Skip to main content

Back to the Ocean Cycles: Benthic Fluxes and Their Distribution Patterns

  • Chapter
Marine Geochemistry

Abstract

The observations made in the preceding chapters have demonstrated that the upper sediment layers usually contain the highest biochemical reaction rates within marine deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akin, H. and Siemes, H., 1988. Praktische Geostatistik — Eine Einfuhrung fur den Bergbau und die Geowissenschaften. Springer Verlag, Berlin, Heidelberg, NY, 304 pp.

    Book  Google Scholar 

  • Antoine, D., Andre, J.-M. and Morel, A., 1996. Oceanic primary production; 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogechemical Cycles, 10(1): 57–69.

    Article  Google Scholar 

  • Archer, D., Lyle, M., Rodgers, K. and Froelich, P., 1993. What controls opal preservation in tropical deep-sea sediments. Paleoceanography, 8: 7–21.

    Article  Google Scholar 

  • Behrenfeld, M.J. and Falkowski, P.G., 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography, 42(1): 1–20.

    Article  Google Scholar 

  • Berger, W.H., Fischer, K., Lai, C. and Wu, G., 1987. Ocean producitivity and organic carbon flux. I. Overview and maps of primary production and export production. University California, San Diego, SIO Reference, 8: 7–30.

    Google Scholar 

  • Berger, W.H., Smetacek, V.S. and Wefer, G., 1989. Ocean productivity and paleoproductivity — an overview. In: Berger, W.H., Smetacek, V. and Wefer, G. (eds) Productivity of the ocean: present and past. Wiley & Sons, pp 1–34.

    Google Scholar 

  • Bishop, J.K.B., 1989. Regional extremes in particulate matter composition and flux: effects on the chemistry of the ocean interior. In: Berger, W.H., Smetacek, V. and Wefer, G. (eds) Productivity of the ocean: present and past. Wiley & Sons, pp 117–137.

    Google Scholar 

  • Bonham-Carter, G.F., 1996. Geographic information systems for geosciences: Modeling with GIS. Pergamon Press, NY, 435 pp.

    Google Scholar 

  • Chester, R., 1990. Marine Geochemistry. Chapman & Hall, London, 698 pp.

    Book  Google Scholar 

  • Davis, J.D., 1986. Statistics and Data Analysis in Geology. Wiley & Sons, NY, 646 pp.

    Google Scholar 

  • DeBaar, H.J.W. and Suess, E., 1993. Ocean carbon cycle and climate change — An introduction to the interdisciplinary Union Symposium. Global and Planetery Change, 8: VII–XI.

    Article  Google Scholar 

  • Englund, E. and Sparks, A., 1991. Geostatistical environment assessment software — User’s guide -. US — EPA Report #600/8–91/008, EPA — EMSL, Las Vegas, Nevada.

    Google Scholar 

  • Glud, R.N., Gundersen, J.K., Jorgensen, B.B., Revsbech, N.P. and Schulz, H.D., 1994. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Research, 41: 1767–1788.

    Article  Google Scholar 

  • Harper, M.R, Davison, W. and Tych, W., subm. One dimensional views of three dimensional sediments. Environmental Science and Technology.

    Google Scholar 

  • Hensen, C, Landenberger, H., Zabel, M. and Schulz, H.D., 1998. Quantification of diffusive benthic fluxes of nitrate, phosphate and silicate in the Southern Atlantic Ocean. Global Biogeochemical Cycles, 12(1): 193–210.

    Article  Google Scholar 

  • Hensen, C, Zabel, M. and Schulz, H.D., in press. A comparision of benthic nutrient fluxes from deep — dea sediments of Namibia and Argentinia. In: Gansen, G.M. and Wefer, G. (eds) Particle flux and its preservation in deep-sea sediments.Deep-Sea Research II.

    Google Scholar 

  • Jahnke, R.A., Heggie, D., Emerson, S. and Grundmanis, V, 1982. Pore waters of the central Pacific Ocean: nutrient results. Earth Planetary Science Letters, 61: 233–256.

    Article  Google Scholar 

  • Jahnke, R.A., 1985. A Model of Microenvironments in Deep- Sea Sediments: Formation and Effects on Porewater Profiles. Limnology Oceanography, 30(5): 956–965.

    Google Scholar 

  • Jahnke, R.A., Reimers, C.E. and Craven, D.B., 1990. Intensification of recycling of organic matter at the sea floor near ocean margins. Nature, 348: 50–54.

    Article  Google Scholar 

  • Jahnke, R.A., 1996. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Global Biogeochemical Cycles, 10: 71–88.

    Article  Google Scholar 

  • Jorgensen, B.B., 1977. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Marine Biology, 41: 7–17.

    Article  Google Scholar 

  • Journel, A.G. and Huijbregts, C, 1978. Mining Geostatistics. Academic Press, London, 600 pp.

    Google Scholar 

  • Kraus, G. and Tomaczak, M., 1995. Do marine scientists have a scientific view of the earth? Oceanography, 8: 11–16.

    Article  Google Scholar 

  • Krige, D.G., 1951. A statistical approach to some basic mine valuation problems an the Witwatersrand. Journal Chem. Metall. Min. Soc. South Africa, 52: 119–139.

    Google Scholar 

  • Lampitt, R.S., 1996. Snow falls in the open ocean. In: Summerhayes, C.P. and Thorpe, S.A. (eds) Oceanography — An illustrated guide. Manson Publ., Southampton Oceanogr. Centre, pp 96–112.

    Google Scholar 

  • Ledbetter, M.T. and Klaus, A. (eds), 1987. Influence of bottom currents on sediment texture and sea-floor morphology in the Argentine Basin. Geology and Geochemistry of Abyssal Plains, Geological Society Special Publication, 31: 23–31.

    Google Scholar 

  • Longhurst, A., Sathyendranath, S., Piatt, T. and Caverhill, C, 1995. An estimate of global primary producion in the ocean from satellite radiometer data. Journal of Plankton Research, 17: 1245–1271.

    Article  Google Scholar 

  • Matheron, G., 1963. Principles of geostatistics. Economic Geology, 58: 1246–1266.

    Article  Google Scholar 

  • Nelson, D.M., Treguer, P., Brzezinski, M.A., Leynaert, A. and Queguiner, B., 1995. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycle, 9: 359–372.

    Article  Google Scholar 

  • Pannatier, Y., 1996. Variowin: Software for spatial data analysis in 2D. Springer Verlag, Berlin, Heidelberg, NY, 91 pp.

    Google Scholar 

  • Premuzic, E.T., Benkovitz, CM., Gaffney, J.S. and Walsh, J.J., 1982. The nature and distribution of organic matter in the surface sediments of world oceans and seas. Organic Geochemistry, 4: 63–77.

    Article  Google Scholar 

  • Romankevich, E.A., 1984. Geochemistry of organic matter in the ocean. Springer Verlag, Berlin, Heidelberg, NY, 334 pp.

    Book  Google Scholar 

  • Rowe, G.T., Boland, G.S., Phoel, W.C, Anderson, R.F. and Biscaye, P.E., 1994. Deep — sea floor respiration as an indication of lateral input of biogenic detritus from continental margins. Deep-Sea Research, 41: 657–668.

    Article  Google Scholar 

  • Sathyendranath, S., Longhurst, A., Caverhill, CM. and Piatt, T., 1995. Regionally and seasonally differentiated primary production in the North Atlantic. Deep-Sea Research, 42(10): 1773–1802.

    Article  Google Scholar 

  • Sayles, F.L., Martin, W.R. and Deuser, W.G., 1994. Response of benthic oxygen demand to particulate organic carbon supply in the deep sea near Bermuda. Nature, 371: 686–689.

    Article  Google Scholar 

  • Sayles, F.L. and Martin, W.R., 1995. In Situ tracer studies of solute transport across the sediment — water interface at the Bermuda Time Series site. Deep-Sea Research, 42(1): 31–52.

    Article  Google Scholar 

  • Sayles, F.L., Deuser, W.G., Goudreau, J.E., Dickinson, W.H., Jickells, T.D. and King, P., 1996. The benthic cycle of biogenic opal at the Bermuda Atlantic Time Series site. Deep-Sea Research, 43(4): 383–409.

    Article  Google Scholar 

  • Schliiter, M., 1996. Einfiihrung in geostatische Verfahren und deren Programmierung. Enke Verlag, Stuttgart, 326 pp.

    Google Scholar 

  • Schliiter, M., Rutgers van der Loeff, M.M., Holby, M. and Kuhn, G., 1998. Silica cycle in surface sediment of the South Atlantic. Deep-Sea Research, 45: 1085–1109.

    Article  Google Scholar 

  • Smith, K.L.j., Baldwin, R.J. and Williams, P.M., 1992. Reconciling particulate organic carbon flux and sediment community oxygen consumption in the deep North Pacific. Nature, 359: 313–316.

    Article  Google Scholar 

  • Treguer, P., Nelson, D., Van Bennekom, A.J., DeMaster, D.J., Leynaert, A. and Queguiner, B., 1995. The Silica Balance in the World Ocean: A Reestimate. Science, 268: 375–379.

    Article  Google Scholar 

  • Van Bennekom, A.J., Buma, A.G.J, and Nolting, R.F., 1991. Dissolved aluninium in the Weddel-Scotia Confluence effect of Al on the dissolution kinetics of biogenic silica. Marine Chemistry, 35: 423–434.

    Article  Google Scholar 

  • Van Cappellen, P. and Qui, L., 1997. Biogenic silica dissolution in sediments of the Southern Ocean. I. Solubility. Deep-Sea Research, 44: 1109–1128.

    Article  Google Scholar 

  • Wackernagel, H., 1996. Multivariate Geostatistics. Springer Verlag, Berlin, Heidelberg, NY, 256 pp.

    Google Scholar 

  • Walsh, J.J., 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350: 53–55.

    Article  Google Scholar 

  • Wefer, G. and Fischer, G., 1993. Seasonal Patterns of vertical Particle Flux in equatorial and coastal Upwelling Areas of the Eastern Atlantic. Deep-Sea Research, 40: 1613–1645.

    Article  Google Scholar 

  • Wollast, R. and Mackenzie, F.T., 1983. The global cycle of silica. In: Aston, S.R. (ed) Silicon Geochemistry and Bio-geochemistry. Academic Press, London, pp 39–76.

    Google Scholar 

  • Zabel, M., Dahmke, A. and Schulz, H.D., 1998. Regional Distribution of Phosphate and Silicon Fluxes across the Sediment Water Interface in the Eastern South Atlantic. DeepSea Research, 45: 277–300.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zabel, M., Hensen, C., Schlüter, M. (2000). Back to the Ocean Cycles: Benthic Fluxes and Their Distribution Patterns. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04242-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04244-1

  • Online ISBN: 978-3-662-04242-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics