Skip to main content

Did Something Change? Thresholds in Population Models

  • Conference paper
Trends in Nonlinear Analysis

Abstract

The goal of this article is to illustrate several interesting bifurcations that can arise in population biology. These are of interest since it is often through bifurcation phenomena that changes significant enough to be measured occur. For example, a minor change in some environmental parameter can cause a system to change from being at rest to oscillating. We illustrate here the role of several canonical types of bifurcations in population modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Albrecht, H. Gatzke, A. Hadad, and N. Wax, The dynamics of two interacting populations, J.Math. Anal. Appl. 46 (1974), 658–670

    Article  MathSciNet  MATH  Google Scholar 

  2. V.I. Arnol’d, ed., Dynamical Systems V. Bifurcation Theory and Catastrophe Theory. Springer-Verlag, New York, 1994.

    Google Scholar 

  3. G. J. Butler and P. Waltman, Bifurcation from a limit cycle in a two predator-one prey ecosysstem modeled on a chemostat, J. Math. Bio. 12 (1981), 295–310

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, K. -S., Uniqueness of limit cycles for a predator-prey system, SIAM J. Math. Analysis 12 [ 1981 ], 541–548

    Google Scholar 

  5. W. Feller, An Introduction to Probability Theory and its Applications, vols. I, II, Wiley-Interscience, New York.

    Google Scholar 

  6. H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980

    MATH  Google Scholar 

  7. J. Glieck, Chaos: Making of a New Science, Viking, 1987.

    Google Scholar 

  8. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer-Verlag, New York, 1983.

    Google Scholar 

  9. J. Hofbauer and J.W.-H. So, Multiple Limit Cycles for Pedator-Prey Models, Math. Biosciences 99 (1990), 71–75

    Article  MathSciNet  MATH  Google Scholar 

  10. F. C. Hoppensteadt, A nonlinear renewal equation with periodic and chaotic solutions, Proc. AMS-SIAM Conf. Appl. Math., New York, April, 1976.

    Google Scholar 

  11. F.C. Hoppensteadt, Analysis and Simulation of Chaotic Systems, 2nd ed., Springer Verlag, New York, 2000.

    MATH  Google Scholar 

  12. F.C. Hoppensteadt, Mathematical Methods of Population Biology, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  13. F.C. Hoppensteadt and J.M. Hyman, Periodic solutions to a discrete logistic equation, SIAM Appl. Math. 32(1977)73–81.

    Google Scholar 

  14. F.C. Hoppensteadt, E.M. Izhikevich, Weakly Connected Neural Networks, Springer-Verlag, New York, 1997.

    Book  Google Scholar 

  15. F.C. Hoppensteadt, Z. Jacekewicz, Numerical solution of nonlinear Volterra equations, in preparation.

    Google Scholar 

  16. F.C. Hoppensteadt, C.S. Peskin, Modeling and Simulation in Medicine and the Life Sciences, Springer-Verlag, in press.

    Google Scholar 

  17. F.C. Hoppensteadt, P. Waltman, A problem in the theory of epidemics (1970, 1971)Math. Biosci. 9,71–91, 12, 133–145.

    Google Scholar 

  18. S. B. Hsu, S.P. Hubbell, and P. Waltman, Competing Predators, SIAM J. Appl. Math. 35 (1978), 617–625

    MathSciNet  MATH  Google Scholar 

  19. S. B. Hsu, S.P. Hubbell, and P. Waltman, A contribution to the theory of competing predators, Ecol. Monographs 48 (1978), 337–349

    Article  Google Scholar 

  20. A. Kolmorgoroff, Sulla teoria di Volterra della latta per l’esistenza, Gi. Inst. Ital. Attuari 7 (1936), 74–80

    Google Scholar 

  21. Yu. Kuznetzov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1995.

    Book  Google Scholar 

  22. J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag, New York, 1976

    Book  MATH  Google Scholar 

  23. R. M. May, Limit cycles in predator-prey communities, Science 177 (1972), 900–902.

    Article  Google Scholar 

  24. J. D. Murray, Mathematical Biology, Springer-Verlag, New York, 1989.

    Book  MATH  Google Scholar 

  25. W.E. Ricker, Stock and recruitment, J. Fish. Res. Bd. Canada, 11 (1954) 559–623.

    Article  Google Scholar 

  26. A. Riscigno and I.W. Richardson, On the competitive exclusion principle, Bulletin Math. Biophysics, 27 (1965), 85–89

    Article  Google Scholar 

  27. A. Riscigno and I. W. Richardson,The struggle for life I:two species, Bulletin Math. Biphysics, 29 (1967), 377–388

    Article  Google Scholar 

  28. A.V. Skorokhod, F.C. Hoppensteadt, H.S. Salehi, Random Perturbations of Dynamical Systems, Springer-Verlag, 2002.

    Google Scholar 

  29. H. L. Smith, The interaction of steady state and Hopf bifurcation in a two-predator, one prey competition model, SIAM J. Applied Math. (1982)27–43.

    Google Scholar 

  30. R. Thom, Structural stability and Morphogenesis: An outline of a general theory of models, W.A. Benjamin, Reading, MA, 1975.

    Google Scholar 

  31. P. Waltman, Deterministic Threshold Models in the Theory of Epidemics, Springer-Verlag, New York, 1974.

    Book  MATH  Google Scholar 

  32. P. Waltman, Competition Models in Population Biology, Soc. Ind. Appl. Math., Philadelphia, 1983.

    Google Scholar 

  33. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

This paper is dedicated to our good friend Professor Willi Jäger on the occasion of his 60th birthday. The three of us have collaborated since a momentous year (for us) at the Courant Institute of Mathematical Sciences in 1969–70

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoppensteadt, F., Waltman, P. (2003). Did Something Change? Thresholds in Population Models. In: Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds) Trends in Nonlinear Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05281-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05281-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07916-0

  • Online ISBN: 978-3-662-05281-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics