Skip to main content

The Measurement and Analysis of Fine Root Longevity

  • Chapter
Root Methods

Abstract

A better understanding of ecosystem processes is an important research goal for scientists in the next millennium. It offers the potential to not only make better use of our finite natural resources but also to properly understand the impacts of anthropogenic events such as global climate change. It will also allow us to make more informed assessments of how any deleterious effects may be ameliorated. One of the important research targets for terrestrial ecosystems is to understand biogeochemical cycles, as it is these fluxes (and the processes which drive them), which are fundamental to ecosystem stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allison PD (1995) Survival analysis using the SAS system: a practical guide. SAS Institute, Cary, North Carolima, 292 pp

    Google Scholar 

  • Andren O, Rajkai K, Katterer T (1991) A non-destructive technique for studies of root distribution in relation to soil moisture. Agric Eco Environ 34: 269–278

    Article  Google Scholar 

  • Atkinson D (1983) The growth, activity and distribution of the fruit tree root system. Plant Soil 71: 23–37

    Article  Google Scholar 

  • Atkinson D (1985) Spatial and temporal aspects of root distribution as indicated by the use of a root observation laboratory. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 43–65

    Google Scholar 

  • Atkinson D (1986) The nutrient requirements of fruit trees: some current considerations. Adv Plant Nutr 2: 93–128

    Google Scholar 

  • Atkinson D, Fogel R (1997) Roots: measurement, function and dry matter budgets. In: Vangardingen FR, Foody GM, Curran PJ (eds) Scaling-up from cell to landscape. Cambridge University Press, pp 151–172

    Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 5: 281–294

    Article  Google Scholar 

  • Black KE, Harbron CG, Franklin M, Atkinson D, Hooker JE (1998) Differences in root longevity of some tree species. Tree Physiol 18: 259–264

    Article  PubMed  Google Scholar 

  • Cannell MGR, Dewar RC, Thornley JHM (1992) Carbon flux and storage in European forests. In: Teller A, Mathy P, Jeffers JNR (eds) Responses of forest ecosystem to environmental changes. Elsevier, London, pp 256–271

    Chapter  Google Scholar 

  • Conover WJ (1980) Practical nonparametric statistics, 2nd edn. John Wiley, New York

    Google Scholar 

  • Cox DR, Oakes D ( 1984 ) Analysis of survival data. Chapman and Hall, London

    Google Scholar 

  • Curtis PS, Zack DR, Pregitzer KS, Teri JA (1995) Above and below ground response of Populus grandidentata to elevated atmospheric CO2 and soil N availability. Plant Soil 165: 45–54

    Article  Google Scholar 

  • Drew MC (1987) Function of root tissue in nutrient and water transport. In: Gregory PJ, Lake JV, Rose DA (eds) Root development and function. Cambridge University Press, Cambridge, pp 71–102

    Google Scholar 

  • Dubach M, Russelle MP (1995) Reducing the cost of estimating root turnover with horizontally installed minirhizotrons. Agron J 87: 258–263

    Article  Google Scholar 

  • Fairley RI, Alexander IJ (1985) Methods of calculating fine root production in forests. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 37–42

    Google Scholar 

  • Fogel R (1985) Roots as primary producers in below-ground ecosystems. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 23–36

    Google Scholar 

  • Fogel R (1991) Root system demography and production in forest ecosystems. In: Atkinson D (ed) Plant root growth. Blackwell, Oxford, pp 89–102

    Google Scholar 

  • Fogel R, Hunt G (1979) Fungal and arboreal biomass in a western origin Douglas fir ecosystem: distribution patterns and turnover. Can J For Res 9: 245–256

    Article  Google Scholar 

  • Forbes PJ, Ellison CH, Hooker JE (1996) The impact of arbuscular mycorrhizal fungi and temperature on root system development. Agronomie 159: 617–620

    Article  Google Scholar 

  • Forbes PJ, Black KE, Hooker JE (1997) Temperature induced alteration to root longevity of Lolium perenne. Plant Soil 190: 87–90

    Article  CAS  Google Scholar 

  • Gehan EA (1965) A generalized Wilcoxan test for comparing arbitrarily singly-censored data. Biometrika 52: 650–653

    PubMed  CAS  Google Scholar 

  • George SL, Desu MM (1974) Planning the size and duration of a clinical trial studying the time to some critical event. J Chron Dis 27: 15–24

    Article  PubMed  CAS  Google Scholar 

  • Goins GD, Russelle MP (1996) Fine root demography in alfalfa (Medicago sativa L). Plant Soil 185: 281–291

    Article  CAS  Google Scholar 

  • Gregory PJ (1987) Development and growth of root systems in plant communities. In: Gregory PJ, Lake JV, Rose DA (eds) Root development and function. Cambridge University Press, Cambridge, pp 147–166

    Google Scholar 

  • Harris WF, Santantonio D, McGinty D (1980) The dynamic below ground ecosystem. In: Wearing RH (ed) Forests: fresh perspectives from ecosystem analysis. pp 119–129

    Google Scholar 

  • Head GC (1966) Estimating seasonal changes in the quantity of white unsuberized root on fruit trees. J Hortic Sci 41: 197–206

    Google Scholar 

  • Hendrick RL, Pregitzer KS (1992) The demography of fine roots in a northern hardwood forest. Ecology 73: 1094–1104

    Article  Google Scholar 

  • Hendrick RL, Pregitzer KS (1993) Patterns of fine root mortality in two sugar maple forests. Nature 361: 59–61

    Article  Google Scholar 

  • Hoffman A (1993) Quantifying selection in wild populations using known-fate and markrecapture designs. PhD Dissertation, University of Washington, Seattle, Washington, 259 pp

    Google Scholar 

  • Hooker JE, Atkinson D (1996) Arbuscular mycorrhizal fungi-induced alteration to tree-root architecture and longevity. Pflanzenernaehr Bodenkd 159: 229–234

    Article  CAS  Google Scholar 

  • Hooker JE, Munro M, Atkinson D (1992) Vesicular-arbuscular fungi induced alteration in poplar root system morphology. Plant Soil 145: 207–214

    Article  Google Scholar 

  • Hooker JE, Black KE, Perry RL, Atkinson D (1995) Arbuscular mycorrhizal fungi induced alteration to root longevity of poplar. Plant Soil 172: 327–329

    Article  CAS  Google Scholar 

  • Kalbfleisch JD, Prentice RL (1980) The statistical analysis of failure time data. John Wiley, New York

    Google Scholar 

  • Klepper B (1987) Origin, branching and distribution of root systems. In: Gregory PJ, Lake JV, Rose DA (eds) Root development and function. Cambridge University Press, Cambridge, pp 103–124

    Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47: 583–621

    Article  Google Scholar 

  • Lee ET (1992) Statistical methods for survival data analysis, 2nd edn. Wiley, New York, 482 pp

    Google Scholar 

  • MacKenzie KAD (1979) The development of the endodermis and phi layer of apple roots. Protoplasma 100: 21–32

    Article  Google Scholar 

  • Makuch RW, Simon RM (1982) Sample size requirements for comparing time-to-failure among k treatment groups. J Chron Dis 35: 861–867

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 50: 163–170

    PubMed  CAS  Google Scholar 

  • Mantel N (1967) Ranking procedures for arbitrarily restricted observations. Biometrics 23: 65–78

    Article  PubMed  CAS  Google Scholar 

  • Muenchow G (1986) Ecological use of failure time analysis. Ecology 67: 246–250

    Article  Google Scholar 

  • Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots, net primary production and nitrogen availability: a new hypothesis. Ecology 66: 1377–1390

    Article  Google Scholar 

  • Norman JR, Atkinson D, Hooker JE (1996) Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 185: 191–198

    Article  CAS  Google Scholar 

  • Pollock KH, Winterstein SR, Conroy MJ (1989) Estimation and analysis of survival distributions for radio-tagged animals. Biometrics 45: 99–109

    Article  Google Scholar 

  • Pregitzer KS, Hendrick RL, Fogel R (1993) The demography of fine roots in response to patches of water and nitrogen. New Phytol 125: 575–580

    Article  Google Scholar 

  • Pyke DA, Thompson JN (1986) Statistical analysis of survival and removal rate experiments. Ecology 67: 240–245

    Article  Google Scholar 

  • Ruess RW, Hendrick RL, Bryant JP (1998) Regulation of fine root dynamics by mammalian browsers in early successional Alaskan taiga forests. Ecology 79: 2706–2720

    Article  Google Scholar 

  • Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52: 860–873

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. WH Freeman, New York

    Google Scholar 

  • Steen E (1991) Usefulness of the mesh bag method in quantitative root studies. In: Atkinson D (ed) Plant root growth. Blackwell, Oxford, pp 75–88

    Google Scholar 

  • Thomas SM, Whitehead D, Adams JA, Reid JB, Sherlock RR, Leckie AC (1996) Seasonal root distribution and soil surface carbon fluxes for 1-year-old Pinus radiata trees growing at ambient and elevated carbon dioxide concentrations. Tree Physiol 16: 1015–1021

    Article  PubMed  Google Scholar 

  • Wang Z, Burch WH, Mou P, Jones RH, Mitchell RJ (1995) Accuracy of visible and ultraviolet light for estimating live root proportions with minirhizotrons. Ecology 76: 2330–2334

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hooker, J.E., Hendrick, R., Atkinson, D. (2000). The Measurement and Analysis of Fine Root Longevity. In: Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van de Geijn, S.C. (eds) Root Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04188-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04188-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08602-1

  • Online ISBN: 978-3-662-04188-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics