Skip to main content

Bioavailability — the Key Factor of Soil Bioremediation

  • Chapter
Treatment of Contaminated Soil

Abstract

In the last two decades it has been shown that many pollutant compounds being found in soils or aqueous ecosystems may potentially be transformed by microorganisms. Transformation may be either completely into carbon dioxide and water, or at least into non-toxic metabolites (Klein 2000). These promising research results inspired many remediation companies to set up particular bioremediation approaches for the clean-up of such contaminated areas. The bio-enthusiasm of the early years, however, is now followed by a more realistic and sometimes even sceptical view of bioremediation. The major reason for this turn-around is that it has now become clear that results being obtained in the laboratory with artificially contaminated soils do not necessarily indicate what may happen actually in the field with soil from contaminated sites. With hydrophobic pollutants like PAH (Bossert et al. 1984; Erickson et al. 1993; Schaefer et al. 1995; Weissenfels et al. 1992) or some sorts of mineral oil (Angehrn et al. 1997; Bossert et al. 1984; Riis et al. 1998) in particular, it has been observed that even the degradation of compounds being completely mineralisable in the lab-culture may be incomplete in practical field bioremediation. Considerable residual concentrations of analytically detectable pollutants in the soil are subsequently left behind. An example for such a typical “hockey-stick-kinetic” (a term coined by M. Alexander, see Chapter 14) is shown in fig. 13.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Angehrn D, Gälli R, Schluep M, Zeyer J (1997) Biologisch saniertes Bodenmaterial aus Mineralölschadensfällen: Abfall oder Produkt ? TerraTech 3 /1997: 51–56

    Google Scholar 

  • Bollag JM (1992) Decontaminating soil with enzymes. Environ Sci Technol 26: 1876–1881

    Article  CAS  Google Scholar 

  • Boonchan S, Britz ML, Stanley G (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial-cocultures. Appl En-viron Microbiol 66: 1007–1019

    Article  Google Scholar 

  • Bosma TNP, Middeldorp PJM, Zehnder AJB (1997) Mass transfer limitation of biotransformation: Quantifying bioavailability. Environ Sci Technol 31: 248–252

    Google Scholar 

  • Bossert I, Kachel MW, Bartha R (1984) Fate of hydrocarbons during oily sludge disposal in soil. Appl Environ Microbiol 47: 763–767

    CAS  Google Scholar 

  • Cuno M (1996) Kinetische Untersuchungen zum biologischen Abbau von Mineralölen und polycyclischen aromatischen Kohlenwasserstoffen. Fortschr-Ber VDI Series 15 (Umwelttechnik), Nr 148, VDI-Verlag Düsseldorf

    Google Scholar 

  • Deschenes L, Lafrance P, Villeneuve JP, Samson R (1996) Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl Microbiol Biotechnol 46: 638646

    Google Scholar 

  • Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol 57: 1441–1447

    CAS  Google Scholar 

  • Efroymson RA, Alexander M (1995) Reduced mineralization of low concentrations of phenanthrene because of sequestering in nonaqueous-phase-liquids. Environ Sci Technol 29: 515521

    Google Scholar 

  • Erickson DC, Loehr RC, Neuhauser EF (1993) PAH loss during bioremediation of manufactured gas plant site soils. Water Res 27: 911–919

    Article  CAS  Google Scholar 

  • Foght JM, Gutnick DL, Westlake DWS (1989) Effect of emulsan on biodegradation of crude oils by pure and mixed bacterial cultures. Appl Environ Microbiol 55: 36–42

    CAS  Google Scholar 

  • Ghoshal S, Luthy RG (1996) Bioavailability of hydrophobic organic compounds from nonaqueous-phase-liquids: the biodegradation of naphthalene from coal tar. Environ Toxicol Chem 15: 1894–1900

    Article  Google Scholar 

  • Harms H (1998) Bioavailability of dioxin-like compounds for microbial degradation. In: Wittich RM (ed) Biodegradation of dioxins and furans. Springer Verlag, Heidelberg, Germany, pp 135–163

    Chapter  Google Scholar 

  • Käppeli O, Walther P, Mueller M, Fiechter A (1984) Structure of the cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol 138: 279–292

    Article  Google Scholar 

  • Klein J (2000) Environmental processes II — Soil decontamination. In: Klein J (ed) (Rehm HJ, Reed G, Pühler A, Stadler P, (series eds)) `Biotechnology“ a multi-volume comprehensive treatise, Vol 11 b, Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Knackmuss HJ (1997) Abbau von Natur-und Fremdstoffen. In: Ottow JCG, Bidlingmaier W (eds) Umweltbiotechnologie. Gustav Fischer Verlag, Stuttgart, Germany, pp 39–80

    Google Scholar 

  • Kottermann MJJ, Vis E, Field JA (1998) Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous micro-flora. Appl Environ Microbiol 64: 2853–2858

    Google Scholar 

  • Laha S, Luthy RG (1991) Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ Sci Technol 25: 1920–1930

    Article  CAS  Google Scholar 

  • Lenke H, Daun G, Bryniok D, Knackmuss HJ (1993) Biologische Sanierung von Rüstungsaltlasten. Spektrum der Wissenschaft 10 /1993: 106–108

    Google Scholar 

  • Mahro B (2000) Bioavailability of contaminants. In: Klein J (ed) (Rehm HJ, Reed G, Pühler A, Stadler P (series Eds)) Environmental processes II — Soil decontamination. “Biotechnology” a multi-volume comprehensive treatise, Vol 11 b. Wiley-VCH, Weinheim, Germany, pp 61–88

    Google Scholar 

  • Mahro B, Kästner M (1993) Der mikrobielle Abbau polyzyklischer aromatischer Kohlenwasser-stoffe (PAK) in Böden und Sedimenten: Mineralisierung Metabolitenbildung und Entstehung gebundener Rückstände. Bioengineering 9: 50–58

    Google Scholar 

  • Mahro B, Schaefer G (1998) Bioverfügbarkeit als limitierender Faktor des mikrobiellen Abbaus von PAK im Boden-Ursachen des Problems und Lösungsstrategien. Altlastenspektrum 7: 127–134

    CAS  Google Scholar 

  • Mahro B, Schmidt L, Eschenbach A (1999) Möglichkeiten und Grenzen mikrobiologischer Verfahren bei der Sanierung kontaminierter Böden. In: Heiden S, Erb R, Warrrelmann J, Dierstein R (eds) Biotechnologie im Umweltschutz Bioremediation: Entwicklungsstand — Anwendungen — Perspektiven. E Schmidt-Verlag, Berlin, Germany, pp 99–107

    Google Scholar 

  • Marin M, Pedregosa A, Laborda F (1996) Emulsifier production and microscopical study of emulsions and biofilms formed by the hydrocarbon-utilizing bacteria Acinetobacter calcoaceticus MM5. Appl Microbiol Biotechnol 44: 660–667

    Article  CAS  Google Scholar 

  • Mueller JG, Lantz SE, Blattman BO, Chapman PJ (199la) Bench-scale evaluation of alternative biological treatment processes for the remediation of pentachlorophenol-and creosote-contaminated materials: solid phase bioremediation. Environ Sci Technol 25: 1045–1055

    Google Scholar 

  • Müller R (1992) Bacterial degradation of xenobiotics. In: Fry JC, Gadd GM, Herbert RA, Jones CW, Watson-Craik IA (eds) Microbial control of pollution, SGM Symposium Vol 48. Cambridge University Press, UK, pp 35–57

    Google Scholar 

  • Rus V, Miethe D, Babel W (1998) Grenzen der Sanierbarkeit von Mineralölschäden. Altlastenspektrum 7: 214–218

    Google Scholar 

  • Rus V, Miethe D, Möder M (1996) Analytical characterization of the persistent residues after the microbial degradation of mineral oils. Fresenius J Anal Chem 356: 378–384

    Article  Google Scholar 

  • Rosenberg M, Beyer EA, Delarea J, Rosenberg E (1982) Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44: 929–937

    CAS  Google Scholar 

  • Schaefer G, Hattwig S, Unterste-Wilms M, Hupe K, Heerenklage J, Lüth JC, Kästner M, Eschenbach A, Stegmann R, Mahro B (1995) PAH-degradation in soil: microbial activation or inoculation A comparative evaluation with different supplements and soil materials. In: van den Brink WJ, Bosman R, Arendt F (eds) Contaminated soil“95. Kluwer Academic Publ, The Netherlands, pp 415–416

    Chapter  Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshaawsky D (1996) Degradation of pyrene benz(a)anthracene and benzo[a]pyrene by Mycobacterium sp strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62: 13–19

    CAS  Google Scholar 

  • Scott CCL, Finnerty WR (1976) A comparative analysis of the ultrastructure of hydrocarbon-oxidizing microorganisms. J Gen Microbiol 94: 342–350

    CAS  Google Scholar 

  • Stucki G, Alexander M (1987) Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl Environ Microbiol 53: 292–297

    CAS  Google Scholar 

  • Thibault SL, Anderson M, Frankenberger WT (1996) Influence of surfactants on pyrene desorption and degradation in soils. Appl Environ Microbiol 62: 283–287

    CAS  Google Scholar 

  • Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60: 258–263

    CAS  Google Scholar 

  • Tiehm A, Stieber M, Werner P, Frimmel FH (1997) Surfactant enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ Sci Technol 31: 2570–2576

    Article  CAS  Google Scholar 

  • Weissenfels WD, Klewer HJ, Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36: 689–696

    Article  CAS  Google Scholar 

  • Wodzinski RS, Larocca D (1977) Bacterial growth kinetics on diphenylmethane and naphthalene-heptamethylnonane mixtures. Appl Environ Microbiol 33: 660–665

    CAS  Google Scholar 

  • Ye D, Siddiqi MA, Maccubin AE, Kumar S, Sikka H (1996) Degradation of polynuclear aroma-tic hydrocarbons by Sphingomonas paucimobilis. Environ Sci Technol 30: 136–142

    Article  CAS  Google Scholar 

  • Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol 61: 2247–2251

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahro, B., Müller, R., Kasche, V. (2001). Bioavailability — the Key Factor of Soil Bioremediation. In: Stegmann, R., Brunner, G., Calmano, W., Matz, G. (eds) Treatment of Contaminated Soil. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04643-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04643-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07510-0

  • Online ISBN: 978-3-662-04643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics