in HeLa cells. Mol Cell Biol 3: 662–671

    PubMed  CAS  Google Scholar 

  • Cathomen T, Weitzman MD (2000) A functional complex of adenovirus proteins E1B-55 kDa and E4orf6 is necessary to modulate the expression level of p53 but not its transcriptional activity. J Virol 74: 11407–11412.

    Article  PubMed  CAS  Google Scholar 

  • Cutt JR, Shenk T, Hearing P (1987) Analysis of adenovirus early region 4-encoded polypeptides synthesized in productively infected cells. J Virol 61: 543–552

    PubMed  CAS  Google Scholar 

  • de La Pena P, Zasloff M (1987) Enhancement of mRNA transport by promoter elements. Cell 50: 613–619

    Article  PubMed  Google Scholar 

  • Debbas M, White E (1993) Wild-type p53 mediates apoptosis by E1A, which is inhibited by EIB. Genes Dev 7: 546–54

    Article  PubMed  CAS  Google Scholar 

  • Denome RM, Werner EA, Patterson RJ (1989) RNA metabolism in nuclei: adenovirus and heat shock alter intranuclear RNA compartmentalization. Nucl Acids Res 17: 2081–2098

    Article  PubMed  CAS  Google Scholar 

  • Dix BR, Edwards SJ, Braithwaite AW (2001) Does the antitumor adenovirus ONYX-015/d11520 selectively target cells defective in the p53 pathway? J Virol 75: 5443–5447

    Article  PubMed  CAS  Google Scholar 

  • Dix I, Leppard KN (1993) Regulated splicing of adenovirus type 5 E4 transcripts and regulated cytoplasmic accumulation of E4 mRNA. J Virol 67: 3226–31

    PubMed  CAS  Google Scholar 

  • Dobbelstein M (2000) The nuclear export signal within the adenovirus E4orf6 protein contributes to several steps in the viral life cycle. J Virol 74: 1200–1201

    Article  Google Scholar 

  • Dobbelstein M, Roth J, Kimberly WT, Levine AJ, Shenk T (1997) Nuclear export of the E1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence. EMBO J 16: 4276–4284

    Article  PubMed  CAS  Google Scholar 

  • Dobner T, Horikoshi N, Rubenwolf S, Shenk T (1996) Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272: 1470–1473

    Article  PubMed  CAS  Google Scholar 

  • Dobner T, Kzhyshkowska J (2001) Nuclear export of adenovirus RNA. Curr Top Microbiol Immunol 259: 25–34

    Article  PubMed  CAS  Google Scholar 

  • Dosch T, Horn F, Schneider G, Kratzer F, Dobner T, Hauber J, Stauber RH (2001) The adenovirus type 5 E1B-55 k oncoprotein actively shuttles in virus-infected cells, whereas transport of E4orf6 is mediated by a CRM1-independent mechanism. J Virol 75: 5677–5683.

    Article  PubMed  CAS  Google Scholar 

  • Doucas V, Ishov AM, Romo A, Juguilon H, Weitzman MD, Evans RM, Maul GG (1996) Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev 10: 196–207

    Article  PubMed  CAS  Google Scholar 

  • Emerman M, Malim MH (1998) HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 280: 1880–1884

    Article  PubMed  CAS  Google Scholar 

  • Endter C, Kzhyshkowska J, Stauber R, Dobner T (2001) SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci USA 98: 11312–11317

    Article  PubMed  CAS  Google Scholar 

  • Enssle J, Kugler W, Hentze MW, Kulozik AE (1993) Determination of mRNA fate by different RNA polymerase II promoters. Proc Natl Acad Sci USA 90: 10091–10095

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Huber J, Boulens WC, Mattaj LW, Luhrmann R (1995) The HIV-1 Revactivation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82: 475–483

    Article  PubMed  CAS  Google Scholar 

  • Flint SJ, Beltz GA, Linzer D (1983) Synthesis and processing of SV40-specific RNA in adenovirus-infected, SV40-transformed human cells. J Mol Biol 167: 335–359

    Article  PubMed  CAS  Google Scholar 

  • Fornerod M, Ohno M,Yoshida M, Mattaj LW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90: 1051–1060

    CAS  Google Scholar 

  • Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M, Nishida E (1997) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390: 308–311.

    Article  PubMed  CAS  Google Scholar 

  • Gabler S, Schutt H, Groitl P, Wolf H, Shenk T, Dobner T (1998) E1B 55-kilodalton-associated protein: a cellular protein with RNA- binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J Virol 72: 7960–7971

    PubMed  CAS  Google Scholar 

  • Gattoni R, Stévinin J, Jacob M (1980) Comparison of the nuclear ribonucleoproteins containing transcripts of adenovirus 2 and HeLa cell DNA. Eur J Biochem 108: 203–210

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez RA, Flint SJ (2002) Effects of mutations in the adenoviral E1B 55 kDa protein coding sequence on viral late mRNA metabolism. J Virol submitted

    Google Scholar 

  • Goodrum FD, Ornelles DA (1997) The early region 1B 55-kilodalton oncoprotein of adenovirus relieves growth restrictions imposed on viral replication by the cell cycle. J Virol 71: 548–561

    PubMed  CAS  Google Scholar 

  • Goodrum FD, Ornelles DA (1998) p53 status does not determine outcome of E1 B 55kilodalton mutant adenovirus lytic infection. J Virol 72: 9479–9490.

    Google Scholar 

  • Goodrum FD, Ornelles DA (1999) Roles for the E4 orf6, orf3, and E1B 55-kilodalton proteins in cell cycle-independent adenovirus replication. J Virol 73: 7474–7488

    PubMed  CAS  Google Scholar 

  • Goodrum FD, Shenk T, Ornelles DA (1996) Adenovirus early region 4 34-kilodalton protein directs the nuclear localization of the early region 1B 55-kilodalton protein in primate cells. J Virol 70: 6323–6335

    PubMed  CAS  Google Scholar 

  • Grand RJ, Parkhill J, Szestak T, Rookes SM, Roberts S, Gallimore PH (1999) Definition of a major p53 binding site on Ad2E1B58 K protein and a possible nuclear localization signal on the Ad12E1B54 K protein. Oncogene 18: 955–965

    Article  PubMed  CAS  Google Scholar 

  • Grifman M, Chen NN, Gao GP, Cathomen T, Wilson JM, Weitzman MD (1999) Overexpression of cyclin A inhibits augmentation of recombinant adeno-associated virus transduction by the adenovirus E4orf6 protein. J Virol 73: 10010–9

    PubMed  CAS  Google Scholar 

  • Grimwade D, Solomon E (1997) Characterisation of the PML/RAR alpha rearrangement associated with t(15;17) acute promyelocytic leukaemia. Curr Top Microbiol Immunol 220: 81–112

    Article  PubMed  CAS  Google Scholar 

  • Grüter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, Wilm M, Felber BK, Izaurralde E (1998) TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1: 649–659

    Article  PubMed  Google Scholar 

  • Halbert DN, Cutt JR, Shenk T (1985) Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J Virol 56: 250–257

    PubMed  CAS  Google Scholar 

  • Harada JN, Berk AJ (1999) p53-Independent and -dependent requirements for E1B55 K in adenovirus type 5 replication. J Virol 73: 5333–5344

    Google Scholar 

  • Hayes BW, Telling GC, Myat MM, Williams JF, Flint SJ (1990) The adenovirus L4 100-kilodalton protein is necessary for efficient translation of viral late mRNA species. J Virol 64: 2732–2742

    PubMed  CAS  Google Scholar 

  • Higashino F, Pipas JM, Shenk T (1998) Adenovirus E4orf6 oncoprotein modulates the function of the p53-related protein, p73. Proc Natl Acad Sci USA 95: 15683–15687

    Article  PubMed  CAS  Google Scholar 

  • Ho YS, Galos R, Williams JF (1982) Isolation of type 5 adenovirus mutants with a cold-sensitive phenotype: Genetic evidence of an adenovirus transformation maintainence function. Virology 122: 109–110

    Google Scholar 

  • Horridge JJ, Leppard KN (1998) RNA-binding activity of the E1B 55-kilodalton protein from human adenovirus type 5. J Virol: 9374–9379

    Google Scholar 

  • Huang J, Schneider RJ (1991) Adenovirus inhibition of cellular protein synthesis involves inactivation of cap-binding protein. Cell 65: 271–280

    Article  PubMed  CAS  Google Scholar 

  • Huang M-M, Hearing P (1989) The adenovirus early region 4 open reading frame 6/7 protein regulates the DNA binding activity of the cellular transcription factor, E2F, through a direct complex. Genes Dev 3: 1699–1710

    Google Scholar 

  • Huang W, Flint SJ (1998) The tripartite leader sequence of subgroup C adenovirus major late mRNAs can increase the efficiency of mRNA export. J Virol 72: 225–235

    PubMed  CAS  Google Scholar 

  • Imperiale MJ, Akusjärvi G, Leppard KN (1995) Post-transcriptional control of adenovirus gene expression. Curr Top Microbiol Immunol 199: 139–171

    Article  PubMed  CAS  Google Scholar 

  • Ishov AM, Maul GG (1996) The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 134: 815–826.

    Article  PubMed  CAS  Google Scholar 

  • Jones NC (1990) Transformation by the human adenoviruses. Semin Cancer Biol 1: 425–435.

    PubMed  CAS  Google Scholar 

  • Kang Y, Cullen BR (1999) The human Tap protein is a nuclear mRNA export factor that contains novel RNA-binding and nucleocytoplasmic transport sequences. Genes Dev 13: 1126–1139

    Article  PubMed  CAS  Google Scholar 

  • Kao CC, Yew PR, Berk AJ (1990) Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55 K proteins. Virology 179: 806–814

    Article  PubMed  CAS  Google Scholar 

  • Katahira J, Strasser K, Podtelejnikov A, Mann M, Jung JU, Hurt E (1999) The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. Embo J 18: 2593–2609

    Article  PubMed  CAS  Google Scholar 

  • Ketner G, Bridge E,Virtanen A, Hemstrom C, Pettersson U (1989) Complementation of adenovirus E4 mutants by transient expression of E4 cDNA and deletion plasmids. Nucleic Acids Res 17: 3037–48

    CAS  Google Scholar 

  • Kirn D (2000) Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer. Oncogene 19: 6660–6669

    Article  PubMed  CAS  Google Scholar 

  • Konig C, Roth J, Dobbelstein M (1999) Adenovirus type 5 E4orf3 protein relieves p53 inhibition by E1B-55- kilodalton protein. J Virol 73: 2253–2262

    PubMed  CAS  Google Scholar 

  • Kratzer F, Rosorius O, Heger P, Hirschmann N, Dobner T, Hauber J, Stauber RH (2000) The adenovirus type 5 E1B-55 K oncoprotein is a highly active shuttle protein and shuttling is independent of E4orf6, p53 and Mdm2. Oncogene 19: 850–857

    Article  PubMed  CAS  Google Scholar 

  • Kzhyshkowska J, Schutt H, LIss M, Kremmer E, Stauber R, Wolf H, Dobner T (2001) Heterogeneous nuclear ribonucleoprotein E1B-AP5 is methylated in its Arg-Gly-Gly (RGG) box and interacts with human arginine methyltransferase HRMT1L1. Biochem J 358: 305–314

    Article  PubMed  CAS  Google Scholar 

  • Lei EP, Krebber H, Silver PA (2001) Messenger RNAs are recruited for nuclear export during transcription. Genes Dev 15: 1771–1782

    Article  PubMed  CAS  Google Scholar 

  • Leppard KN, Everett RD (1999) The adenovirus type 5 Elb 55 K and E4 Orf3 proteins associate in infected cells and affect ND10 components. J Gen Virol 80: 997–1008

    PubMed  CAS  Google Scholar 

  • Leppard KN, Shenk T (1989) The adenovirus E1B 55 kd protein influences Mrna transport via an intranuclear effect on RNA metabolism. EMBO J 8: 2329–2336

    PubMed  CAS  Google Scholar 

  • Leppard N (1993) Selective effects on adenovirus late gene expression of deleting the E1B 55K protein. J Gen Virol 74: 575–582

    Article  PubMed  CAS  Google Scholar 

  • Lowe SW, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 ElA and accompanies apoptosis. Genes Dev 7: 535–545

    Article  PubMed  CAS  Google Scholar 

  • Malette P, Yee SP, Branton PE (1983) Studies On the phosphorylation of the 58000 dalton early region 1B protein of human adenovirus type 5. J Gen Virol 64: 1069–1078

    Article  PubMed  CAS  Google Scholar 

  • Martin ME, Berk AJ (1998) Adenovirus E1B 55K represses p53 activation in vitro. J Virol 72: 3146–3154

    PubMed  CAS  Google Scholar 

  • Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67: 265–306

    Article  PubMed  CAS  Google Scholar 

  • Maul GG (1998) Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays 20: 660–667

    Article  PubMed  CAS  Google Scholar 

  • Moore M, Horikoshi N, Shenk T (1996) Oncogenic potential of the adenovirus E4orf6 protein. Proc Natl Acad Sci USA 93: 11295–11301

    Article  PubMed  CAS  Google Scholar 

  • Moore M, Schaack J, Baim SR, Morimoto RI, Shenk T (1987) Induced heat shock mRNAs escape the nucleocytoplasmic transport block in adenovirus-infected HeLa cells. Mol Cell Biol 7: 4505–4512

    PubMed  CAS  Google Scholar 

  • Nakielny S, Dreyfuss G (1999) Transport of proteins and RNAs in and out of the nucleus. Cell 99: 677–690

    Article  PubMed  CAS  Google Scholar 

  • Nevels M, Rubenwolf S, Spruss T, Wolf H, Dobner T (1997) The adenovirus E4orf6 protein can promote E1A/E1B-induced focus formation by interfering with p53 tumor suppressor function. Proc Natl Acad Sci USA 94: 1206–1211

    Article  PubMed  CAS  Google Scholar 

  • Nevels M, Rubenwolf S, Spruss T, Wolf H, Dobner T (2000) Two distinct activities contribute to the oncogenic potential of the adenovirus type 5 E4orf6 protein. J Virol 74: 5168–5181

    Article  PubMed  CAS  Google Scholar 

  • Nicolas AL, Munz PL, Falck-Pedersen E, Young CS (2000) Creation and repair of specific DNA double-strand breaks in vivo following infection with adenovirus vectors expressing Saccharomyces cerevisiae HO endonuclease. Virology 266: 211–224

    Article  PubMed  CAS  Google Scholar 

  • Nordqvist K, Akusjärvi G (1990) Adenovirus early region 4 stimulates mRNA accumulation via 5’ introns. Proc Natl Acad Sci USA 87: 9543–9547

    Article  PubMed  CAS  Google Scholar 

  • Nordqvist K, Ohman K, Akusjärvi G (1994) Human adenovirus encodes two proteins which have opposite effects on accumulation of alternatively spliced mRNAs. Mol Cell Biol 14: 437–445

    PubMed  CAS  Google Scholar 

  • Ohman K, Nordqvist K, Akusjärvi G (1993) Two adenovirus proteins with redundant activities in virus growth facilitates tripartite leader mRNA accumulation. Virology 194: 50–58

    Article  PubMed  CAS  Google Scholar 

  • Orlando JS, Ornelles DA (1999) An arginine-faced amphipathic alpha helix is required for adenovirus type 5 e4orf6 protein function. J Virol 73: 4600–4610

    PubMed  CAS  Google Scholar 

  • Ornelles D, Shenk T (1991) Location of the adenovirus early region 1B 55 kilodalton protein during lytic infection: association with nuclear viral inclusions requires the early region 4 34 kilodalton protein. J Virol 65: 424–439

    PubMed  CAS  Google Scholar 

  • Pan T, Coleman JE (1990 a) The DNA binding domain of GAL4 forms a binuclear metal ion complex. Biochemistry 29: 2023–2029

    Google Scholar 

  • Pan T, Coleman JE (1990b) GAL4 transcription factor is not a “zinc finger” but forms a Zn(II)2Cys6 binuclear cluster. Proc Natl Acad Sci USA 87: 2077–2081

    Article  PubMed  CAS  Google Scholar 

  • Pilder S, Moore M, Logan J, Shenk T (1986) The adenovirus E1B-55kd transforming polypeptide modulates transport or cytoplasmic stablization of viral and host cell mRNAs. Mol Cell Biol 6: 470–476

    PubMed  CAS  Google Scholar 

  • Pombo A, Ferreira J, Bridge E, Carmo-Fonseca M (1994) Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells. EMBO J 13: 5075–5085

    PubMed  CAS  Google Scholar 

  • Pritchard CE, Fornerod M, Kasper LH, van Deursen JM (1999) RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol 145: 237–254

    Article  PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, Bachellerie JP, Visa N, Puvion E (1994) Rearrangements of intranuclear structures involved in RNA processing in response to adenovirus infection. J Cell Sci 107: 1457–1468

    PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, Chelbi-Alix MK, Koken M, Quignon F, Puvion E, De The H (1995) Adenovirus infection induces rearrangements in the intranuclear distribution of the nuclear body-associated PML protein. Exp Cell Res 218: 9–16

    CAS  Google Scholar 

  • Puvion-Dutilleul F, Puvion E (1990) Analysis by in situ hybridization and auto-radiography of sites of replication and storage of single-and double-stranded adenovirus type 5 DNA in lytically infected HeLa cells. J Struct Biol 103: 280–289

    Article  PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, PuvionE (1991) Sites of transcription of adenovirus type 5 genomes in relation to early viral DNA replication in infected HeLa cells. A high resolution in situ hybridization and autoradiographical study. Biol Cell 71: 135–147

    Google Scholar 

  • Puvion-Dutilleul F, Roussev R, Puvion E (1992) Distribution of viral RNA molecules during the adenovirus type 5 infectious cycle in HeLa cells. J Struct Biol 108: 209–220

    Article  PubMed  CAS  Google Scholar 

  • Querido E, Chu-Pham-Dang H, Branton PE (2000) Identification and elimination of an aberrant splice product from cDNAs encoding the human adenovirus type 5 e4orf6 protein. Virology 275: 263–266

    Article  PubMed  CAS  Google Scholar 

  • Querido E, Marcellus RC, Lai A, Charbonneau R, Teodoro JG, Ketner G, Branton PE (1997) Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J Virol 71: 3788–3798

    PubMed  CAS  Google Scholar 

  • Querido E, Morisson MR, Chu-Pham-Dang H, Thirlwell SW, Boivin D, Branton PE (2001) Identification of three functions of the adenovirus e4orf6 protein that mediate p53 degradation by the E4orf6-E1B55 K complex. J Virol 75: 699–709

    Article  PubMed  CAS  Google Scholar 

  • Rabino C, Aspegren A, Corbin-Lickfett K, Bridge E (2000) Adenovirus late gene expression does not require a Rev-like nuclear RNA export pathway. J Virol 74: 6684–6688

    Article  PubMed  CAS  Google Scholar 

  • Rebelo L, Almeida F, Ramos C, Bohmann K, Lamond AI, Carmo-Fonesca M (1996) The dynamics of coiled bodies in the nucleus of adenovirus-infected cells. Mol Biol Cell 7: 1137–1151

    PubMed  CAS  Google Scholar 

  • Reich NC, Sarnow P, Duprey E, Levine AJ (1983) Monoclonal antibodies which recognise native and denatured forms of the adenovirus DNA-binding protein. Virology 128: 480–484

    Article  PubMed  CAS  Google Scholar 

  • Roth J,Konig C,Wienzek S,Weigel S,Ristea S,Dobbelstein M (1998) Inactivation of p53 but not p73 by adenovirus type 5 E1B 55-kilodalton and E4 34-kilodalton oncoproteins. J Virol 72: 8510–8516

    Google Scholar 

  • Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, Zur Hausen H (1998) Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 72: 9470–9478

    PubMed  CAS  Google Scholar 

  • Rowe DT, Branton PE, Graham FL (1984) The kinetics of synthesis of early viral proteins in KB cells infected with wild-type and transformation-defective host-range mutants of human adenovirus type 5. J Gen Virol 65: 585–597

    Article  PubMed  CAS  Google Scholar 

  • Rubenwolf S, Schutt H, Nevels M, Wolf H, Dobner T (1997) Structural analysis of the adenovirus type 5 E1B 55-kilodalton-E4orf6 protein complex. J Virol 71: 1115–1123

    PubMed  CAS  Google Scholar 

  • Sandler AB, Ketner G (1989) Adenovirus early region 4 is essential for normal stability of late nuclear RNAs. J Virol 63: 624–630

    PubMed  CAS  Google Scholar 

  • Sarnow P, Hearing P, Anderson CW, DN Halbert, Shenk T, Levine AJ (1984) Adenovirus early region 1B 58,000 dalton tumor antigen is physically associated with an early region 4 25,000-dalton protein in productively infected cells. J Virol 49: 692–700

    PubMed  CAS  Google Scholar 

  • Sarnow P, Sullivan CA, Levine AJ (1982) A monoclonal antibody detecting the Ad5 E1B-58 K tumor antigen in adenovirus-infected and transformed cells. Virology 120: 387–394

    Article  Google Scholar 

  • Shaw AR, Ziff EB (1980) Transcripts from the adenovirus-2 major late promoter yield a single early family of 3’ co-terminal mRNAs and five late families. Cell 22: 905–916

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Kitzes G, Nye JA, Fattaey A, Hermiston T (2001) Analyses of single-aminoacid substitution mutants of adenovirus type 5 E1B-55 K protein. J Virol 75: 4297–4307

    Article  PubMed  CAS  Google Scholar 

  • Shenk T (1996) Adenoviridae and their replication. In: Fields Virology B Fields, P Howley and D Knipe (ed) Raven Press, New York, NY pp 2111–2148

    Google Scholar 

  • Smiley JK,Young MA, Flint SI (1990) Intranuclear location of the adenovirus type 5 E1B 55-kilodalton protein. J Virol 64: 4558–4564

    Google Scholar 

  • Steegenga WT, Riteco N, Jochemsen AG, Fallaux FJ, Bos JL (1998) The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 16: 349–357

    Article  PubMed  CAS  Google Scholar 

  • Sternsdorf T, Grotzinger T, Jensen K, Will H (1997) Nuclear dots: actors On many stages. Immunobiology 198: 307–331

    Article  PubMed  CAS  Google Scholar 

  • Stutz F, Rosbash M (1998) Nuclear RNA export. Genes Dev 12: 3303–3319

    Article  PubMed  CAS  Google Scholar 

  • Sugawara K, Gilead Z, Wold WSM, Green M (1977) Immunofluorescence study of the adenovirus type 2 single-stranded DNA binding protein in infected and transformed cells. J Virol 22: 527–539

    PubMed  CAS  Google Scholar 

  • Teodoro JG, Branton PE (1997) Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J Virol 71: 3620–3627

    PubMed  CAS  Google Scholar 

  • Teodoro JG, Halliday T, Whalen SG, Takayesu D, Graham FL, Branton PE (1994) Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J Virol 68: 776–786

    PubMed  CAS  Google Scholar 

  • Tribouley C, Lutz P, Staub A, Kedinger C (1994) The product of the adenovirus intermediate gene IVa2 is a transcription activator of the major late promoter. J Virol 68: 4450–4457

    PubMed  CAS  Google Scholar 

  • Turnell AS, Grand RJ, Gallimore PH (1999) The replicative capacities of large E1Bnull group A and group C adenoviruses are independent of host cell p53 status. J Virol 73: 2074–2083

    PubMed  CAS  Google Scholar 

  • van Eekelen CA, Mariman EC, Reinders RJ, van Venrooij WJ (1981) Adenoviral heterogeneous nuclear RNA is associated with host cell proteins. Eur J Biochem 119: 461–467

    Article  PubMed  Google Scholar 

  • Voelkerding K, Klessig DF (1986) Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J Virol 60: 353–362

    PubMed  CAS  Google Scholar 

  • Weiden MD, Ginsberg HS (1994) Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91: 153–157

    Article  PubMed  CAS  Google Scholar 

  • Weigel S, Dobbelstein M (2000) The nuclear export signal within the E4orf6 protein of adenovirus type 5 supports virus replication and cytoplasmic accumulation of viral mRNA. J Virol 74: 764–772

    Article  PubMed  CAS  Google Scholar 

  • Weinberg DH, Ketner G (1986) Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression. J Virol 57: 833–838

    PubMed  CAS  Google Scholar 

  • Weis K (1998) Importins and exportins: how to get in and out of the nucleus. Trends Biochem Sci 23: 185–189

    Article  PubMed  CAS  Google Scholar 

  • Williams J, Karger BD, Ho YS, Castiglia CL, Mann T, Flint SJ (1986) The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4: 275–284

    CAS  Google Scholar 

  • Yang U-C, Huang W, Flint SJ (1996) mRNA export correlates with activation of tran- scription in human subgroup C adenovirus-infected cells. J Virol 70: 4071–4080

    Google Scholar 

  • Yew PR, Kao CC, Berk AJ (1990) Dissection of functional domains in the adenovirus 2 early 1B 55 k polypeptide by suppressor-linker-insertional mutagenesis. Virology 179: 795–805

    Article  PubMed  CAS  Google Scholar 

  • Yew PR, Liu X, Berk AJ (1994) Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev 8: 190–202

    Article  PubMed  CAS  Google Scholar 

  • Yoder SS, Berget SM (1986) Role of adenovirus type 2 early region 4 in the earlyto-late switch during productive infection. J Virol 60: 779–781

    PubMed  CAS  Google Scholar 

  • Zantema A, Fransen JA, Davis-Olivier A, Ramaekers FC, Vooijs GP, Deleys B, van der Es AJ (1985) Localization of the E1B proteins of adenovirus 5 in transformed cells, as revealed by interaction with monoclonal antibodies. Virology 142: 44–58

    Article  PubMed  CAS  Google Scholar 

  • Zenklusen D, Stutz F (2001) Nuclear export of mRNA. FEBS Lett 498: 150 – 156

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Feigenblum D, Schneider RJ (1994) A late adenovirus factor induces e1F–4B dephosphorylation and inhibition of cellular protein synthesis. J Virol 68: 7040–7050

    PubMed  CAS  Google Scholar 

  • Zhou Z, Luo MJ, Straesser K, Katahira J, Hurt E, Reed R (2000) The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 407: 401–405

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flint, S.J., Gonzalez, R.A. (2003). Regulation of mRNA Production by the Adenoviral E1B 55-kDa and E4 Orf6 Proteins. In: Doerfler, W., Böhm, P. (eds) Adenoviruses: Model and Vectors in Virus-Host Interactions. Current Topics in Microbiology and Immunology, vol 272. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05597-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05597-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05517-1

  • Online ISBN: 978-3-662-05597-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics