Skip to main content

Abstract

This chapter presents four applications that illustrate how the methods developed in the preceeding chapters can be applied under real practical conditions and how they can be combined to get a complete solution of control problems. A three-tank system, a chemical process, a ship propulsion system and a steam generator are considered, each of which have been investigated in detail including experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

  1. K. J. Aström, P. Albertos, M. Blanke, A. Isidori, R. Sanz and W. Schaufelberger. Control of Complex Systems. Springer Verlag London, 2001.

    Google Scholar 

  2. J. Lunze, J. Askari-Marnani and B. Heiming. Controller reconfiguration based on qualitative model: A solution of three-tanks benchmark problem. European Control Conference, Karlsruhe 1999.

    Google Scholar 

  3. B. Heiming and J. Lunze. Definition of the three-tank benchmark problem for controller reconfiguration. European Control Conference,Karlsruhe 1999. http://www. ruhr-uni-bochum. de/atp

    Google Scholar 

  4. J. Schröder. Modelling, State Observation and Diagnosis of Quantised Systems. Springer-Verlag, Berlin, 2002

    Google Scholar 

  5. J. Lunze and J. Schröder. Process diagnosis based on a discrete-event description Automatisierungstechnik47(8):358–365, 1999

    Google Scholar 

  6. J. Lunze and J. Schröder. Application of qualitative observation and prediction to a neutralisation process. Proceedings of 14th IFAC Congress, Beijing 1999, vol. I, pp. 49–54.

    Google Scholar 

  7. J. Lunze and T. Steffen. Rekonfiguration linearer Systeme bei Aktor-and Sensorfehlern. Automatisierungstechnik, 43 (2), 2003.

    Google Scholar 

  8. J. Lunze and T. Steffen. Control reconfiguration after sensor and actuator faults IEEE Trans.AC, 2003 (submitted)

    Google Scholar 

  9. F. Schiller and J. Schröder. Combining qualitative model-based diagnosis and observation with fault-tolerant systems. AI Communications, 12: 79–98, 1999.

    Google Scholar 

  10. R. Izadi-Zamanabadi and M. Blanke. Ship propulsion system as a benchmark for fault-tolerant control. Technical report, Control Engineering Dept., Aalborg University, Denmark 1998.

    Google Scholar 

  11. R. Izadi-Zamanabadi and M. Blanke. A ship propulsion system as a benchmark for fault-tolerant control. Control Engineering Practice, 7 (2): 227–239, 1999.

    Article  Google Scholar 

  12. M. Blanke. Ship Propulsion Losses Related to Automatic Steering And Prime Mover Control. PhD thesis, Technical University of Denmark (DTU ), 1981.

    Google Scholar 

  13. M. Blanke and J. S. Andersen. On dynamics of large two stroke diesel engines: New results from identification. Proceedings 9th IFAC World Conference, Budapest 1984.

    Google Scholar 

  14. D. Herrmann. Qualitative Fehlerdiagnose im Automatennetz am COSY Ship Propulsion Benchmark. Diplomarbeit, TU Hamburg-Harburg, 2000

    Google Scholar 

  15. J. P. Gauthier, H. Hammouri and S. Othman. A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. AC-37: 875–880, 1992.

    Google Scholar 

  16. A. W. Ordys. Modeling and Simulation of Power Generation Plants. Springer-Verlag 1994.

    Google Scholar 

  17. O. Boumaman, G. Dauphin-Tanguy. Bond graph model of a steam generator process and its environment, 10-th European Simulation Multiconference, Budapest 1996, pp. 238–242.

    Google Scholar 

  18. J. Thoma and B. Ould Bouamama. Modelling and simulation in thermal and chemical engineering: A Bond graph approach. Springer-Verlag Berlin, 2000.

    Google Scholar 

  19. S. A. Bogh, R. Izadi-Zamanabadi and M. Blanke. Onboard supervisor for the orsted satellite attitude control system Artificial Intelligence and Knowledge Based Systems for Space 5th Workshoppp. 137–152, Noordwijk 1995

    Google Scholar 

  20. S. A. Bogh. Fault Tolerant Control Systems - A Development Method and Real-Life Case Study. PhD thesis, Dept. of Control Eng., Aalborg University, Denmark 1997

    Google Scholar 

  21. C. Thybo and M. Blanke. Industrial cost-benefit assessment for fault-tolerant control systems. Proc. IEE Conference Control, Swansea 1998.

    Google Scholar 

  22. C. Thybo. Fault-Tolerant Control of Inverter Controlled Induction Motors, PhD Thesis, Aalborg University 2000.

    Google Scholar 

  23. R. Izadi-Zamanabadi. Fault-Tolerant Supervisory Control - System Analysis and Logic Design. PhD thesis, Dept. of Control Eng., Aalborg University, Denmark 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M. (2003). Application examples. In: Diagnosis and Fault-Tolerant Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05344-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05344-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05346-1

  • Online ISBN: 978-3-662-05344-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics