Skip to main content

Geophysical Properties in Marine Sediments

  • Chapter
Marine Geochemistry

Abstract

The traditional schism of Earth Science education and research into various specialties such as geophysics and geochemistry, although gradually fading, is still very much alive in most of the international and particularly the German academic community. Notwithstanding different experimental methods and often also different scientific objectives, isolated activities are at least ineffective if not a cul de sac in many fields. In recent years, the investigation of marine sediments has advanced to a highly successful example for the opposite strategy in multiple joined research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aki, K. and Richards, P.G., 1980. Quantitative seismology. WH Freeman and Company, 932 pp.

    Google Scholar 

  • Archie, G.E., 1942. The electrical resistivity log as an aid in determinig some reservoir characteristics. Transactions of the American Institute of Mineralogical, Metalurgical and Petrological Engineering, 146: 54–62.

    Google Scholar 

  • Barker, P.F. and Kennett, J.P., 1990. Proceedings of the Ocean Drilling Program, Scientific Results. 113, Ocean Drilling Program, College Station (TX), 1033 pp.

    Google Scholar 

  • Bell, D.W. and Shirley, D.J., 1980. Temperature variation of the acoustical properties of laboratory sediments. Journal of the Acoustical Society of America, 68: 277–231.

    Article  Google Scholar 

  • Bergmann, U., 1996. Interpretation digitaler Parasound Echolotaufzeichnungen im ostlichen Arktischen Ozean auf der Grundlage physikalischer Sedimenteigenschaften (in German). Alfred-Wegener Institut fiir Polar- und Meeresforschung, 183, Bremerhaven, 164 pp.

    Google Scholar 

  • Berryman, J.G., 1980. Confirmation of Biot’s theory. Applied Physics Letters, 37: 382–384.

    Article  Google Scholar 

  • Biot, M.A., 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. Journal of the Acoustical Society of America, 28: 179–191.

    Article  Google Scholar 

  • Biot, M.A., 1956b. Theory of wave propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. Journal of the Acoustical Society of America, 28: 168–178.

    Article  Google Scholar 

  • Bleil, U. and cruise participants, 1994. Report and preliminary results of Meteor cruise M29/2 Montevideo-Rio de Janeiro, 15.07–08.08.1994. Berichte, 59, Fachbereich Geowissenschaften, Universitat Bremen, 153 pp.

    Google Scholar 

  • Blum, P., 1997. Pysical properties handbook: a guide to the shipboard measurements of physical properties of the deep-sea cores. Technical Note, 26, Ocean Drilling Program, College Station, TX.

    Book  Google Scholar 

  • Bodwadkar, S.V. and Reis, J.C., 1994. Porosity measurements of core samples using gamma-ray attenuation. Nuclear Geophysics, 8: 61–78.

    Google Scholar 

  • Boyce, R.E., 1968. Electrical resistivity of modern marine sediment from the Bering Sea. Journal of Geophysical Research, 73: 4759–4766.

    Article  Google Scholar 

  • Boyce, R.E., 1973. Appendix I. Physical properties-methods. In: Edgar, N.T., Sanders J.B. et al. (eds), Initial reports of the Deep Sea Drilling Project, U.S. Government Printing Office, Washington, 15: pp. 1115–1127.

    Google Scholar 

  • Boyce, R.E., 1976. Definitions and laboratory techniques of compressional sound velocity parameters and wet-water content, wet-bulk density, and porosity parameters by gravity and gamma ray attenuation techniques. In: Schlanger, S.O., Jackson, E.D., et al. (eds), Initial reports of the Deep Sea Drilling Project, U.S. Government Printing Office, Washington, 33: pp 931–958.

    Google Scholar 

  • Breitzke, M. and Spie B V., 1993. An automated full waveform logging system for high-resolution P-wave profiles in marine sediments. Marine Geophysical Researches, 15: 297–321.

    Article  Google Scholar 

  • Breitzke, M., Grobe, H., Kuhn, G. and Muller, P., 1996. Full waveform ultrasonic transmission seismograms — a fast new methode for the determination of physical and sedimentological parameters in marine sediment cores. Journal of Geological Research, 101: 22123–22141.

    Google Scholar 

  • Breitzke, M., 1997. Elastische Wellenausbreitung in marinen sedimenten — Neue Entwicklung der Ultraschall Sedimentphysik und Sedimenttechographie (in German). Berichte, 104, Fachbereich Geowissenschaften, Universitat Bremen, 298 pp.

    Google Scholar 

  • Bryant, W.R., Hottman, W. and Trabant, P., 1975. Permeability of unconsolidated and consolodated marine sediments, Gulf of Mexico. Marine Geotechnology, 1: 1–14.

    Article  Google Scholar 

  • Carman, PC, 1956. Flow of gases through porous media. Butterworth Scientific Publications, London, 182 pp.

    Google Scholar 

  • Chelkowski, A., 1980. Dilectric Physics. Elsevier, Amsterdam, 396 pp.

    Google Scholar 

  • Childress, J.J. and Mickel, T.J., 1980. A motion compensated shipboard precision balance system. Deep Sea Research, 27: 965–970.

    Article  Google Scholar 

  • Constable, C. and Parker, R., 1991. Deconvolution of log-core paleomagnetic measurements-spline therapy for the linear problem. Geophysical Journal International, 104: 453–468.

    Article  Google Scholar 

  • Courtney, R.C. and Mayer, L.A., 1993a. Calculation of acoustic parameters by filter-correlation method. Journal of the Acoustical Society of America, 93: 1145–1154.

    Article  Google Scholar 

  • Courtney, R.C. and Mayer, L.A., 1993b. Acoustic properties of fine-grained sediments from Emerlad — Basin: Toward an inversion for physical properties using the Biot-Stoll model. Journal of the Acoustical Society of America, 93: 3193–3200.

    Article  Google Scholar 

  • Dobeneneck, v.T. and Schmieder, F., in press. Using rock magnetic proxy records for orbital tuning and extended time series analysis into the super- and sub- Milankovitch bands. In: Fischer, G. and Wefer, G. (eds), Use of proxies in paleoceanography: examples from the South Atlantic. Springer Verlag, Berlin.

    Google Scholar 

  • Ellis, D.V., 1987. Well logging for earth scientists. Elsevier, Amsterdam, 532 pp.

    Google Scholar 

  • Fisher, A.T., Fischer, K., Lavoie, D., Langseth, M. and Xu, J., 1994. Geotechnical and hydrogeological properties of sediements from Middle Valley, northern Juan de Fuca Ridge. In: Mottle, M.J., Davies, E., Fischer, A.T. and Slack, J.F. (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 139, College Station (TX), pp. 627–647.

    Google Scholar 

  • Gassmann, F., 1951. Uber die elastizitat poroser Medien. Vierteljahresschrift der Naturforschenden Gesellschaft in Zurich, 96: 1–23.

    Google Scholar 

  • Gealy, E.L., 1971. Saturated bulk density, grain density and porosity of sediemt cores from western equatorial Pacific: Leg 7, Glomar Challenger. In: Winterer, E.L., et al (eds), Initial reports of the Deep Sea Drilling Project, 7, Washington, pp. 1081–1104.

    Google Scholar 

  • Gebrande, H., 1982. Elastic wave velocities and constants of elasticity at normal conditions. In: Hellwege, K.H. (ed), Landolt-Bornstein. Numerical data and functional relationships in science and technology. Group V: Geophysics and space research 1, Physical Properties of Rocks, subvol. b. Springer Verlag, Berlin, pp. 8–35.

    Google Scholar 

  • Gerland, S., Richter, M., Villinger, H. and Kuhn, G., 1993. Non-destructive porosity determination of Antarctic marine sediments derived from resistivity measurements with the inductive method. Marine Geophysical Researches, 15: 201–218.

    Article  Google Scholar 

  • Gerland, S., 1993. Non-destructive high resolution density measurements on marine sediments, Alfred-Wegener Institute for Polar and Marine Research, 123, Bremerhaven, 130 pp.

    Google Scholar 

  • Gerland, S. and Villinger, H., 1995. Nondestructive density determinationon marine sediment cores from gamma-ray attenuation measurements. Geo-Marine-Letters, 15: 111–118.

    Article  Google Scholar 

  • Gunn, D.E. and Best, A.I., 1998. A new automated nondestructive system for high resolution multi-sensor logging of open sediment cores. Geo-Marine Letters, 18: 70–77.

    Article  Google Scholar 

  • Hamilton, E.L., 1971. Prediction of in situ acoustic and elastic properties of marine sediments. Geophysics, 36: 266–284.

    Article  Google Scholar 

  • Hovem, J.M. and Ingram, G.D., 1979. Viscous attenuation of sound in saturated sand. Journal of the Acoustical Society of America, 66: 1807–1812.

    Article  Google Scholar 

  • Hovem, J.M., 1980. Viscous attenuation of sound in suspensions and high-porosity marine sediments. Journal of the Acoustical Society of America, 67: 1559–1563.

    Article  Google Scholar 

  • Hubscher, C., Spie B, V, Breitzke, M. and Weber, M.E., 1997. The youngest channel-levee system of the Bengal Fan: results from digital echosounder data. Marine Geology, 141: 125–145.

    Article  Google Scholar 

  • Jackson, P.D., Taylor-Smith, D. and Stanford, P.N., 1978. Resistivity-porosity-particle shape relationships for marine sands. Geophysics, 43: 1250–1268.

    Article  Google Scholar 

  • Jannsen, D., Voss, J. and Theilen, F., 1985. Comparison of methods to determine Q in shallow marine sediments from vertical seismograms. Geophysical Propsecting, 33: 479–497.

    Article  Google Scholar 

  • Kudrass, H.R., 1994. S093/1–3 Bengal Fan-Cruise report. Federal Institute for Geoscience and Natural Resources, Hannover.

    Google Scholar 

  • Kudrass, H.R., 1996. Final Report Bengal Fan, Sonne Cruise S093, Federal Institute for Geoscience and Natural Resource, Hannover.

    Google Scholar 

  • Kuhn, G., in press. The expedition ANTARKTIS XI/4 of RV Polarstern in 1994. Rep. on polar research, Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven.

    Google Scholar 

  • Lambe, T.W. and Whitman, R.V, 1969. Soil mechanics. Wiley & Sons, NY, 553 pp.

    Google Scholar 

  • Laser, B. and SpieB, V, subm. Comparision of high-resolution physical property core logs from ODP site 690 with digital Parasound data. Scientific Drilling.

    Google Scholar 

  • Lovell, M.A., 1985. Thermal conductivity and permeability assessmentby electrical resitivity measurements in marine sediments. Marine Geotechnology, 6: 205–240.

    Article  Google Scholar 

  • MacKillop, A.K., Moran, K., Jarret, K., Farrell, J. and Murray, D., 1995. Consolidation properties of equatorial Pacific Ocean sediements and their relationship to stress history and offsets in the Leg 138 composite depth sections. In: Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A. and van Andel, T.H. (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 138, College Station (TX), pp. 357–369.

    Google Scholar 

  • Mendel, J.M., Nahi, N.E. and Chan, M., 1979. Synthetic seismograms using the state space approach. Geophysics, 44: 880–895.

    Article  Google Scholar 

  • O’Connell, S.B., 1990. Variation in upper cretaceous and cenozoic calium carbonate percentages, Maud Rise, Wedell Sea, Antarctica. In: Barker, P.F., Kennet, J.P., et al. (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 113, College Station (TX), pp. 971–984.

    Google Scholar 

  • Ogushwitz, P.R., 1985. Applicability of the Biot theory. II. Suspensions. Journal of the Acoustical Society of America, 77: 441–452.

    Article  Google Scholar 

  • Olsen, H.W., Nichols, R.W. and Rice, T.C., 1985. Low gradient permeability measurements in a triaxial system. Geotechnique, 35: 145–157.

    Article  Google Scholar 

  • Plona, T.J., 1980. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Applied Physical Letters, 36: 159–261.

    Article  Google Scholar 

  • Ruffet, C, Guefuen, Y. and Darot, M., 1991. Complex conductivity measurements and fractal nature of porosity. Geophysics, 56: 758–768.

    Article  Google Scholar 

  • Schopper, J.R., 1982. Permability of rocks. In: Hellwege, K.H. (ed), Landolt-Bornstein. Numerical Data and Functional Relationships in Science and Technology, Group V: Geophysics and Space Research 1. Physical Properties of Rocks, subvol. a, Springer, Berlin, 278–303 pp.

    Google Scholar 

  • Schon, J.H., 1996. Physical properties of rocks — fundamentals and principles of petrophysics. Handbock of Geophysical Exploration, 18, Section I, Seismic Exploration, Pergamon Press, Oxford, 583 pp.

    Google Scholar 

  • Schultheiss, P.J. and McPhail, S.D., 1989. An automated P-wave logger for recording fine-scale compressional wave velocity structures in sediments. In: Ruddiman, W., Sarntheim, M., et al. (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 108, College Station (TX), pp. 407–413.

    Google Scholar 

  • Sen, P.N., Scala, C. and Cohen, M.H., 1981. A self-similar model from sedimentary rocks with application to dielectric constant of fused glass beads. Geophysics, 46: 781–795.

    Article  Google Scholar 

  • Sheng, P., 1991. Consistent modeling of electrical and elastic properties of sedimentary rocks. Geophysics, 56: 1236–1243.

    Article  Google Scholar 

  • Shipboard Scientific Party (1995) Explanatory Notes. In: Curry, W.B., Shackleton, N.J., Richter, C. et al (eds), Proceedings of the Ocean Drilling Program, Initial Reports, 154, College Station (TX), ODP, pp 11–38

    Google Scholar 

  • Siedler, G. and Peters, H., 1986. Pysical properties (general) of seawater. In: Hellwege, K.H. and Madelung, O. (eds), Landolt-Bornstein. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Group V: Geophysics and space research 3, Oceanography, subvol. a, Springer, Berlin, pp. 233–264.

    Google Scholar 

  • Spie B, V, 1993. Digitale Sedimentechographie — Neue Wege zu einer hochauflosenden Akustostratigraphie (in German). Berichte, 35, Fachbereich Geowissenschaften, Universitat Bremen, 199 pp.

    Google Scholar 

  • Stoll, R.D., 1974. Acoustic waves in saturated sediments. In: Hampton, L. (ed) Physics of sound in marine sediments. Plenum Press, NY, pp. 19–39.

    Chapter  Google Scholar 

  • Stoll, R.D., 1977. Acoustic waves in ocean sediements. Geophysics, 42: 715–725.

    Article  Google Scholar 

  • Stoll, R.D., 1989. Sediment acoustics. Springer Verlag, Berlin, 149 pp.

    Google Scholar 

  • Taner, M.T., Koehler, F. and Sheriff, R.E., 1979. Comlex seismic trace analysis. Geophysics, 44: 1041–1063.

    Article  Google Scholar 

  • Tonn, R., 1989. Comparision of seven methods for the computation of Q. Physics of the Earth and Planetary Interiors, 55: 259–268.

    Article  Google Scholar 

  • Tonn, R., 1991. The determiation of the seismic quality factor Q from VSP data: A comparision of different computational methods. Geophysical Propsecting, 39: 1–27.

    Article  Google Scholar 

  • Waxman, M.H. and Smits, L.J.M., 1968. Electrical conductivities in oil bearing shaly sandstones. Society of Petroleum Engineering, 8: 107–122.

    Google Scholar 

  • Weaver, P.P.E. and Schultheiss, P.J., 1990. Current methods for obtaining, logging and splitting marine sediments cores. Marine Geophysical Researches, 12: 85–100.

    Article  Google Scholar 

  • Weber, M.E., Niessen, F., Kuhn, G. and Wiedicke, M., 1997. Calibration and application of marine sedimentary physical properties using a multi-sensor core logger. Marine Geology, 136: 151–172.

    Article  Google Scholar 

  • Weeks, R. et al., 1993. Improvements in long-core measurements techniques: applications in paleomagnetism and paleoceanography. Geophysical Journal International, 114: 651–662.

    Article  Google Scholar 

  • Whitmarsh, R.B., 1971. Precise sediment density determination by gamma-ray attenuation alone. Journal of Sedimentary Petrology, 41: 882–883.

    Article  Google Scholar 

  • Wille, P., 1986. Acoustical properties of the ocean. In: Hellwege, K.H. and Madelung, O. (eds), Landolt-Bornstein. Numerical Data and Functional Relationships in Science and Technology. Group V: Geophysics and Space Research 3, Oceanography, subvol. a, Springer, Berlin, pp. 265–382.

    Google Scholar 

  • Wilson, W.D., 1960. Speed of sound in sea water as a function of temperature, pressure and salinity. Journal of the Acoustical Society of America, 32: 641–644.

    Article  Google Scholar 

  • Wohlenberg, J., 1982. Density of minerals. In: Hellwege, K.H. (ed), Landolt-Bornstein. Numerical Data and Functional Relationships in Science and Technology. Group V: Geophysics and Space Research 1, Physical Properties of Rocks, subvol. a, Springer, Berlin, pp. 66–113.

    Google Scholar 

  • Wood, A.B., 1946. A textbook of sound. G. Bell and Sons, London, 578 pp.

    Google Scholar 

  • Wyllie, M.R., Gregory, A.R. and Gardner, L.W., 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics, 21: 41–70.

    Article  Google Scholar 

  • Bazylinski, D.A. and Blakemore, R.P., 1983. Denitrifica-tion and assimilatory nitrate reduction in Aquaspiril-lum magnetotacticum. Appl. Environ. Microbiol., 46: 1118–1124.

    Google Scholar 

  • Bazylinski, D.A., Frankel, R.B. and Jannasch, H.W., 1988. Anaerobic magnetite production by a marine, magneto-tactic bacterium. Nature, 334: 518–519.

    Article  Google Scholar 

  • Berger, W.H., 1989. Global maps of ocean productivity. In: Berger, W.H., Smetacek, V.S. and Wefer, G. (eds) Productivity of the Ocean: Present and Past. John Wiley & Sons, Chichester, pp. 429–455.

    Google Scholar 

  • Berner, R.A., 1981. A new geochemical classification of sedimentary environments. J. Sed. Petrol., 51: 359–365.

    Google Scholar 

  • Betzer, P.R., Showers, W.J., Laws, E.A., Winn, CD., DiTullio, G.R. and Kroopnick, P.M., 1984. Primary productivity and particle fluxes on a transect of the Equator at 153°W in the Pacific Ocean. Deep-Sea Res., 31: 1–11.

    Article  Google Scholar 

  • Blakemore, R.P., Short, K.A., Bazylinski, D.A., Rosen-blatt, C. and Frankel, R.B., 1985. Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum Geomicrobiol. J., 4: 53–71.

    Article  Google Scholar 

  • Bloemendal, J., King, J.W., Hall, F.R. and Doh, S.-J., 1992. Rock magnetism of late Neogene and Pleisto-cene deep-sea sediments: relationship to sediment source, diagenetic processes, and sediment lithology. J. Geophys. Res., 97: 4361–4375.

    Article  Google Scholar 

  • Butler, R.F. and Banerjee, S.K., 1975. Theoretical single-domain grain size range in magnetite and titanomagnetite. J. Geophys. Res., 80: 4049–4058.

    Article  Google Scholar 

  • Canfield, D.E. and Berner, R.A., 1987. Dissolution and pyritization of magnetite in anoxic marine sedi-ments. Geochim. Cosmochim. Acta, 51: 645–659.

    Article  Google Scholar 

  • Chang, S.R., Kirschvink, J.L. and Stolz, J.F., 1987. Biogenic magnetite as a primary remanence carrier in limestone deposits. Phys. Earth. Planet. Inter., 46: 289–303.

    Article  Google Scholar 

  • Chang, S.R., Stolz, J.F., Awramik, S.M. and Kirschvink, J.L., 1989. Biogenic magnetite in stromatolites: occur-rence in ancient sedimentary environments. Precam-brian Res., 43: 305–315.

    Article  Google Scholar 

  • Daumler, K., 1996. Diagenetische Auflosung von bioge-nem Magnetit. Eine Untersuchung der magnetischen Eigenschaften von Oberflachensedimenten aus dem Benguela Auftriebsgebiet vor Namibia. Fachbereich Geowissenschaften, Universitat Bremen (unpublished diploma thesis).

    Google Scholar 

  • Day, R., Fuller, M. and Schmidt, V.A., 1977. Hysteresis properties of titanomagnetites: grainsize and compo-sitional dependence. Phys. Earth Planet. Inter., 13: 260–267.

    Article  Google Scholar 

  • Dekkers, M.J., Langereis, C.G., Vriend, S.P., van Sant-voort, P.J.M. and de Lange, G.J., 1994. Fuzzy c-means cluster analysis of early diagenetic effects on natural remanent magnetisation acquisition in a 1.1 Myr piston core from the Central Mediterranean. Phys. Earth Planet. Inter., 85: 155–171.

    Article  Google Scholar 

  • von Dobeneck, T., 1996. A systematic analysis of natural magnetic mineral assemblages based on modelling hysteresis loops with coercivity-related hyperbolic basis functions. Geophys. J. Int. 124: 675–694.

    Article  Google Scholar 

  • von Dobeneck, T. and Schmieder, F., 1998. Using rock magnetic proxy records for orbital tuning and exten-ded time series analyses into the super- and sub-Milankovitch bands. In: Fischer, G. and Wefer, G. (eds) Proxies in Paleoceanography. Springer-Verlag, Berlin, Heidelberg, New York (in press).

    Google Scholar 

  • Dunlop, D.J. and Ozdemir, O., 1997. Rock Magnetism. Cambridge Studies in Magnetism, Cambridge University Press, 573 pp.

    Book  Google Scholar 

  • Farina, M., Esquivel, D.M.S. and Lins de Barros, H.G.R, 1990. Magnetic iron-sulphur crystals from a mag- netotactic microorganism. Nature, 343: 256–258.

    Article  Google Scholar 

  • Frederichs, T., Bleil, U., Daumler, K., von Dobeneck, T. and Schmidt, A., 1998. The magnetic view on the marine paleoenvironment: parameters, techniques, and potentials of rock magnetic studies as a key to paleoclimatic and paleoceanographic changes. In: Fischer, G. and Wefer, G. (eds) Proxies in Paleoocea-nography. Springer-Verlag, Berlin, Heidelberg, New York (in press).

    Google Scholar 

  • Froehlich, P.N., Klinkhammer, G.B., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Hartman, B. and Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta, 43: 1075–1090.

    Article  Google Scholar 

  • Funk, J., 1997 Sedimentologische, organisch-geochemi-sche und geophysikalische Untersuchungen am Kern 2908–7. Fachbereich Geowissenschaften, Universitat Bremen (unpublished diploma thesis).

    Google Scholar 

  • Gee, J. and Kent, D.V., 1995. Magnetic hysteresis in young mid-ocean ridge basalts: dominant cubic anisotropy? Geophys. Res. Lett., 22: 551–554.

    Article  Google Scholar 

  • Glud, R.N., Gundersen, J.K., Jørgensen, B.B., Revsbech, N.P. and Schulz, H.D., 1994. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Res., 41: 1767–1788.

    Article  Google Scholar 

  • Gorby, Y.A., Beveridge, T.J. and Blakemore, R.P., 1988. Characterizaton of the bacterial magnetosome membrane. J. Bacterid., 170: 834–841.

    Google Scholar 

  • van Hoof, A.A.M. and Langereis C.G., 1991. Reversal records in marine marls and delayed acquisition of remanent magnetization. Nature, 351: 223–225.

    Article  Google Scholar 

  • van Hoof, A.A.M., Os, B.J.H., Rademakers, J.G., Lange-reis, C.G. and de Lange, G.J., 1993. A paleomagnetic and geochemical record of the upper Cochiti reversal and two subsequent precessional cycles from southern Sicily (Italy). Earth Planet. Sci. Lett., 117: 235–250.

    Article  Google Scholar 

  • Jackson, M., 1990. Diagenetic source of stable remanence in remagnetized Paleozoic cratonic carbonates. J. Geophys. Res., 95: 2753–2762.

    Article  Google Scholar 

  • Karlin, R., 1990a. Magnetite diagenesis in marine sedi-ments from the Oregon continental margin. J. Geo-phys. Res., 95: 4405–4420.

    Article  Google Scholar 

  • Karlin, R., 1990b. Magnetic mineral diagenesis in suboxic sediments at Bettis Site W-N, NE Pacific Ocean. J. Geophys. Res., 95: 4421–4436.

    Article  Google Scholar 

  • Karlin, R. and Levi, S., 1983. Diagenesis of magnetic minerals in recent hemipelagic sediments. Nature, 303: 327–330.

    Article  Google Scholar 

  • Karlin, R. and Levi, S., 1985. Geochemical and sedimen-tological control of the magnetic properties of hemipelagic sediments. J. Geophys. Res., 90: 10373–10392.

    Article  Google Scholar 

  • King, J.W. and Channell, J.E.T., 1991. Sedimentary magnetism, environmental magnetism, and magnetostra-tigraphy. Rev. Geophys., 29: 358–370 (IUGG Report).

    Google Scholar 

  • Leslie, B.W., Hammond, D.E., Berelson, W.M. and Lund, S.P., 1990. Diagenesis in anoxic sediments from the California continental borderland and its influence on iron, sulfur, and magnetite behavior. J. Geophys. Res., 95: 4453–447O.

    Article  Google Scholar 

  • Lovley, D.R., Stolz, J.F., Nord, J.G.L. and Philips, E.J.P., 1987. Anaerobic production of magnetite by a dis-similatory iron-reducing microorganism. Nature, 330: 252–254.

    Article  Google Scholar 

  • Lund, S.P. and Karlin, R., 1990. Introduction to the special section on physical and biogeochemical processes responsible for the magnetization of sediments. J. Geophys. Res., 95: 4353–4354.

    Article  Google Scholar 

  • Maher, B.A. and Taylor, R.M., 1988. Formation of ultra-finegrained magnetite in soils. Nature, 336: 368–370.

    Article  Google Scholar 

  • Mann, S., Sparks, N.H.C., Frankel, R.B., Bazylinski, D.A. and Jannasch, H.W., 1990. Biomineralization of fer-rimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature, 343: 258–261.

    Article  Google Scholar 

  • McNeill, D.F., 1990. Biogenic magnetite from surface Holocene carbonate sediments, Great Bahama Bank. J. Geophys. Res. 95: 4363–4372.

    Article  Google Scholar 

  • Moskowitz, B.M., Frankel, R.B., Bazylinski, D.A., Jan-Nasch, H.W. and Lovley D.R., 1989. A comparison of magnetite particles produced anaerobically by mag-netotactic and dissimilatory iron-reducing bacteria. Geophys. Res. Lett., 16: 665–668.

    Article  Google Scholar 

  • Petermann, H., 1994. Magnetotaktische Bakterien und ihre Magnetosome in Oberflachensedimenten des Siid-atlantiks. Berichte, Fachbereich Geowissenschaften, Universitat Bremen, 56: 1–134.

    Google Scholar 

  • Petermann, H. and Bleil, U., 1993. Detection of live magnetotactic bacteria in South Atlantic deep-sea sediments. Earth Planet. Sci. Lett., 117: 223–228.

    Article  Google Scholar 

  • Petersen, N., von Dobeneck. T. and Vali, H., 1986. Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature, 320: 611–615.

    Article  Google Scholar 

  • Reynolds, R.L., Fishman, N.S., Wanty, R.B. and Gold-haber, M.B., 1990. Iron sulphide minerals at Clement oil field, Oklahoma: implications for magnetic detection of oil fields. Geol. Soc. Amer. Bull., 102: 368–380.

    Article  Google Scholar 

  • Snowball, I. and Thompson, R., 1988. An occurrence of greigite in the sediments of Loch Lomond. J. Quat. Sci., 4: 121–125.

    Article  Google Scholar 

  • Sparks, N.H.C., Mann, S., Bazylinski, D.A., Lovley, D.R., Jannasch, H.W. and Frankel, R.B., 1990. Structure and morphology of anaerobically-produced magnetite by a marine magnetotactic bacterium and a dissimilatory iron- reducing bacterium. Earth Planet. Sci. Lett., 98: 14–22.

    Article  Google Scholar 

  • Stolz, J.F., 1992. Magnetotactic bacteria: biominera-lization, ecology, sediment magnetism, environmental indicator. In: Skinner H.G.W. and Fitzpatrick, R.W. (eds) Biomineralization, Processes of Iron and Manganese. Catena Verlag, Cremlingen, pp. 133–145.

    Google Scholar 

  • Stolz, J.F., Chang, S.R. and Kirschwink, J.L., 1986. Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature, 321: 849–851.

    Article  Google Scholar 

  • Tarduno, J.A., 1994. Temporal trends of magnetic dissolution in the pelagic realm: gauging paleoproduc-tivity? Earth Planet. Sci. Lett., 123: 39–48.

    Article  Google Scholar 

  • Tarduno, J.A., 1995. Superparamagnetism and reduction diagenesis in pelagic sediments: enhancement or depletion? Geophys. Res. Lett., 22: 1337–1340.

    Article  Google Scholar 

  • Tarduno, J.A. and Wilkison, S.L., 1996. Non-steady state magnetic mineral reduction, chemical lock-in, and delayed remanence acquisition in pelagic sediments. Earth Planet. Sci. Lett., 144: 315–326.

    Article  Google Scholar 

  • Taylor, R.M., Maher B.A. and Self, P.G., 1987. Magne-tite in soils, I. The synthesis of single-domain and superparamagnetic magnetite. Clay Miner., 22: 411–422.

    Article  Google Scholar 

  • Thompson, R. and Oldfield, F., 1986. Environmental Magnetism. Allen & Unwin, London, 227 pp.

    Book  Google Scholar 

  • Vali, H., Forster, O., Amarantidis, G. and Petersen, N., 1987. Magnetotactic bacteria and their magnetofos-sils in sediments. Earth Planet. Sci. Lett., 86: 389–400.

    Article  Google Scholar 

  • Vali, H., von Dobeneck, T., Amarantidis, G., Forster, O., Morteani, G., Bachmann L. and Petersen, N., 1989. Biogenic and lithogenic magnetic minerals in Atlantic and Pacific deep-sea sediments and their paleomag-netic significance. Geol. Rundschau 78: 753–764.

    Article  Google Scholar 

  • Verosub, K.L. and Roberts, A.P., 1995. Environmental magnetism: past, present, and future. J. Geophys. Res., 100: 2175–2192.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Breitzke, M., Bleil, U. (2000). Geophysical Properties in Marine Sediments. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04242-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04244-1

  • Online ISBN: 978-3-662-04242-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics