Skip to main content
  • 1127 Accesses

Abstract

The framework for this discussion will be an algebra A of observables with a strongly continuous time-automorphism and a time-invariant state ρ In the GNS representation the invariant state is made into a vector \(\left| \Omega \right\rangle \), and the timeautomorphism is represented as a unitary group of operators \(U = \left\{ {\exp (iHt)} \right\},U\left| \Omega \right\rangle = \left| \Omega \right\rangle \). The time-evolution then extends to the weak closure A″. If the representation is reducible, then it may occur that UA″, even if \(U_t^{ - 1}A{U_t} \subset A.\) The von Neumann algebra

$$ R \equiv {\left\{ {A \cup U} \right\}^{\prime \prime }},R' = A' \cap U', $$

generated by A and U is known as the covariance algebra and will figure prominently in what follows.

Whereas small systems evolve almost periodically in time, large systems appear chaotic and their time-evolution mixes the observables thoroughly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bisognano, E.H. Wichmann: On the Duality Condition for a Hermitian Scalar Field. Journ. Math. Phys. 16, 985–1007, 1975.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. R. Figari, R. Hoegh-Krohn, C.R. Nappi: Interacting Relativistic Boson Fields in the de Sitter Universe with Two Space-Time Dimensions. Commun. Math. Phys. 44, 265–278, 1975.

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Bisognano, E.H. Wichmann: On the Duality Condition for Quantum Fields. Journ. Math. Phys. 17, 303–312, 1976.

    Article  MathSciNet  ADS  Google Scholar 

  4. G.G. Emch: Generalized K-Flows. Commun. Math. Phys. 49, 191–215, 1976.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. L. Accardi, A. Frigerio, J.T. Lewis: Quantum Stochastic Processes. Publ. RIMS Kyoto 18, 97–133, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Kosaki: Extension of Jones Theory on Index to Arbitrary Factors. Journ. Funct. Analysis 66, 123–140, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Pimsner, S. Popa: Entropy and Index for Subfactors. Ann. Sci. Ec. Norm. Sup. 19, 57–106, 1986.

    MathSciNet  MATH  Google Scholar 

  8. A. Connes, H. Narnhofer, W. Thirring: Dynamical Entropy of C*-Algebras and von Neumann Algebras. Commun. Math. Phys. 112, 691–719, 1987.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. R. Longo: Simple Injective Subfactors. Advances in Mathematics 63, 152–171, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Price: Shifts of IIi Factors. Canad. J. Math. 39, 492–511, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Kammerer: Survey on a Theory of non commutative stationary Markov processes, Quantum probability and applications III, L. Accardi, W. v. Waldenfeld eds., Berlin, Springer, 1988, p. 228–244.

    Google Scholar 

  12. M. Pimsner, S. Popa; Iterating the Basic Construction. Trans. Amer. Math. Soc. 310, 127–133, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  13. R.T. Powers: An Index Theory for Semigroups of *-endomorphisms of B(H) and Type III Factors. Canad. J. Math. 40, 86–114, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Narnhofer, W. Thirring: Quantum K-Systems. Commun. Math. Phys. 125, 565–577, 1989.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. H. Narnhofer, A. Pflug, W. Thirring: Mixing and Entropy Increase in Quantum Systems. Scuola Normale Superiore Pisa 597–626, 1989.

    Google Scholar 

  16. R. Longo: Index of Subfactors and Statistics of Quantum Fields. Commun. Math. Phys. 130, 285–309, 1990.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. H. Narnhofer, W. Thirring: Algebraic K-Systems. Leu. Math. Phys. 20, 231–250, 1990.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. F. Benatti: Deterministic Chaos in Infinite Quantum Systems, SISSA Notes in Physics, Berlin-Heidelberg-New York, Springer, 1993.

    Book  Google Scholar 

  19. H.J. Borchers: On Modular Inclusion and Spectrum Condition. Lett. Math. Phys. 27, 311–324, 1993.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. H.W. Wiesbrock: Halfsides Modular Inclusions of von Neumann Algebras. Commun. Math. Phys. 157, 83–92, 1993;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. H.W. Wiesbrock: Halfsides Modular Inclusions of von Neumann Algebras. Commun. Math. Phys. 184, 683–685, 1997.

    MathSciNet  Google Scholar 

  22. R. Alicki, H. Fannes: Defining Quantum Dynamical Entropy. Lett. Math. Phys. 32, 75–82, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. G.G. Emch, H. Narnhofer, G.L. Sewell, W. Thirring: Anosov Actions on Non-Commutative Algebras. J. Math. Phys. 35/11, 5582–5599, 1994.

    Google Scholar 

  24. H. Narnhofer, W. Thirring: Clustering for Algebraic K-Systems. Lett. Math. Phys. 30, 307–316, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. H. Namhofer, E. Sttbrmer, W. Thirring: C*-dynamical systems for which the tensor product formula for entropy fails. Ergod. Th. and Dyn. Systems 15, 961–968, 1995.

    Article  Google Scholar 

  26. D.V. Voiculescu: Dynamical Approximation Entropies and Topological Entropy in Operator Algebras 2. Commun. Math. Phys. 170, 249–282, 1995.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. H. Namhofer, I. Peter, W. Thirring: How Hot is the de Sitter Space. Int. J. Mod. Phys. B 10, 1507–1520, 1996.

    Article  ADS  Google Scholar 

  28. H. v. Beijeren, J.R. Dorfmann, H.A. Posch, Ch. Dellago: Kolmogorov—Sinai entropy for dilute gases in equilbrium. Phys. Rev. E 56/5, 5272–5277, 1997.

    Google Scholar 

  29. H.J. Borchers: On the Revolutionization of Quantum Field Theory by Tomita’ s Modular Theory. Preprint ESI-773–1999 (160 pages, 148 references).

    Google Scholar 

  30. D. Shlyakhtenko: Free Quasifree States. Pac. Journ. of Math. 177, 329–368, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  31. H.W. Wiesbrock: Symmetries and Modular Intersections of von Neumann Algebras. Lett. Math. Phys. 39, 203–212, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  32. G.G. Emch, I. Peter: Quantum Anosov Flows: A New Family of Examples. Journ. Math. Phys. 39/9, 4513–4539, 1998.

    Google Scholar 

  33. V.Ya. Golodets, S.V. Neshveyev: Non Bernoullian Quantum K-Systems. Commun. Math. Phys. 195, 213–232, 1998.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. V.Ya. Golodets, E. Stormer: Entropy of C*-Dynamical Systems Defined by Bitstreams. Ergod. Th. and Dynam. Systems 18, 1–16, 1998.

    Article  MathSciNet  Google Scholar 

  35. H. Narnhofer, W. Thirring: Equivalence of Modular K and Anosov Dynamical Systems. Preprint UWThPh-1998-xx, to be publ. in Rev. Math. Phys.

    Google Scholar 

  36. H.W. Wiesbrock: Modular Intersections of von Neumann Algebras in Quantum Field Theory. Commun. Math. Phys. 193, 269–285, 1998.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. H.J. Borchers: On Thermal States of (1+1)-Dimensional Quantum Systems. Preprint ESI-788–1999.

    Google Scholar 

  38. H.J. Borchers, J. Yngvason: Modular Groups of Quantum Fields in Thermal States. J. Math. Phys. 40, 601–624, 1999.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. M. Choda: Entropy on Cuntz’s Canonical Endomorphism. Pacif. Journ. of Math. 190, 235–245, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Narnhofer: Time Reversibility for Modular K-Systems. Preprint (1999), ESI 716, to be publ. in Rep. Math. Phys..

    Google Scholar 

  41. H. Narnhofer, W. Thirring: Realizations of Two-Sided Quantum K-Systems. Preprint (1999), ESI 717, to be publ. in Rep. Math. Phys.

    Google Scholar 

  42. D. Ruelle: Statistical Mechanics, Rigorous Results. New York, Benjamin, 1969.

    Google Scholar 

  43. G. Emch: Algebraic Methods in Statistical Mechanics and Quantum Field Theory. New York, Wiley, 1971.

    Google Scholar 

  44. E.B. Davies: Quantum Theory of Open Systems. New York, Academic Press,1976.

    Google Scholar 

  45. V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E.C.G. Sudarshan: Properties of Quantum Markovian Master Equations. Rep. Math. Phys. 13, 149–173, 1978.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. P. Martin: Modèls en Méchanique Statistique des Processus Irréversibles. New York and Berlin, Springer, 1979.

    Google Scholar 

  47. G. Lindblad: Completely Positive Maps and Entropy Inequalities. Commun. Math. Phys. 40, 147–151, 1975.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. A. Uhlmann: Relative Entropy and the Wigner—Yanase—Dyson—Lieb Concavity in an Interpolation Theory. Commun. Math. Phys. 54, 21–322, 1970.

    Article  MathSciNet  ADS  Google Scholar 

  49. F. Greenleaf: Invariant Means on Topological Groups. New York, Van Nostrand, 1966.

    Google Scholar 

  50. A. Guichardet. Systémes Dynamiques non Commutatifs. Astérisque 13–14, 1974.

    Google Scholar 

  51. V.I. Arnol’d and A. Avez: Ergodic Problems of Classical Mechanics. New York, Benjamin, 1968.

    Google Scholar 

  52. N.M. Hugenholtz: In: Mathematics of Contemporary Physics, R. Streater, ed. New York and London, Academic Press, 1972.

    Google Scholar 

  53. R. Haag, N.M. Hugenholtz, and M. Winnink: On the Equilibrium States in Quantum Statistical Mechanics. Commun. Math. Phys. 5, 215–236, 1967.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. M. Takesaki: Tomita’s Theory of Modular Hilbert Algebras and Its Applications, Lecture Notes in Mathematics, vol. 128. New York and Berlin, Springer, 1970.

    Google Scholar 

  55. H. Narnhofer and D.W. Robinson: Dynamical Stability and Pure Thermodynamic Phases. Commun. Math. Phys. 41, 89–97, 1975.

    Article  MathSciNet  ADS  Google Scholar 

  56. R. Haag, D. Kastler, and E.B. Trych-Pohlmeyer: Stability and Equilibrium States. Commun. Math. Phys. 38, 173–193, 1974.

    Article  MathSciNet  ADS  Google Scholar 

  57. W. Pusz and S.L. Woronovicz: Passive States and KMS States for General Quantum Systems. Commun. Math. Phys. 58, 273–290, 1978.

    Article  ADS  Google Scholar 

  58. A. Lenard: Thermodynamical Proof of the Gibbs Formula for Elementary Quantum Systems. J. Stat. Phys. 19, 575–586, 1978.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thirring, W. (2002). Thermodynamics. In: Quantum Mathematical Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05008-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05008-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07711-1

  • Online ISBN: 978-3-662-05008-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics