Skip to main content

Recent Developments in Multiscale Problems Coming from Fluid Mechanics

  • Conference paper
Trends in Nonlinear Analysis

Abstract

Two topics will be discussed:

  1. (i)

    Homogenization of Flow Problems in the Presence of Rough Boundaries and Interfaces

    We consider tangential viscous flows over rough surfaces and obtain the effective boundary condition. It is the Navier’s slip condition, used in the computations of viscous flows in complex geometries. The effective coefficients, the Navier’s matrix, is determined by upscaling. It is given by solving an appropriate boundary layer problem. Then we address application to the drag reduction. Finally, we consider viscous flows through domains containing two or more sub-domains, separated by interfaces. Sub-domains are supposed to be geometrically different. A typical example is a viscous flow over a porous bed. It will be shown that in the upscaled problem, it is enough to consider the free fluid part and impose the law of Beavers and Joseph at the interface. Another class of problems is a flow through 2 different porous media. The homogenization, coupled with the boundary layers, gives the effective law at the interface. In this chapter we’ll explain how those results are obtained, give precise references for technical details and present open problems.

  2. (ii)

    Interactions Flow-Structures

    We consider viscous and inviscid fluid flows through a deformable porous medium. The solid skeleton is supposed to be elastic. We present the modeling of the problem and a derivation of Biot’s type equations by homogenization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Acerbi, V. Chiado Piat, G. Dal Maso and D. Percivale. An extension theorem from connected sets and homogenization in general periodic domains, Nonlinear Anal., Theory Methods Appl. 18 (1992), 481–496.

    Article  MATH  Google Scholar 

  2. Y. Achdou, O. Pironneau, Domain decomposition and wall laws, C. R. Acad. Sci. Paris, Série I, 320 (1995), p. 541–547.

    MathSciNet  Google Scholar 

  3. Y. Achdou, O. Pironneau, F. Valentin, Shape control versus boundary control, eds F. Murat et al., Equations aux dérivées partielles et applications. Articles dédiés à J.L.Lions, Elsevier, Paris, 1998, p. 1–18.

    Google Scholar 

  4. Y. Achdou, O. Pironneau, F. Valentin, Effective Boundary Conditions for Laminar Flows over Periodic Rough Boundaries, J. Comp. Phys., 147 (1998), p. 187–218.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Allaire. Homogenization of the Stokes flow in a connected porous medium, Asympt. Anal. 2 (1989), 203–222.

    Google Scholar 

  6. G. Allaire. Homogenization and two-scale convergence, SIAM J. Math. Anal. 23.6 (1992), 1482–1518.

    Google Scholar 

  7. G. Allaire, M. Amar, Boundary layer tails in periodic homogenization, ESAIM: Control, Optimisation and Calculus of Variations 4 (1999), p. 209–243.

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Amirat, J. Simon, Influence de la rugosité en hydrodynamique laminaire, C. R. Acad. Sci. Paris, Série I, 323 (1996), p. 313–318.

    MathSciNet  Google Scholar 

  9. Y. Amirat, J. Simon, Riblet and Drag Minimization, in Cox, S (ed) et al., Optimization methods in PDEs, Contemp. Math, 209, p. 9–17, American Math. Soc., Providence, 1997.

    Google Scholar 

  10. Y. Amirat, D. Bresch, J. Lemoine, J. Simon, Effect of rugosity on a flow governed by Navier-Stokes equations, to appear in Quaterly of Appl. Maths 2001.

    Google Scholar 

  11. J.-L. Auriault. Poroelastic media, in Homogenization and Porous Media, U. Hornung, ed., Interdisciplinary Applied Mathematics, Springer, Berlin, (1997), 163–182.

    Google Scholar 

  12. G. S. Beavers, D. D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech. 30 (1967), p. 197–207.

    Google Scholar 

  13. D. W. Bechert, M. Bartenwerfer, The viscous flow on surfaces with longitudinal ribs, J. Fluid Mech. 206 (1989), p. 105–129.

    Article  Google Scholar 

  14. D. W. Bechert, M. Bruse, W. Hage, J. G. T. van der Hoeven, G. Hoppe, Experiments on drag reducing surfaces and their optimization with an adjustable geometry, preprint, spring 1997.

    Google Scholar 

  15. M. A. Biot, Theory of Elasticity and Consolidation for a Porous Anisotropic Solid, J. Appl. Phys., 26, 182–185 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. A. Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lower frequency range, and II. Higher frequency range, J. Acoust Soc. Am. 28 (2) (1956), 168–178

    Article  Google Scholar 

  17. M. A. Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lower frequency range, and II. Higher frequency range, J. Acoust Soc. Am. 28 (2) (1956), 179–191.

    Article  Google Scholar 

  18. M. A. Biot and D. G. Willis, The Elastic Coefficients of the Theory of Consolidation, J. Appl. Mech., 24, 594–601 (1957).

    MathSciNet  Google Scholar 

  19. M. A. Biot. Generalized theory of acoustic propagation in porous dissipative media, Jour. Acoustic Soc. Amer. 34 (1962), 1254–1264.

    Google Scholar 

  20. M. A. Biot. Mechanics of deformation and acoustic propagation in porous media, Jour. Applied Physics 33 (1962), 1482–1498.

    Article  MATH  Google Scholar 

  21. R. Burridge and J. B. Keller. Poroelasticity equations derived from microstructure, Jour. Acoustic Soc. Amer. 70 (1981), 1140–1146.

    MATH  Google Scholar 

  22. D. M. Bushnell, K. J. Moore, Drag reduction in nature, Ann. Rev. Fluid Mech. 23 (1991), p. 65–79.

    Article  Google Scholar 

  23. G. Buttazzo, R. V. Kohn, Reinforcement by a Thin Layer with Oscillating Thickness, Appl. Math. Optim. 16 (1987), p. 247–261.

    Article  MathSciNet  Google Scholar 

  24. T. Clopeau, J. L. Ferrin, R.P. Gilbert and A. Mikelie, Homogenizing the acoustic properties of the seabed: Part II, Mathematical and Computer Modelling, 33 (2001), p. 821–841.

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Cotoi, Etude asymptotique de l’écoulement d’un fluide visqueux incompressible entre une plaque lisse et une paroi rugueuse, doctoral dissertation, Université Blaise Pascal, Clermont-Ferrand, January 2000.

    Google Scholar 

  26. G. Dagan, The Generalization of Darcy’s Law for Nonuniform Flows, Water Resources Research, Vol. 15 (1981), p. 1–7.

    Article  MATH  Google Scholar 

  27. R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology 5 EVOLUTION PROBLEMS 1, Springer, Berlin, (1992).

    MATH  Google Scholar 

  28. H. I. Ene, E. Sanchez-Palencia, Equations et phénomènes de surface pour l’écoulement dans un modèle de milieu poreux, J. Mécan., 14 (1975), p. 73–108.

    MathSciNet  MATH  Google Scholar 

  29. A. Fasano, A. Mikelié and M. Primicerio. Homogenization of flows through porous media with grains, Advances in Mathematical sciences and Applications, 8 (1998), 1–31.

    MathSciNet  MATH  Google Scholar 

  30. J. L. Ferrin, A. Mikelié, Homogenizing the Acoustic Properties of a Porous Matrix Containing an Incompressible Inviscid Fluid, preprint, Université Claude Bernard Lyon 1, February 2001.

    Google Scholar 

  31. R. P. Gilbert and A. Mikelié. Homogenizing the acoustic properties of the seabed: Part I, Nonlinear Analysis, 40 (2000), 185–212.

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Verlag, Berlin, 1986.

    MATH  Google Scholar 

  33. W. Jäger, A. Mikelié, Homogenization of the Laplace equation in a partially perforated domain, prépublication no. 157, Equipe d’Analyse Numérique LyonSt-Etienne, September 1993, published in “ Homogenization, In Memory of Serguei Kozlov “, eds. V. Berdichevsky, V. Jikov and G. Papanicolaou, p. 259–284, Word Scientific, Singapore, 1999.

    Google Scholar 

  34. W. Jäger, A. Mikelié, On the Boundary Conditions at the Contact Interface between a Porous Medium and a Free Fluid, Annali della Scuola Normale Superiore di Pisa, Classe Fisiche e Matematiche–Serie IV 23 (1996), Fasc. 3, p. 403–465.

    Google Scholar 

  35. W. Jäger, A. Mikelié, On the effective equations for a viscous incompressible fluid flow through a filter of finite thickness, Communications on Pure and Applied Mathematics 51 (1998), p. 1073–1121.

    Article  MathSciNet  MATH  Google Scholar 

  36. W. Jäger. Mikelié, On the boundary conditions at the contact interface between two porous media, in Partial differential equations, Theory and numerical solution, eds. W. Jäger, J. Necas, O. John, K. Najzar, et J. Stara, n Chapman and Hall/CRC Research Notes in Mathematics no 406, 1999. pp. 175–186.

    Google Scholar 

  37. W. Jäger, A. Mikelié, On the interface boundary conditions by Beavers, Joseph and Saffman, SIAM J. Appl. Math., 60 (2000), p. 1111–1127.

    MATH  Google Scholar 

  38. W. Jäger, A. Mikelié, On the roughness-induced effective boundary conditions for a viscous flow, J. of Differential Equations, 170 (2001), p. 96–122.

    Article  MATH  Google Scholar 

  39. W. Jäger, A. Mikelié, N. Neuß, Asymptotic analysis of the laminar viscous flow over a porous bed, SIAM J. on Scientific and Statistical Computing, 22 (2001), p. 2006–2028.

    MATH  Google Scholar 

  40. W. Jäger, A. Mikelié, Turbulent Couette Flows over a Rough Boundary and Drag Reduction, preprint, Université Claude Bernard Lyon 1, september 2001.

    Google Scholar 

  41. V. V. Jikov, S. M. Kozlov and O. A. Oleinik. Homogenization of Differential Operators and Integral Functionals. Springer Verlag, New York, (1994).

    Book  Google Scholar 

  42. J. L. Lions, Some Methods in the Mathematical Analysis of Systems and Their Control, Gordon and Breach, New York, 1981.

    MATH  Google Scholar 

  43. P. Luchini, F. Manzo, A. Pozzi, Resistance of a grooved surface to parallel flow and cross-flow, J. Fluid Mech. 228 (1991), p. 87–109.

    MATH  Google Scholar 

  44. Th. Levy, E. Sanchez-Palencia, On boundary conditions for fluid flow in porous media, Int. J. Engng. Sci., Vol. 13 (1975), p. 923–940.

    MATH  Google Scholar 

  45. Th. Levy. Acoustic phenomena in elastic porous media, Mech. Res. Comm. 4 (4) (1977), 253–257.

    Article  Google Scholar 

  46. A. Mikelic. Mathematical derivation of the Darcy-type law with memory effects, governing transient flow through porous medium, Glasnik Matematicki 29 (49) (1994), 57–77.

    Google Scholar 

  47. A. Mikelié, L. Paoli. Homogenization of the inviscid incompressible fluid flow trough a 2D porous medium, Proceedings of the AMS, vol. 17 (1999), 2019–2028.

    Article  Google Scholar 

  48. A. Mikelic, Homogenization theory and applications to filtration through porous media, chapter in Filtration in Porous Media and Industrial Applications, by M. Espedal, A. Fasano and A. M.kelié, Lecture Notes in Mathematics Vol. 1734, Springer-Verlag, 2000, p. 127–214.

    Google Scholar 

  49. B. Mohammadi, O. Pironneau, F. Valentin, Rough Boundaries and Wall Laws, Int. J. Numer. Meth. Fluids, 27 (1998), p. 169–177.

    Article  MathSciNet  MATH  Google Scholar 

  50. C. L. M. H. Navier, Sur les lois de l’équilibre et du mouvement des corps élastiques, Mem. Acad. R. Sci. Inst. France, 369 (1827).

    Google Scholar 

  51. G. Nguetseng. A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989), 608–623.

    MathSciNet  MATH  Google Scholar 

  52. G. Nguetseng. Asymptotic analysis for a stiff variational problem arising in mechanics, SIAM J. Math. Anal. 20.3 (1990), 608–623.

    Google Scholar 

  53. O. A. Oleinik, G. A. Iosif’jan, On the behavior at infinity of solutions of second order elliptic equations in domains with noncompact boundary, Math. USSR Sbornik 40 (1981), p. 527–548.

    Article  Google Scholar 

  54. R. L. Panton, Incompressible Flow, John Wiley and Sons, New York, 1984.

    MATH  Google Scholar 

  55. P. G. Saffman, On the boundary condition at the interface of a porous medium, Studies in Applied Mathematics, 1 (1971), p. 77–84.

    Google Scholar 

  56. E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer Lecture Notes in Physics 127, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  57. H. Schlichting, K. Gersten, Boundary-Layer Theory, 8th Revised and Enlarged Edition, Springer-Verlag, Berlin, 2000.

    Google Scholar 

  58. I. Tolstoy, ed., Acoustics, elasticity, and thermodynamics of porous media. Twenty-one papers by M.A. Biot, Acoustical Society of America, New York, 1992.

    Google Scholar 

  59. S. Vogel, Life in Moving Fluids, 2nd ed., Princeton university Press, Princeton, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mikelić, A. (2003). Recent Developments in Multiscale Problems Coming from Fluid Mechanics. In: Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds) Trends in Nonlinear Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05281-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05281-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07916-0

  • Online ISBN: 978-3-662-05281-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics