Skip to main content

Anatomy and Histology of Roots and Root-Soil Boundary

  • Chapter
Root Methods

Abstract

Growing roots undergo many anatomical and morphological changes, which influence their activity and nutrient uptake processes. Therefore, it is often necessary to obtain structural information on the inner (anatomy and histology) and outer (morphology) parts of roots. This chapter gives an overview of methods to obtain information on anatomical and histological as well as morphological (root hairs and mycorrhiza) properties of roots. The methods applied for the study of root anatomy do not, generally, differ from methods used for the study of plant stems and leaves. Methods can thus be found in general laboratory books and manuals (Johansen 1940; Sass 1961; Jensen 1962; Purvis et al. 1964; O’Brien and McCully 1981; Neergaard 1997). Before a root specimen and a thin section of root-soil boundary can be investigated under a microscope it has to pass along a chain of processes which include sampling, killing and fixing, embedding, sectioning, and staining. Details of these processes depend on whether light microscopy (LM), transmission electron microscopy (TEM), or scanning electron microscopy (SEM) is to be used. For LM and TEM, histochemical or immunological tests may be applied additionally if the purpose is to demonstrate the presence of certain compounds in cells or tissues. SEM deviates from the other two mentioned with the exception of initial fixation steps and will be treated in a separate section. Squash techniques for chromosome studies, most often carried out on root tips, are also dealt with separately. Information on the anatomy of roots can be sought in books on plant anatomy (Esau 1965, 1977; Guttenberg 1968; Mauseth 1988; Fahn 1990) and root physiology (Luxovâ and Ciamporovâ 1989).

Principal author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbot LK, Robson AD (1985) Formation of external hyphae in soil by four species of vesiculararbuscular mycorrhizal fungi. New Phytol 99: 245–255

    Article  Google Scholar 

  • Abbot LK, Robson AD, De Boer G (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum. New Phytol 97: 437–446

    Article  Google Scholar 

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology vol 23. Academic Press, London, pp 25–75

    Google Scholar 

  • Altemüller HJ, van Vliet-Lanoe B (1990) Soil thin section fluorescence microscopy. In: Douglas LA (ed) Soil micromorphology. Elsevier, Amsterdam

    Google Scholar 

  • Balusika F, Parker JS, Barlow PW (1992) Specific patterns of cortical and endoplasmatic micro-tubules associated with cell growth and tissue differentiation in roots of maize (Zea mays L.) J Cell Sci 103: 191–200

    Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15: 281–294

    Article  PubMed  Google Scholar 

  • Bethlenfalvay GJ, Ames RN (1987) Comparison of two methods for quantifying extraradial mycelium of vesicular mycorrhizal fungi. Soil Sci Soc Am J 51: 834–837

    Article  Google Scholar 

  • Bevege DI (1968) A rapid technique for clearing tannins and staining intact roots for detection of mycorrhizas caused by Endogone spp. and some records of infection in Austral-asian plants. Trans Br Mycol Soc 51: 808–810

    Article  Google Scholar 

  • Bhuvaneswari TV, Solheim B (1985) Root hair deformation in the white clover/Rhizobium trifolii symbiosis. Physiol Plant 63: 25–34

    Article  CAS  Google Scholar 

  • Blancaflor EB, Hasenstein KH (1993) Organisation of cortical microtubules in graviresponding maize roots. Planta 191: 231–237

    PubMed  CAS  Google Scholar 

  • Blancaflor EB, Hasenstein KH (1997) The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize. Plant Physiol 113: 1447–1455

    PubMed  CAS  Google Scholar 

  • Boyde A, Maconnachie E (1981) Morphological correlations with dimensional change during SEM specimen preparation. Scanning Electron Microsc IV: 27–34

    Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research, Canberra. ACIAR Monograph 32, 374 pp

    Google Scholar 

  • Brundrett MC, Piche Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot 62: 2128–2134

    Article  Google Scholar 

  • Brundrett MC, Enstone DE, Peterson CA (1988) A berberine-aniline blue staining procedure for suberin, lignin and callose in plant tissue. Protoplasma 146: 133–142

    Article  Google Scholar 

  • Caradus JR (1979) Selection for root hair length in white clover (Trifolium repens L). Euphytica 28: 489–494

    Article  Google Scholar 

  • Care D (1995) The effect of aluminium concentration on root hairs in white clover (Trifolium repens L.). Plant Soil 171: 159–162

    Article  CAS  Google Scholar 

  • Carlson H, Stenram U, Gustafsson M, Jansson HB (1991) Electron microscopy of barley root infection by the fungal pathogen Bipolaris sorokiniana. Can J Bot 69 (12): 2724–2731

    Article  Google Scholar 

  • Clark G (ed) (1981) Staining procedures, 4th edn. Williams and Wilkins, Baltimore, 512 pp Culling DFA (1974) Modern microscopy: elementary theory and practice. Butterworths, London Daft MJ, Nicolson TH (1966) Effect of Endogone mycorrhiza on plant growth. New Phytol 65: 343–350

    Google Scholar 

  • Dhingra OD, Sinclair JB (1995) Basic plant pathology methods, 2nd edn. CRC, Boca Raton, 434

    Google Scholar 

  • Edwards HH, Yeh YY, Tamowski BI, Schonboum GR (1992) Acetonitrile as a substitute for ethanol/propylene oxide in tissue processing for transmission electron microscopy: comparison of fine structure and lipid solubility in mouse liver, kidney and intestine. Microsc Res Technique 21: 39–50

    Article  CAS  Google Scholar 

  • Egerton RF (1986) Electron energy loss spectroscopy in the electron microscope. Plenum Press, New York

    Google Scholar 

  • Esau K (1965) Plant anatomy, 2nd edn. Wiley, New York

    Google Scholar 

  • Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New York

    Google Scholar 

  • Fahn A (1990) Plant anatomy, 4th edn. Pergamon Press, Oxford

    Google Scholar 

  • Fâhraeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass technique. J Genet Microbiol 16: 374–381

    Google Scholar 

  • Fischer JMC, Peterson CA, Bols NC (1985) A new fluorescence test for cell vitality using Calco-fluor white M2R. Stain Technol 60: 69–79

    PubMed  CAS  Google Scholar 

  • Fitzpatrick EA (1990) Roots in thin sections of soils. In: Douglas LA (ed) Soil micromorphology, vol 19. Elsevier, Amsterdam, pp 9–23

    Google Scholar 

  • Föhse D, Jungk A (1983) Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plant. Plant Soil 74: 359–368

    Article  Google Scholar 

  • Gaff DF, Okong’o-ogola O (1971) The use of non-permeating pigments for testing the survival of cells. J Exp Bot 22: 756–758

    Article  Google Scholar 

  • Gahan PB (1984) Plant histochemistry and cytochemistry. An introduction. Academic Press, London, 301 pp

    Google Scholar 

  • Gahoonia TS, Nielsen NE (1997) Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica 98 (3): 177–182

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE (1998) Direct evidence on participation of root hairs in phosphorus (32P) uptake from soil. Plant Soil 198: 147–152

    Article  CAS  Google Scholar 

  • Gahoonia TS, Care D, Nielsen NE (1997) Root hairs and acquisition of phosphorus by wheat and barley cultivars. Plant Soil 191: 181–188

    Article  CAS  Google Scholar 

  • Gallaud I (1905) Etudes sur les mycorrhizes endotrophes. Rev Genet Bot XVII: 123–127 Gardner RO (1975) An overview of botanical clearing technique. Stain Technol 50 (2): 99–105

    Google Scholar 

  • Gerlach D (1984) Botanische Mikrotechnik, 3rd edn. Thieme, Stuttgart, 311

    Google Scholar 

  • Gerrits PO, Zuideveld R (1983) The influence of dehydration media and catalyst systems upon the enzyme activity of tissues embedded in 2-hydroxyethyl methacrylate. An evaluation of the three dehydration media and two catalyst systems. Mikroskopie 40: 321–328

    Google Scholar 

  • Gerrits PO, van Leeuwen MBM, Boon ME, Kok LP (1987) Floating on a water bath and mounting glycol methacrylate and hydroxypropyl methacrylate sections influence final dimensions. J Microsc 145 (1): 107–113

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V (1992) Cytology, histochemistry and immunocytochemistry as tools for studying structure and function in endomycorrhiza. In: Methods in Microbiology, vol 24. Academic Press, London, pp 109–139

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84: 489–500

    Article  Google Scholar 

  • Glauert AM (1975) Practical methods in electron microscopy. Fixation, dehydration and embedding of biological specimens. North Holland/American Elsevier, Amsterdam

    Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95: 1160–1162

    Article  Google Scholar 

  • Graham JH, Linderman RG, Menge JA (1982) Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to root colonization and growth of Troyer citrange. New Phytol 91: 183–189

    Article  Google Scholar 

  • Guttenberg Hv (1968) Der primäre Bau der Angiospermenwurzel. Handbuch der Pflanzenanatomie VIII, 5. Gebrüder Bornträger, Berlin

    Google Scholar 

  • Hahn A, Gianinazzi-Pearson V, Hock B (1994) Characterisation of arbuscular mycorrhizal fungi by immunochemical methods. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 25–39

    Chapter  Google Scholar 

  • Hamel C, Fyles H, Smith DL (1990) Measurements of development of endomycorrhizal mycelium using three different vital stains. New Phytol 115: 297–302

    Article  Google Scholar 

  • Heidstra R, Geurts R, Franssen H, Spaink, van Kammen, Bisseling T (1994) Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol 105: 787–797

    PubMed  CAS  Google Scholar 

  • Herr JM Jr (1971) A new clearing-squash technique for the study of ovule development in angiosperms. Am J Bot 58: 785–790

    Article  Google Scholar 

  • Hooker JE, Munro M, Atkinson D (1992) Vesicular-arbuscular fungi induced alteration in poplar root system morphology. Plant Soil 145: 207–214

    Article  Google Scholar 

  • Hooker JE, Berta G, Lingua G, Fusconi A, Sgorbati S (1998) Quantification of AMF induced modifications to root system architecture and longevity. In: Varma A (ed) Mycorrhizal methods. Springier, Berlin Heidelberg New York

    Google Scholar 

  • Ingleby K, Mason PA, Last FT, Fleming LV (1990) Identification of ectomycorrhizas Institute of Terrestrial Ecology, Publ No 5. HMSO, London

    Google Scholar 

  • Jenny H, Grossenbacher K (1963) Root-soil boundary zones as seen in the electron microscope. Soil Sci Soc Am Proc 27: 273–277

    Article  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. WH Freeman, San Fransisco

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Jones DL, Shaff JE, Kochian L (1995) Role of calcium and other ions in directing root hair tip growth in Limnobium stoloniferum. I. Inhibition of tip growth by aluminium. Planta 197 (4): 672–680

    Article  CAS  Google Scholar 

  • Knox RB (1970) Freeze-sectioning of plant tissues. Stain Technol 45: 265–272

    PubMed  CAS  Google Scholar 

  • Kormanik PP, McGraw AC (1982) Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St Paul, Minnesota, pp 37–45

    Google Scholar 

  • Koske RG, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92: 486–505

    Article  Google Scholar 

  • Kough JL, Linderman RG (1986) Monitoring extra-matrical hyphae of a vesicular-arbuscular mycorrhizal fungus with an immunofluorescence assay and the soil aggregation technique. Soil Biol Biochem 18: 309–313

    Article  Google Scholar 

  • Kuck KH, Tiburzy R, Hänssler G, Reisener HJ (1981) Visualization of rust haustoria in wheat leaves by using fluorochromes. Physiol Plant Pathol 19: 439–441

    Google Scholar 

  • Lamont B (1983) Root hair dimensions and surface/volume/weight ratios of roots with the aid of scanning electron microscopy. Plant Soil 74: 149–152

    Article  Google Scholar 

  • Lillie RD (1977) H.J. Conn’s biological stains, 9th edn. Williams and Wilkins, Baltimore, 692 pp Lindauer R (1972) Die Technik des Handschnittes. Mikrokosmos 61: 144–151

    Google Scholar 

  • Lund ZF, Beals HO (1965) A technique for making thin sections of soil with roots in place. Soil Sci Soc Am Proc 29: 633–635

    Article  Google Scholar 

  • Luxovâ M, Ciamporovâ M (1989) Root structure. In: Kolek J, Kozinka V (eds) Physiology of the Plant Root System. Kluwer Academic Publishers, Dordrecht, pp 31–81

    Google Scholar 

  • Lyon H (ed) (1991) Theory and strategy in histochemistry. Springer, Berlin Heidelberg New York Lyshede OB (1977) A method for removing starch from plant tissue with bacterial amylase. Mikroskopie (Wien) 33: 241–245

    Google Scholar 

  • Lyshede OB (1979) Effect of bacterial amylase on the ultrastructure of potato tuber storage cells. Mikroskopie 35: 314–318

    PubMed  CAS  Google Scholar 

  • MacKay AD, Barber SA (1984) Effect of soil moisture and phosphate level on root hair growth of corn roots. Plant Soil 86: 321–331

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Martin FM (1991) Nuclear magnetic resonance studies in ectomycorrhizal fungi. In: Norris JR

    Google Scholar 

  • Read DJ, Varma AK (eds) Methods in microbiology, vol 23. Academic Press, London, pp 121–148

    Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL (1987) Scanning electron microscopy of ectomycorrhizae. Potentials and limitations. Scanning Microsc 1: 1439–1454

    Google Scholar 

  • Mauseth JD (1988) Plant anatomy. Benjamin Cummings, Menlo Park

    Google Scholar 

  • McCully M (1995) Water efflux from the surface of field grown grass roots. Observations by cryoscanning electron microscopy. Physiol Plant 95: 217–224

    Article  CAS  Google Scholar 

  • Mosse B, Hepper C (1975) Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5: 215–223

    Article  Google Scholar 

  • Neergaard E de (1997) Methods in botanical histopathology. Danish Institute of Seed Pathology for Developing Countries, Copenhagen, 216 pp

    Google Scholar 

  • Norenburg JL, Barrett JM (1987) Steedman’s wax embedment and de-embedment for combined

    Google Scholar 

  • light and scanning electron microscopy. J Electron Microsc Technol 6: 35–41

    Google Scholar 

  • Norris JR, Read DJ, Varma AK (eds) (1991a) Techniques for the study of mycorrhiza. In: Methods in microbiology, vol 23. Academic Press, London

    Google Scholar 

  • Norris JR, Read DJ, Varma AK (eds) (199 lb) Techniques for the study of mycorrhiza. In: Methods in microbiology, vol 24. Academic Press, London

    Google Scholar 

  • O’Brien DG, McNaughton EJ (1928) The endotrophic mycorrhiza of strawberries and its significance. Research Bulletin 1. The West of Scotland College of Agriculture. Edinburgh, 35 pp

    Google Scholar 

  • O’Brien TP, McCully M (1981) The study of plant structure. Principles and selected methods. Termarcarphi Pty, Melbourne, Australia

    Google Scholar 

  • O’Brien TP, von Teichman I (1974) Autoclaving as an aid in the clearing of plant specimens. Stain Technol 49: 175–176

    PubMed  Google Scholar 

  • Oprisko MJ, Green RL, Beard JB, Gates CE (1990) Vital staining of root hairs in 12 warm season perennial grasses. Crop Sci 30: 947–950

    Article  CAS  Google Scholar 

  • Peterson LR (1991) Histochemistry of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 23. Academic Press, London, pp 107–120

    Google Scholar 

  • Peterson LR, Farquhar ML (1996) Root hairs: Specialized tubular cells extending root surfaces. Bot Rev 62: 1–40

    Google Scholar 

  • Philips JM, Hayman DS (1970) Improved procedures for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55: 158–161

    Article  Google Scholar 

  • Purvis MJ, Collier DC, Walls D (1964) Laboratory techniques in botany. Butterworths, London Redhead JF (1977) Endotrophic mycorrhizas in Nigeria: species of the Endogonaceae and their distribution. Trans Br Mycol Soc 69: 275–280

    Google Scholar 

  • Robards AW, Wilson AJ (eds) (1993) Procedures in electron microscopy. John Wiley, Chichester Sass JE (1961) Botanical microtechnique. The Iowa State University Press, Ames

    Google Scholar 

  • Schaffer GF, Peterson RL (1993) Modifications to clearing methods used in combination with vital staining of roots colonized with vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 4: 29–35

    Article  Google Scholar 

  • Schüepp H, Miller DD, Bodman M (1987) A new technique for monitoring hyphal growth of vesicular-arbuscular mycorrhizal fungi through soil. Trans Br Mycol Soc 89: 429–435

    Article  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhizal management in tropical ecosystems Technical Cooperation, Eschborn, Germany

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    Article  PubMed  CAS  Google Scholar 

  • Strausbaugh CA, Murray TD (1989) Use of epidermal cell responses to evaluate resistance of winter wheat cultivars to Pseudocer cosporella herpatrichoides. Phytopathology 79 (10): 1043–1047

    Article  Google Scholar 

  • Tippkötter R, Ritz K, Darbyshire JF (1986) The preparation of thin sections for biological studies. J Soil Sci 37: 681–690

    Article  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97: 245–250

    Article  CAS  Google Scholar 

  • Trolldenier G (1965) Fluoreszenzmikroskopie in der Rhizosphärenforschung. ZEISS-Inf 56: 68–69

    Google Scholar 

  • Vilarino A, Arines J, Schuepp H (1993) Extraction of vesicular-arbuscular mycorrhizal mycelium from sand samples. Soil Biol Biochem 25: 99–100

    Article  Google Scholar 

  • Watt M, van der Weele CM, McCully ME, Canny MJ (1996) Effects on local variations in soil moisture on hydrophobic deposits and dye diffusion in corn roots. Bot Acta 109: 492–501

    Google Scholar 

  • Watteau F, Villemin G, Mansot JL, Ghanbaja J, Touain F (1996) Localization and characterization of brown cellular substances of beech roots by electron energy loss spectroscopy. Soil Biol Biochem 28: 1327–1332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Neergaard, E., Lyshede, O.B., Gahoonia, T.S., Care, D., Hooker, J.E. (2000). Anatomy and Histology of Roots and Root-Soil Boundary. In: Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van de Geijn, S.C. (eds) Root Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04188-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04188-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08602-1

  • Online ISBN: 978-3-662-04188-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics