Skip to main content

On Anisotropic Geometric Diffusion in 3D Image Processing and Image Sequence Analysis

  • Conference paper
Trends in Nonlinear Analysis

Abstract

A morphological multiscale method in 3D image and 3D image sequence processing is discussed which identifies edges on level sets and the motion of features in time. Based on these indicator evaluation the image data is processed applying nonlinear diffusion and the theory of geometric evolution problems. The aim is to smooth level sets of a 3D image while preserving geometric features such as edges and corners on the level sets and to simultaneously respect the motion and acceleration of object in time. An anisotropic curvature evolution is considered in space. Whereas, in case of an image sequence a weak coupling of these separate curvature evolutions problems is incorporated in the time direction of the image sequence. The time of the actual evolution problem serves as the multiscale parameter. The spatial diffusion tensor depends on a regularized shape operator of the evolving level sets and the evolution speed is weighted according to an approximation of the apparent acceleration of objects. As one suitable regularization tool local L 2—projection onto polynomials is considered. A spatial finite element discretization on hexahedral meshes, a semi-implicit, regularized backward Euler discretization in time, and an explicit coupling of subsequent images in case of image sequences are the building blocks of the algorithm. Different applications underline the efficiency of the presented image processing tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel. Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal., 123 (3): 199–257, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Alvarez, J. Weickert, and J. Sanchez. A scale—space approach to nonlocal optival flow calculations. In M. Nielsen, P. Johansen, O. F. Olsen, and J. Weickert, editors, Scale-Space Theories in Computer Vision. Second International Conference, Scale-Space 1999, Corfu, Greece, September 1999, Lecture Notes in Computer Science; 1682, pages 235–246. Springer, 1999.

    Google Scholar 

  3. S. B. Angenent and M. E. Gurtin. Multiphase thermomechanics with interfacial structure 2, evolution of an is othermal interface. Arch. Rational Mech. Anal., 108: 323–391, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Bänsch and K. Mikula. A coarsening finite element strategy in image selective smoothing. Computing and Visualization in Science, 1: 53–63, 1997.

    Article  MATH  Google Scholar 

  5. G. Bellettini and M. Paolini. Anisotropic motion by mean curvature in the context of finsler geometry. Hokkaido Math. J., 25: 537–566, 1996.

    MathSciNet  MATH  Google Scholar 

  6. F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 29 (1): 182–193, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  7. U. Clarenz, U. Diewald, and M. Rumpf. Nonlinear anisotropic diffusion in surface processing. In Proc. Visualization 2000, pages 397–405, 2000.

    Google Scholar 

  8. C. A. Davatzikos, R. N. Bryan, and J. L. Prince. Image registration based on boundary mapping. IEEE Trans. Medical Imaging, 15 (1): 112–115, 1996.

    Article  Google Scholar 

  9. K. Deckelnick and G. Dziuk. Discrete anisotropic curvature flow of graphs. Mathematical Modelling and Numerical Analysis, to appear, 2000.

    Google Scholar 

  10. K. Deckelnick and G. Dziuk. A fully discrete numerical scheme for weighted mean curvature flow. Technical Report 30, Mathematische Fakultät Freiburg, 2000.

    Google Scholar 

  11. R. Deriche, P. Kornprobst, and G. Aubert. Optical—flow estimation while preserving its discontinuities: A variational approach. In Proc. Second Asian Conf. Computer Vision (ACCV ‘85, Singapore, December 5–8, 1995), volume 2, pages 290–295, 1995.

    Google Scholar 

  12. G. Dziuk. An algorithm for evolutionary surfaces. Numer. Math., 58: 603–611, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Evans and J. Spruck. Motion of level sets by mean curvature I. J. Diff. Geom., 33 (3): 635–681, 1991.

    MathSciNet  MATH  Google Scholar 

  14. F. Guichard. Axiomatisation des analyses multi-échelles d’images et de films. PhD thesis, University Paris IX Dauphine, 1994.

    Google Scholar 

  15. F. Guichard. A morphological, affine, and galilean invariant scale—space for movies. IEEE Transactions on Image Processing, 7 (3): 444–456, 1998.

    Article  Google Scholar 

  16. J. Kaéur and K. Mikula. Solution of nonlinear diffusion appearing in image smoothing and edge detection. Appl. Numer. Math., 17 (1): 47–59, 1995.

    Article  MathSciNet  Google Scholar 

  17. R. Kimmel. Intrinsic scale space for images on surfaces: The geodesic curvature flow. Graphical Models and Image Processing, 59 (5): 365–372, 1997.

    Article  Google Scholar 

  18. F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multimodal volume registration by maximization of mutual information. IEEE Trans. Medical Imaging, 16(7): 187–198, 1997.

    Google Scholar 

  19. K. Mikula and J. Kacur. Evolution of convex plane curves describing anisotropic motions of phase interfaces. SIAM Journal on Scientific Computing, 17 (6): 1302–1327, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Mikula and N. Ramarosy. Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numerische Mathematik, 2001.

    Google Scholar 

  21. K. Mikula, A. Sarti, F. Sgallari, and C. Lamberti. Nonlinear multiscale analysis models for filtering of 3D + time biomedical images. Lectures Notes in Computational Science and Eng. Springer Verlag, 2001.

    Google Scholar 

  22. H. H. Nagel and W. Enkelmann. An investigation of smoothness constraints for the estimation of displacement vector fields from images sequences. IEEE Trans. Pattern Anal. Mach. Intell., 8: 565–593, 1986.

    Article  Google Scholar 

  23. E. Pauwels, P. Fiddelaers, and L. Van Gool. Enhancement of planar shape through optimization of functionals for curves. IEEE Trans. Pattern Anal. Mach. Intell., 17: 1101–1105, 1995.

    Article  Google Scholar 

  24. P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. In IEEE Computer Society Workshop on Computer Vision, 1987.

    Google Scholar 

  25. T. Preußer and M. Rumpf. An adaptive finite element method for large scale image processing. Journal of Visual Comm. and Image Repres., 11: 183–195, 2000.

    Article  Google Scholar 

  26. T. Preußer and M. Rumpf. A level set method for anisotropic diffusion in 3D image processing. SIAM J. Appl. Math.,2001, to appear.

    Google Scholar 

  27. E. Radmoser, O. Scherzer, and J. Weickert. Scale-space properties of regularization methods. In M. Nielsen, P. Johansen, O. F. Olsen, and J. Weickert, editors, Scale-Space Theories in Computer Vision. Second International Conference, Scale-Space ‘89, Corfu, Greece, September 1999, Lecture Notes in Computer Science; 1682, pages 211–220. Springer, 1999.

    Google Scholar 

  28. G. Sapiro. Vector (self) snakes: A geometric framework for color, texture, and multiscale image segmentation. In Proc. IEEE International Conference on Image Processing, Lausanne, September 1996.

    Google Scholar 

  29. A. Sarti, K. Mikula, and F. Sgallari. Nonlinear multiscale analysis of 3D echocardiography sequences. IEEE Transactions of Medical Imaging, 18 (6): 453–466, 1999.

    Article  Google Scholar 

  30. C. Schnoerr. A study of a convex variational diffusion approach for image segmentation and feature extraction. J. Math. Imaging Vis., 8 (3): 271–292, 1998.

    Article  MATH  Google Scholar 

  31. J. E. Taylor, J. W. Cahn, and C. A. Handwerker. Geometric models of crystal growth. Acta metall. mater., 40: 1443–1474, 1992.

    Article  Google Scholar 

  32. J. P. Thirion. Image matching as a diffusion process: An analogy with maxwell’s demon. Medical Imag. Analysis 2, pages 243–260, 1998.

    Article  Google Scholar 

  33. V. Thomee. Galerkin-Finite Element Methods for Parabolic Problems. Springer, 1984.

    Google Scholar 

  34. J. Weickert. Anisotropic diffusion in image processing. Teubner, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mikula, K., Preußer, T., Rumpf, M., Sgallari, F. (2003). On Anisotropic Geometric Diffusion in 3D Image Processing and Image Sequence Analysis. In: Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds) Trends in Nonlinear Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05281-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05281-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07916-0

  • Online ISBN: 978-3-662-05281-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics