Skip to main content

Blind Separation of Acoustic Signals

  • Chapter
Microphone Arrays

Part of the book series: Digital Signal Processing ((DIGSIGNAL))

Abstract

This chapter presents an overview of criteria and algorithms for the blind separation of linearly mixed acoustic signals. Particular attention is paid to the underlying statistical formulations of various approaches to the convolutive blind signal separation task, and comparisons to other blind inverse problems are made. Several algorithms are described, including a novel algorithm that largely maintains the spectral content of the original mixtures in the extracted source signals. Numerical experiments are also provided to explore the behaviors of the algorithms in real-world blind signal separation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Cherry, “Some experiments on the recognition of speech with one and two ears,” J. Acoust. Soc. Amer., vol. 25, pp. 975–981, 1953.

    Article  Google Scholar 

  2. W. Yost, Fundamentals of Hearing, 3rd ed., Academic, 1994.

    Google Scholar 

  3. S. Van Gerven and D. Van Compernolle, “Signal separation by symmetric adaptive decorrelation: stability, convergence, and uniqueness,” IEEE. Trans. Signal Processing, vol. 43, pp. 1602–1612, July 1995.

    Article  Google Scholar 

  4. E. Weinstein, M. Feder, and A. Oppenheim, “Multi-channel signal separation by decorrelation,” IEEE. Trans. Speech Audio Processing, vol. 1, pp. 405–413, Oct. 1993.

    Article  Google Scholar 

  5. P. Comon, “Independent component analysis: A new concept?”, Signal Processing, vol. 36, no. 3, pp. 287–314, Apr. 1994.

    Article  MATH  Google Scholar 

  6. C. Jutten and J. Herault, “Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture,” Signal Processing, vol. 24, pp. 1–10, 1991.

    Article  MATH  Google Scholar 

  7. S. Haykin, ed., Unsupervised Adaptive Filtering, Vol. I: Blind Source Separation, Wiley, 2000.

    Google Scholar 

  8. J.-F. Cardoso, “Blind signal separation: Statistical principles,” Proc. IEEE, vol. 90, pp. 2009–2026, 1998.

    Google Scholar 

  9. S. Douglas, “Blind Signal Separation and Blind Deconvolution,” in Handbook of Neural Networks for Signal Processing, (J.-N. Hwang and Y.-H. Hu, eds. ), CRC Press, 2001.

    Google Scholar 

  10. A. Bell and T. Sejnowski, “An information maximization approach to blind separation and blind deconvolution,” Neural Comput., vol. 7, pp. 1129–1159, 1995.

    Article  Google Scholar 

  11. S. Amari, S. Douglas, A. Cichocki, and H. Yang, “Novel on-line adaptive learning algorithms for blind deconvolution using the natural gradient approach,” in Proc. 11th IFAC Symp. Syst. Ident., Kitakyushu City, Japan, pp. 1057–1062, July 1997.

    Google Scholar 

  12. R. Lambert and A. Bell, “Blind separation of multiple speakers in a multipath environment,” in Proc. IEEE Conf. Acoust., Speech, Signal Processing (ICASSP-97), Munich, Germany, pp. 423–426, Apr. 1997.

    Google Scholar 

  13. T.-W. Lee et al.,“Combining time-delayed decorrelation and ICA: towards solving the cocktail party problem,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP-98),Seattle WA, USA, pp. 1089–1092, May 1998.

    Google Scholar 

  14. Y. Inouye and T. Sato, “Iterative algorithms based on multistage criteria for multichannel blind deconvolution,” IEEE Trans. Signal Processing, vol. 47, no. 6, pp. 1759–1764, 1999.

    Article  Google Scholar 

  15. J. Tugnait, “Identification and deconvolution of multichannel linear non-Gaussian processes using higher-order statistics and inverse filter criteria,” IEEE Trans. Signal Processing, vol. 45, pp. 658–672, Mar. 1997.

    Article  Google Scholar 

  16. S. Haykin, ed., Blind Deconvolution, Wiley, 1994.

    Google Scholar 

  17. S. Haykin, ed., Unsupervised Adaptive Filtering, Vol. II: Blind Deconvolution, Wiley, 2000.

    Google Scholar 

  18. T. Cover and J. Thomas, Elements of Information Theory, Wiley, 1991.

    Google Scholar 

  19. S. Amari, A. Cichocki, and H. Yang, “A new learning algorithm for blind signal separation,” in Proc. Sys. Adv. Neural Inform., pp. 757–763, MIT Press, 1996.

    Google Scholar 

  20. S. Amari, T.-P. Chen, and A. Cichocki, “Stability analysis of learning algorithms for blind source separation,” Neural Networks, vol. 10, no. 8, pp. 13451351, Nov. 1997.

    Google Scholar 

  21. W. Davenport, Jr., “A study of speech probability distributions,” Tech. Rep. 148, MIT Research Laboratory of Electronics, Cambridge, MA, 1950.

    Google Scholar 

  22. S. Douglas, A. Cichocki, and S. Amari, “Multichannel blind separation and de-convolution of sources with arbitrary distributions,” in Proc. IEEE Int. Workshop Neural Networks Signal Processing, Amelia Island FL, USA, pp. 436–445, Sept. 1997.

    Google Scholar 

  23. D.-T. Pham and P. Garat, “Blind separation of mixture of independent sources through a quasi-maximum likelihood approach,” IEEE Trans. Signal Processing, vol. 45, pp. 1712–1725, July 1997.

    Article  MATH  Google Scholar 

  24. D.-T. Pham, “Mutual information approach to blind separation of stationary sources,” in Proc. Workshop Indep. Compon. Anal. Signal Sep., Aussois, France, pp. 215–220, Jan. 1999.

    Google Scholar 

  25. C. Simon et al.,“Separation of a class of convolutive mixtures: a contrast function approach,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP-97),Phoenix AZ, USA, pp. 1429–1432, Apr. 1997.

    Google Scholar 

  26. J. Tugnait, “On blind separation of convolutive mixtures of independent linear signals in unknown additive noise,” IEEE Trans. Signal Processing, vol. 46, pp. 3117–3123, Nov. 1998.

    Article  MathSciNet  Google Scholar 

  27. L. Molgedey and H. Schuster, “Separation of a mixture of independent signals using time delayed correlations,” Phys. Rev. Lett., vol. 72, pp. 3634–3637, June 1994.

    Article  Google Scholar 

  28. L. Parra and C. Spence, “Convolutive blind separation of non-stationary sources,” IEEE Trans. Speech Audio Processing, vol. 8, pp. 320–327, May 2000.

    Article  Google Scholar 

  29. J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE Signal Processing Mag., vol. 9, pp. 14–37, Jan. 1992.

    Article  Google Scholar 

  30. K. Torkkola, “Blind Separation of Delayed and Convolved Sources,” in Unsupervised Adaptive Filtering, Vol. I: Blind Source Separation, (S. Haykin, ed.), pp. 321–375, Wiley, 2000.

    Google Scholar 

  31. S. Douglas and S Amari, “Natural Gradient Adaptation,” in Unsupervised Adaptive Filtering, Vol. I: Blind Source Separation, (S. Haykin, ed.), pp. 1361, Wiley, 2000.

    Google Scholar 

  32. S. Amari, S. Douglas, A. Cichocki, and H. Yang, “Multichannel blind deconvolution and equalization using the natural gradient,” in Proc. Signal Processing Adv. Wireless Commun., Paris, France, pp. 101–104, Apr. 1997.

    Google Scholar 

  33. S. Amari, T.-P. Chen, and A. Cichocki, “Nonholonomic orthogonal learning algorithms for blind source separation,” Neural Comput., vol. 12, pp. 14631484, 2000.

    Google Scholar 

  34. P. Regalia and P. Loubaton, “Rational subspace estimation using adaptive loss-less filters,” IEEE Trans. Signal Processing, vol. 40, pp. 2392–2405, Oct. 1992.

    Article  MATH  Google Scholar 

  35. S. Douglas, S. Amari, and S.-Y. Kung, “Adaptive paraunitary filter banks for spatio-temporal principal and minor subspace analysis,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP-99), Phoenix AZ, USA, pp. 1089–1092, Mar. 1999.

    Google Scholar 

  36. X. Sun and S. Douglas, “Multichannel blind deconvolution of arbitrary signals: Adaptive algorithms and stability analyses,” in Proc. 34th Asilomar Conf. Signals, Syst., Comput., Pacific Grove CA, USA, pp. 1412–1416, Oct. 2000.

    Google Scholar 

  37. The Bobs, Boy around the corner,“ from Songs For Tomorrow Morning, [audio recording], Rhino Records, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Douglas, S.C. (2001). Blind Separation of Acoustic Signals. In: Brandstein, M., Ward, D. (eds) Microphone Arrays. Digital Signal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04619-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04619-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07547-6

  • Online ISBN: 978-3-662-04619-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics