Skip to main content

Sampling Strategies, Scaling, and Statistics

  • Chapter
Root Methods

Abstract

Many experiments aim to understand how some aspect of the aerial and soil environment of a plant influences its growth. Considerable biomass is often allocated to the root system, and it is the roots that absorb most nutrients and water (Russell 1977). The property of the root system which is most appro-priate to measure depends on the objective of the experiment. Root length should be measured to calculate the inflow rate of water and nutrients (see Chaps. 6, 13, 14). Root dry mass indicates the carbon allocation to the root system. Branching patterns and the number and lengths of each class of root, together with the distribution of root diameters gives a more complete picture of root architecture, but requires a large investment of labour. Detailed information on root architecture may be of interest in constructing mathematical models of root growth (see Chap. 4), in comparing the structure and function of root systems of different species or genotypes (e.g. Fitter and Stickland 1991), and in evaluating root responses to environmental conditions (e.g. Robinson 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aiken RM (1992) Functional relations of root distributions with the flux and uptake of water and nitrate. PhD Dissertation. Michigan State University, East Lansing

    Google Scholar 

  • Aiken RM, Jawson MD, Grahammer K, Polymenopoulos AD (1991) Positional, spatially correlated and random components of variability in carbon dioxide efflux. J Environ Qual 20: 301–308

    Article  Google Scholar 

  • Bengough AG, MacKenzie CJ, Diggle AJ (1992) Relations between root length densities and root intersections with horizontal and vertical planes using root growth modelling in 3-dimensions. Plant Soil 145: 245–252

    Article  Google Scholar 

  • Bennie ATP (1996) Growth and mechanical impedance. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half. Marcel Dekker, New York pp 453–470

    Google Scholar 

  • Bourgault G, Journel AG, Rhoades JD, Corwin DL, Lesch SM (1997) Geostatistical analysis of a soil salinity data set. Adv Agron 58: 241–292

    Article  CAS  Google Scholar 

  • Burgess TM, Webster R (1980) Optimal interpolation and isarithmic mapping soil properties. I. The semivariogram and punctual kriging. J Soil Sci 31: 315–331

    Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala 0E, Schulze ED (1996) Maximum rooting depth of vegetation types at the global-scale. Oecologia 108: 583–595

    Article  Google Scholar 

  • Castrignano A, Lopez G (1988) La variebilita delle proprieta del suolo e la sua applicazione nelle ricerche agronomiche. Proc Conf Italian Soc of Soil Science, Verona, 1988 pp 714–728

    Google Scholar 

  • Castrignano A, De Giongio D, Stelluti M, Rizzo V (1994) A geostatistical approach to characterize spatial variability of yield in a durum wheat submitted to four tillage treatments. Proc 13th Int Conf Int Soil Tillage Research Organisation, Aalborg, 1994 pp 997–1004

    Google Scholar 

  • Cochran WG, Cox GM (1957) Experimental designs 2nd edn. John Wiley New York

    Google Scholar 

  • Coutts MP (1989) Factors affecting growth direction of tree roots. Ann Sci For 46: 277–287

    Article  Google Scholar 

  • Dittmer HJ (1937) A quantitative study of the roots and root hairs of a winter rye plant (Secalecereale). Am J Bot 24: 417–420

    Article  Google Scholar 

  • Ehlers W, Kopke U, Hesse F, Bohm W (1983) Penetration resistance and root-growth of oats in tilled and untilled loess soil. Soil Tillage Res 3: 261–275

    Article  Google Scholar 

  • Fitter AH, Stickland TR (1991) Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytol 118: 383–389

    Google Scholar 

  • Gajri PR, Arora VK, Kumar K (1994) A procedure for determining average root length density in row crops by single-site augering. Plant Soil 160: 41–47

    Article  Google Scholar 

  • Gerwitz A, Page ER (1974) An empirical mathematical model to describe plant root systems. J Appl Ecol 11: 773–781

    Article  Google Scholar 

  • Grabarnik P, Pagès L, Bengough AG (1998) Geometric properties of simulated maize root systems: consequences for length density and intersection density. Plant Soil 200: 157–167

    Article  CAS  Google Scholar 

  • Gregory PJ, McGowan M, Biscoe PV (1978) Water relations of winter wheat. 2. Soil water relations. J Agric Sci 91: 103–116

    Google Scholar 

  • Jackson RB, Caldwell MM (1993a) Geostatistical patterns of soil heterogeneity around individual perennial plants. J Ecol 81: 683–692

    Article  Google Scholar 

  • Jackson RB, Caldwell MM (1993b) The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology 74: 612–614

    Article  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala 0E, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108: 389–411

    Article  Google Scholar 

  • Kucke M, Schmid H, Spiess A (1995) A comparison of four methods for measuring roots of field crops in three contrasting soils. Plant Soil 172: 63–71

    Article  Google Scholar 

  • Lauenroth WK, Hunt HW, Swift DM, Singh JS (1986) Overestimation of net root production–a real or imaginary problem–reply. Ecology 67: 580–582

    Article  Google Scholar 

  • Le Roux Y, Pagès L (1994) Développement et polymorphisme racinaire chez de jeunes semis d’hévéa (Hevea brasiliensis). Can J Bot 72: 924–932

    Article  Google Scholar 

  • Logsdon SD, Allmaras RR (1991) Maize and soybean clustering as indicated by root mapping. Plant Soil 131: 169–176

    Article  Google Scholar 

  • Logsdon SD, Linden DR (1992) Interactions of earthworms with soil physical conditions influencing plant growth. Soil Sci 154: 330–336

    Article  Google Scholar 

  • Lynch JP, Nielsen KL, Davis RD, Jablokow AG (1997) Simroot: modelling and visualization of root systems. Plant Soil 188: 139–151

    Article  CAS  Google Scholar 

  • Lyr H, Hoffmann G (1967) Growth rates and growth periodicity of tree roots. Int Rev For Res 2: 181–236

    Google Scholar 

  • Mace AE (1964) Sample-size determination. Reinhold Publishing, New York

    Google Scholar 

  • Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Probabil 5: 438–468

    Article  Google Scholar 

  • Nelson WW, Allmaras RR (1969) An improved monolith method for excavating and describing roots. Agron J 61: 751–754

    Article  Google Scholar 

  • Newman EI (1969) Resistance to water flow in soil and plant. J Appl Ecol 6: 1–12

    Article  Google Scholar 

  • Nielsen KL, Lynch JP, Weiss HN (1997) Fractal geometry of bean root systems: correlations between spatial and fractal dimension. Am J Bot 84: 26–33

    Article  PubMed  CAS  Google Scholar 

  • Pages L, Bengough AG (1997) Modelling minirhizotron observations to test experimental procedures. Plant Soil 189: 81–89

    Article  CAS  Google Scholar 

  • Pages L, Pellerin S (1994) Evaluation of parameters describing the root system architecture of field-grown maize plants (Zea mays L.). II. Density, length, and branching of first-order lateral roots. Plant Soil 164: 169–176

    Google Scholar 

  • Parker CJ, Carr MKV, Jarvis NJ, Puplampu BO, Lee VH (1991) An evaluation of the minirhizotron technique for estimating root distribution in potatoes. J Agric Sci 116: 341–350

    Article  Google Scholar 

  • Pearce SC (1983) The agricultural field experiment: a statistical examination of theory and practice. John Wiley, New York

    Google Scholar 

  • Pellerin S, Pages L (1994) Evaluation of parameters describing the root system architecture of field-grown maize plants (Zea mays L.). I. Elongation of seminal and nodal roots and extension of their branched zone. Plant Soil 164: 155–167

    Google Scholar 

  • Pellerin S, Pages L (1996) Evaluation of in-field conditions of a 3-dimensional architectural model of the maize root-system–comparison of simulated and observed horizontal root maps. Plant Soil 178: 101–112

    Article  CAS  Google Scholar 

  • Persson H (1978) Root dynamics in a young Scots pine stand in central Sweden. Oikos 30: 508–519

    Article  Google Scholar 

  • Robert PC, Rust RH, Larson WE (1996) Precision agriculture. Proc 3rd Int Conf on precision agriculture, Minneapolis, 1996

    Google Scholar 

  • Robinson D (1994) The responses of plants to non-uniform supplies of nutrients. New Phytol 127: 635–674

    Article  CAS  Google Scholar 

  • Rossi RE, Mulla DJ, Journel AG, Franz EH (1992) Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol Monogr 62: 277–314

    Article  Google Scholar 

  • Russell RS (1977) Plant root systems. Their function and interaction with the soil. McGraw Hill, Maidenhead

    Google Scholar 

  • Sanders DH (1990) Statistics: a fresh approach ( 4th edn ). McGraw-Hill, New York

    Google Scholar 

  • Schuurman JJ, Knot L (1957) Het schatten van hoeveelheden wortels in voor wortelonderzoek genomen monsters. Versl Landbouwk Onderz 63: 31

    Google Scholar 

  • Singh JS, Lauenroth WK, Hunt HW, Swift DM (1984) Bias and random errors in estimators of net root production–a simulation approach. Ecology 65: 1760–1764

    Article  Google Scholar 

  • Spek LY (1997) Generation and visualization of root-like structures in a three-dimensional space. Plant Soil 197: 9–18

    Article  CAS  Google Scholar 

  • Spek LY, Van Noordwijk M (1994) Proximal root diameters as predictors of total root system size for fractal branching models. II. Numerical model. Plant Soil 164: 119–128

    Google Scholar 

  • Tardieu F (1988) Analysis of the spatial variability of maize root density II. Distances between roots. Plant Soil 107: 267–272

    Article  Google Scholar 

  • Tardieu F, Pellerin S (1990) Trajectory of the nodal roots of maize in fields with low mechanical constraints. Plant Soil 124: 39–45

    Article  Google Scholar 

  • Van Noordwijk M, Purnomosidhi P (1995) Root architecture in relation to tree-soil-crop interactions and shoot pruning in agroforestry. Agrofor Syst 30: 161–173

    Article  Google Scholar 

  • Van Noordwijk M, Floris J, de Jager A (1985) Sampling schemes for estimating root density distribution in cropped fields. Neth J Agric Sci 33: 241–262

    Google Scholar 

  • Van Noordwijk M, Spek LY, De Willigen P (1994) Proximal root diameters as predictors of total root system size for fractal branching models. I. Theory. Plant Soil 164: 107–118

    Google Scholar 

  • Varney GT, McCully ME (1991) The branch roots of Zea. II. Developmental loss of the apical meristem in field-grown roots. New Phytol 118: 535–546

    Google Scholar 

  • Varney GT, Canny MJ, Wang XL, McCully ME (1991) The branch roots of Zea. I. First order branches, their number, sizes and division into classes. Ann Bot 67: 357–364

    Google Scholar 

  • Vieira SR, Hatfield JL, Nielsen DR, Biggar JW (1983) Geostatistical theory and application to variability of some agronomical properties. Hilgardia 51: (3)

    Google Scholar 

  • Vogt KA, Grier CC, Gower ST, Sprugel DG, Vogt DJ (1986) Overestimation of net root production–a real or imaginary problem? Ecology 67: 577–579

    Article  Google Scholar 

  • Waisel Y, Eshel A (1991) Multiform behavior of various constituents of one root system. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half. Marcel Dekker, New York pp 3–24

    Google Scholar 

  • Wang J, Hesketh JS, Wooley JT (1986) Preexisting channels and soybean rooting patterns. Soil Sci 141: 432–437

    Article  Google Scholar 

  • Webster R (1985) Quantitative spatial analysis of soil in the field. Adv Soil Sci 3: 1–70

    Article  Google Scholar 

  • Wilde SA (1958) Forest soils: their protection and relation to silviculture. Roland Press, New York

    Google Scholar 

  • Wilson BF (1964) Structure and growth of woody roots of Acer rubrum L. Hary For Pap 11: 14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bengough, A.G., Castrignano, A., Pagès, L., van Noordwijk, M. (2000). Sampling Strategies, Scaling, and Statistics. In: Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van de Geijn, S.C. (eds) Root Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04188-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04188-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08602-1

  • Online ISBN: 978-3-662-04188-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics