Skip to main content

Trench Profile Techniques and Core Break Methods

  • Chapter
Root Methods

Abstract

This chapter describes methods for root observations based on mapping or counting root intersections with planes of observation in the soil. Normally these planes of observation are either vertical or horizontal. Compared with the methods based on washed root samples discussed in Chapter 6, these “profile wall” methods have advantages as well as disadvantages. A major disadvantage of the profile wall methods is that only a small part of a root is visible on such an intersection and it is not easy to distinguish between roots of different species, or between live or dead roots. Even the question of whether a whitish thread-like object sticking out of a plane is a root and not an enchytraeid (pot worm) or other soil organism may take some experience to answer (potworms move when touched). Creating access to planes of observation via trenches can be a rather destructive activity which is not welcome on small experimental plots, especially those intended for long-term experiments. On the positive side, however, profile wall methods can give a quick estimate of overall root distribution and can give detailed information on spatial patterns of roots in their interaction with physical, chemical and biological characteristics of the soil profile. If maps are made of root occurrence as well as any other readily observable feature, the toolbox of geographical information systems and quantitative map analysis can be used to analyze patterns, be it in only two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baldwin JB, Tinker PB, Marriott FHC (1971) The measurement of length and distribution of onion roots in the field and the laboratory. J Appl Ecol 8: 543–554

    Article  Google Scholar 

  • Baldwin JP, Tinker PB, Nye PH (1972) Uptake of solutes by multiple root systems from soil. II. The theoretical effects of rooting density and pattern on uptake of nutrients form soil. Plant Soil 36: 693–708

    Article  CAS  Google Scholar 

  • Barley KP (1970) The configuration of the root system in relation to nutrient uptake. Adv Agron 22: 159–201

    Article  Google Scholar 

  • Bengough AG, Mackenzie CJ, Diggle AJ (1992) Relations between root length densities and root intersections with horizontal and vertical planes using root growth modelling in 3-dimensions. Plant Soil 145: 245–252

    Article  Google Scholar 

  • Bennie ATP, Taylor HM, Georgen PG (1987) An assessment of the core-break method for estimating rooting density of different crops in the field. Soil Tillage Res 9: 347–353

    Article  Google Scholar 

  • Bland WL (1989) Estimating root length density by the core-break method. Soil Sci Soc Am J 53: 1595–1597

    Article  Google Scholar 

  • Bland WL (1991) Root length density from core-break observations: sources of error. In: McMichael BL, Persson H (eds) Plant roots and their environment. Elsevier, Amsterdam, pp 565–569

    Chapter  Google Scholar 

  • Böhm W (1976) In situ estimation of root length at natural soil profiles. J Agric Sci 87: 365–368 Böhm W ( 1979 ) Methods of studying root systems. Berlin Heidelberg New York

    Google Scholar 

  • Bragg PL, Govi G, Cannell RQ (1983) A comparison of methods, including angled and vertical minirhizotrons, for studying root growth and distribution in a spring oat crop. Plant Soil 73: 435–440

    Article  Google Scholar 

  • De Willigen P, Van Noordwijk M (1987a) Roots for plant production and nutrient use efficiency. Doct Thesis, Agricultural University, Wageningen, 282 pp

    Google Scholar 

  • De Willigen P, Van Noordwijk M (1987b) Uptake potential of non-regularly distributed roots. J Plant Nutr 10: 1273–1280

    Article  Google Scholar 

  • Diggle PJ (1983) Statistical analysis of spatial point patterns. Academic Press, London

    Google Scholar 

  • Drew MC, Saker LR (1980) Assessment of a rapid method, using soil cores, for estimating the amount and distribution of crop roots in the field. Plant Soil 55: 297–305

    Article  Google Scholar 

  • Gerwitz A, Page ER (1974) An empirical mathematical model to describe plant root systems. J Appl. Ecol 11: 75–96

    Google Scholar 

  • Grabarnik P, Pagès L, Bengough AG (1998) Geometric properties of simulated maize root systems: consequences for length density and intersection density. Plant Soil 200: 157–167

    Article  CAS  Google Scholar 

  • Haberle J, Van Noordwijk M, Brouwer G (1994) Comparison of root position effectivity ratio of field-grown and modelled maize root systems. Poster abstract. In: Proc 3rd Congr Eur Soc for Agronomy, 1994, Abano-Padova

    Google Scholar 

  • Jourdan C, Rey H (1997) Modelling and simulation of the architecture and development of the oil palm (Elaeis guineensis Jacq.) root system. II. Estimation of root parameters using the RACINES postprocessor. Plant Soil 190: 235–246

    Google Scholar 

  • Kooistra MJ, Van Noordwijk M (1996) Soil architecture and distribution of organic carbon. In: Carter MR, Stewart BA (eds) Structure and organic carbon storage in agricultural soils. Advances in Soil Science. CRC Lewis, Boca Raton pp 15–57

    Google Scholar 

  • Lang ARG, Melhuish FM (1970) Lengths and diameters of plant roots in non-random populations by analysis of plane surfaces. Biometrics 26: 421–431 (corrections in Biometrics 28: 626–627)

    Google Scholar 

  • Logsdon SD, Allmaras RR (1991) Maize and soybean root clustering as indicated by root mapping. Plant Soil 131: 169–176

    Article  Google Scholar 

  • Lynch JP, Nielsen KN, Davis RD, Jablokow AG (1997) SIMROOT: modelling and visualization of root systems. Plant Soil 188: 139–151

    Article  CAS  Google Scholar 

  • Marriot FHC (1972) Buffon’s problem for non-random distribution. Biometrics 28: 621–624

    Article  Google Scholar 

  • Melhuish FM. Lang ARG (1968) Quantitative studies of roots in soil. I. Length and diameters of cotton roots in a clay-loam soil by analysis of surface-ground blocks of resin-impregnated soil. Soil Sci 106: 16–22

    Google Scholar 

  • Ogston AG (1958) The spaces in a uniform random suspension of fibres. Trans Faraday Soc 54: 1754–1757

    Article  Google Scholar 

  • Oliveira Carvalheiro K de, Nepstad DC (1996) Deep soil heterogeneity and fine root distribution in forests and pastures of eastern Amazonia. Plant Soil 182: 279–285

    CAS  Google Scholar 

  • Pages L, Bengough AG (1997) Modelling mini-rhizotron observations to test experimental procedures. Plant Soil 189: 81–89

    Article  CAS  Google Scholar 

  • Pagès L, Pellerin S (1996) Study of differences between vertical root maps observed in a maize crop and simulated maps obtained a model for the three-dimensional architecture of the root system. Plant Soil 182: 329–337

    Google Scholar 

  • Parker CJ, Carr MKV, Jarvis NJ, Puplampu BO, Lee VH (1991) An evaluation of the minirhizotron technique for estimating root distribution in potatoes. J Agric Sci 116: 341–350

    Article  Google Scholar 

  • Pellerin S, Pagès L (1996) Evaluation in field conditions of a three-dimensional architectural model of the maize root system: comparison of simulated and observed horizontal root maps. Plant Soil 178: 101–112

    Article  CAS  Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. Wiley-Interscience, New York Rappoldt C (1990) The application of diffusion models to aggregated soil. Soil Sci 150: 645–661

    Google Scholar 

  • Ringrose-Voase AJ (1996) Measurement of soil macropore geometry by image analysis of sections through impregnated soil. Plant Soil 183: 27–47

    Article  CAS  Google Scholar 

  • Schuurman JJ, Goedewaagen MAJ (1971) Methods for the examination of root systems and roots, 2nd edn. Pudoc, Wageningen

    Google Scholar 

  • Schuurman JJ, Knot L (1957) Het schatten van hoeveelheden wortels in voor wortelonderzoek genomen monsters. [Estimating root quantities in auger samples; in Dutch] Versl Landbouwkd Onderz 63: 31

    Google Scholar 

  • Tardieu F (1988) Analysis of the spatial variability of maize root density. I. Effect of wheel compaction on the spatial arrangement of roots. II. Distances between roots. Plant Soil 107: 259–266 and 267–272

    Google Scholar 

  • Tardieu F, Manichon H (1986) Caracterisation en tant que capteur d’eau de l’enracinemnent du mais en parcelle cultivee. I. Discussion des criteres d’etude. II. Une methode d’etude de la repartition verticale et horizontale des racines. Agronomie 6: 345–354 and 415–425

    Google Scholar 

  • Van Noordwijk M (1987) Methods for quantification of root distribution pattern and root dynamics in the field. 20th Colloq Int Potash Institute, Bern, pp 263–281

    Google Scholar 

  • Van Noordwijk M, Brouwer G (1997) Roots as sinks and sources of carbon and nutrients in agricultural systems. In: Brussaard L, Ferrera-Cerrato R (eds) Soil ecology in sustainable agricultural systems. CRC Lewis, Boca Raton, pp 71–89

    Google Scholar 

  • Van Noordwijk M, Kooistra MJ, Boone FR, Veen BW, Schoonderbeek D (1992) Root-soil contact of maize, as measured by thin-section technique. I. Validity of the method. Plant Soil 139: 109–118

    Google Scholar 

  • Van Noordwijk M, Brouwer G, Harmanny K (1993a) Concepts and methods for studying interactions of roots and soil structure. Geoderma 56: 351–375

    Article  Google Scholar 

  • Van Noordwijk M, De Ruiter PC, Zwart KB, Bloem J, Moore JC, Van Faassen HG, Burgers S (1993b) Synlocation of biological activity, roots, cracks and recent organic inputs in a sugar beet field. Geoderma 56: 265–276

    Article  Google Scholar 

  • Van Noordwijk M, Brouwer G, Zandt P, Meijboom FW, Burgers S (1993c) Root patterns in space and time: procedures and programs for quantification. IB-Nota 268, IB-DLO Haren (the Netherlands)

    Google Scholar 

  • Van Noordwijk M, Driel W, Brouwer G, Schuurman W (1995) Heavy metal uptake by crops from harbour sludge covered by non-contaminated topsoil. II. Cd uptake by maize in relation to root development and distribution of metals. Plant Soil 175: 105–113

    Google Scholar 

  • Van Noordwijk M, Lawson G, Groot JJR, Hairiah K (1996) Root distribution in relation to nutrients and competition. In: Ong CK, Huxley PA, eds. Tree-crop interactions–a physiological approach. CAB International, Wallingford. pp 319–364

    Google Scholar 

  • Vepraskas MJ, Hoyt GD (1988) Comparison of the trench profile and core methods for evaluating root distributions in tillage studies. Agron J 80: 166–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Noordwijk, M., Brouwer, G., Meijboom, F., do Rosário G. Oliveira, M., Bengough, A.G. (2001). Trench Profile Techniques and Core Break Methods. In: Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van de Geijn, S.C. (eds) Root Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04188-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04188-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08602-1

  • Online ISBN: 978-3-662-04188-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics