Skip to main content

Cyanobacteria: Architects of Sedimentary Structures

  • Chapter
Microbial Sediments

Abstract

Cyanobacteria, the oldest oxygenic phototrophs on the planet, once made the most significant impact on sediments and left an impressive fossil record of organo-sedimentary structures. Today, cyanobacteria dominate extreme environments where they participate in sediment production, construction and destruction, and leave characteristic, often species-specific, traces of their activities. Microbial ecosystems at the sediment-water interface are built and supported by cyanobacteria as the principal primary producers. Cyanobacterial photosynthesis promotes carbonate precipitation, delivering new sediment particles. Cyanobacterial growth, movement and behavioral responses often guide the depositional process and shape the resulting sedimentary structures. Conversely, cyanobacterial colonization and growth is also guided by changes in depositional environment. Cyanobacterial primary production at the sediment-water interface, coupled with rapid bacterial oxidation of this organic product, maintains steep redox gradients, creating additional metabolic niches. The consequent changes in mineral solubility promote biogeochemical cycling of elements and may lead to recrystallization and rearrangement of minerals. Destruction and alteration of sediments may be caused by cyanobacterial activities indirectly, or be carried out directly by euendolithic cyanobacteria which actively penetrate carbonate substrates. Evidence of both sediment-constructing and -destructing cyanobacterial behavior is found in carbonate deposits of the Mesoproterozoic age. As pioneer settlers on marine, freshwater and terrestrial sedimentary deposits, modern cyanobacteria prepare the ground for successive invasion and expansion of eukaryotic flora and fauna. In the historical context, and on a geological time scale, analogous sequences of events illustrate the evolutionary progression of life’s complexity, as cyanobacterially supported microbial ecosystems of marine and terrestrial environments gave way to eukaryote-dominated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Al-Thukair AA, Golubic S (1991a) New endolithic cyanobacteria from the Arabian Gulf, I: Hyella immanis sp. nov. J Phycol 27: 766–780

    Article  Google Scholar 

  • Al-Thukair AA, Golubic S (1991b) Five new Hyella species from the Arabian Gulf. In: Hickel B, Anagnostidis K, Komarek J (eds) Cyanophyta/Cyanobacteria–morphology, taxonomy, ecology. Algol Stud 64: 167–197

    Google Scholar 

  • Al-Thukair AA, Golubic S (1996) Characterization of Hyella caespitosa var. arbuscula var. nov. (Cyanophyta, Cyanobacteria) from shoaling ooid sand grains, Arabian Gulf. Nova Hedwigia, Beiheft 112: 81–89

    Google Scholar 

  • Al-Thukair AA, Golubic S, Rosen G (1994) New euendolithic cyanobacteria from the Bahama Bank and the Arabian Gulf: Hyella racemus sp. nov. J Phycol 30: 764–769

    Google Scholar 

  • Alexandersson T (1972) Micritization of carbonate particles: Processes of precipitation and dissolution in modern shallow-marine sediments. Bull Geol Inst Univ Uppsala NS 3: 201–236

    Google Scholar 

  • Awramik SM (1984) Ancient stromatolites and microbial mats. In: Cohen Y, Castenlolz RW, Halvorson HO (eds) Microbial mats: stromatolites. Alan R. Liss, New York, pp 1–22

    Google Scholar 

  • Awramik SM, Riding R (1988) Role of algal eucaryotes in subtidal columnar stromatolite formation. Proc Natl Acad Sci USA 85: 1327–1329

    Article  Google Scholar 

  • Awramik SM, Vanyo JP (1986) Heliotropism in modern stromatolites. Science 231: 279–1281

    Article  Google Scholar 

  • Bathurst RGC (1966) Boring algae, micrite envelopes and lithification of molluskan biosparites. Liverpool Manchester Geol J 5: 15–32

    Google Scholar 

  • Bengtson S (ed) (1994) Early life on Earth. Columbia University Press, New York (Nobel Symposium 84 )

    Google Scholar 

  • Berner RA (1989) Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeogr Palaeoclimatol Palaeoecol 75: 97–122

    Article  Google Scholar 

  • Bhattacharya D, Medlin L (1995) The phylogeny of plastids: a review based on comparisons of small-subunit ribosomal RNA coding regions. J Phycol 31: 489–498

    Article  Google Scholar 

  • Buczynski C, Chafetz HS (1991) Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. J Sediment Petrol 61: 226–233

    Article  Google Scholar 

  • Campbell SE (1979) Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota. Origins Life 9:335–349

    Google Scholar 

  • Campbell SE (1982) Precambrian endoliths discovered. Nature (Lond) 299: 429–431

    Article  Google Scholar 

  • Castenholz RW (1984) Composition of hot-spring microbial mats: a summary. In: Cohen Y, Castenholz RW, Halvorso HO (eds) Microbial mats: Stromatolites. Alan R Liss, New York, pp 101–119

    Google Scholar 

  • Castenholz RW (1994) Microbial mat research: the recent past and new perspectives. In: Stal LJ, Caumette P (eds) Microbial mats: structure, development and environmental significance. Springer, Berlin Heidelberg New York, pp 3–18

    Google Scholar 

  • Cohen Y, Castenholz RW, Halvorson HO (1984) Microbial mats: Stromatolites. Alan R. Liss, New York

    Google Scholar 

  • Cohen Y, Rosenberg E (eds) (1989) Microbial mats: physiological ecology of benthic microbial communities. Am Soc Microbiol, Washington

    Google Scholar 

  • Couté A (1982) Ultrastructure d’une cyanophycée aerienne calcifiée cavernicole: Geitleria calcarea Friedmann (Hormogonophycidae, Stigonematales, Stigonemataceae). Hydrobiol 97:255–274

    Google Scholar 

  • D’Amelio ED, Cohen Y, Des Marais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities. Am Soc Microbiol, Washington, pp 97–113

    Google Scholar 

  • Dragastan O, Golubic S, Richter DK (1996) Rivularia haematites: A case of the Recent versus fossil morphology. Taxonomic considerations. Rev Espanola Micropaleontol 28:43-73

    Google Scholar 

  • Farmer JD, Des Marais DJ (1994) Biological versus inorganic processes in stromatolite morphogenesis: Observations from mineralizing sedimentary systems. In: Stal LJ, Caumette P (eds) Microbial mats: structure, development and environmental significance. Springer, Berlin Heidelberg New York, pp 61–68

    Google Scholar 

  • Freytet P, Verrecchia E (1993) Complex calcitic crystallizations in Nostoc parmelioides Kütz. (freshwater cyanobacterium): Rhombs around trichomes inside Nostoc colonies and epiphytic bacterial microstromatolites. Geomicrobiol J 11: 77–84

    Article  Google Scholar 

  • Friedman GM, Krumbein WE (eds) (1985) Hypersaline ecosystems, the Gavish Sabkha. Ecological studies 53. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Garcia-Pichel F, Belnep J (1996) Microenvironments and micro-scale productivity of cyanobacterial desert crusts. J Phycol 32: 774–782

    Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27: 395–409

    Article  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1994) On the significance of solar ultraviolet radiation for the ecology of microbial mats. In: Stal LJ, Caumette P (eds) Microbial mats: structure, development and environmental significance. Springer, Berlin Heidelberg New York, pp 77-84

    Google Scholar 

  • Geitler L (1960) Schizophyceen. In: Zimmermann W, Ozenda P (eds) Encyclopedia of plant anatomy 4. Gebrüder Borntraeger, Berlin, pp 1–131

    Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592

    Google Scholar 

  • Golubic S (1967a) Algenvegetation der Felsen, eine ökologische Algenstudie im dinarischen Karstgebiet Binnengewässer 23. Schweizerbar, Stuttgart, pp 1–183

    Google Scholar 

  • Golubic S (1967b) Die Algenvegetation an Sandsteinfelsen Ost-Venezuelas (Cumana). Int Rev Ges Hydrobiol 52:693–699

    Google Scholar 

  • Golubic S (1969) Cyclic and noncyclic mechanisms in the formation of travertine. Verh Int Verein Limno117: 956–961 [Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen]

    Google Scholar 

  • Golubic S (1980) Early photosynthetic microorganisms and environmental evolution. In: Holmquist R (ed) Life sciences and space research 8, Pergamon Press, Oxford, pp 101–107

    Google Scholar 

  • Golubic S (1991) Modern stromatolites–a review. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York, pp 541–561

    Chapter  Google Scholar 

  • Golubic S (1992a) Microbial mats of Abu Dhabi. In: Margulis L, Olendzenski L (eds) Environmental evolution, effects of the origin and evolution of life on planet earth. MIT Press, Cambridge, PP 131–147

    Google Scholar 

  • Golubic S (1992b) Stromatolites of Shark Bay. In: Margulis L, Olendzenski L (eds) Environmental evolution, effects of the origin and evolution of life on planet earth. MIT Press, Cambridge, pp 103–130

    Google Scholar 

  • Golubic S (1994) The continuing importance of cyanobacteria. In: Bengtson S (ed) Early life on earth. Columbia University Press, New York, pp 334–340 (Nobel Symposium 84)

    Google Scholar 

  • Golubic S, Barghoorn ES (1977) Interpretation of microbial fossils with special reference to the Precambrian. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 1–14

    Chapter  Google Scholar 

  • Golubic S, Browne KM (1996) Schizothrix gebeleinii sp. nov. builds subtidal stromatolites, Lee Stocking Island, Bahamas. Algol Stud 83: 273–290

    Google Scholar 

  • Golubic S, Campbell SE (1981) Biogenically formed aragonite concretions in marine Rivularia. In: Monty CLV (ed) Phanerozoic stromatolites. Springer, Berlin Heidelberg New York, pp 209–229

    Chapter  Google Scholar 

  • Golubic S, Fischer AG (1975) Ecology of calcareous nodules forming in Little Connestoga Creek near Lancaster, Pennsylvania. Verh Int Verein Limnol 19: 2315–2323. [Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen]

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51: 475–478

    Google Scholar 

  • Golubic S, Violante C, Ferreri V, D’Argenio B. (1993) Algal control and early diagenesis in Quaternary travertine formation (Rocchetta a Volturno, central Apennines). In: Baratolo F, De Castro P, Parente M (eds) Studies on fossil benthic algae. Boll Soc Paleontol Ital (Spec Vol 1 ): 231–247

    Google Scholar 

  • Green JW, Knoll AH, Golubic S, Swett K (1987) Paleobiology of distinctive benthic microfossils from the Upper Proterozoic Lime-

    Google Scholar 

  • stone-Dolomite “Series”, central East Greenland. Am J Bot 74:928–940

    Google Scholar 

  • Grotzinger JP (1990) Geochemical model for Proterozoic stromatolite decline. Am J Sci 290 A:8o-1o3

    Google Scholar 

  • Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: Is the Precambrian the key to the Permian. Palaios 10:578-596 Heiskanen A-S, 011i K (1996) Sedimentation and buoyancy of Aphanizomenon cf.flos-aquae (Nostocales, Cyanophyta) in a nutrient-replete and nutrient-depleted coastal area of the Baltic Sea. Phycologia 3594-101

    Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton

    Google Scholar 

  • Hook JE, Golubic S, Milliman JD (1984) Micritic cement in micro-borings is not necessarily a shallow-water indicator. J Sediment Petrol 54425–431

    Google Scholar 

  • Horodyski RJ (1977) Lyngbya mats at Laguna Mormona, Baja California, Mexico: Comparison with Proterozoic stromatolites. J Sediment Petrol 47x305–132o

    Google Scholar 

  • Horodyski RJ, Bloeser B, Vonder Haar S (1977) Laminated algal mats from a coastal lagoon, Laguna Mormona, Baja California, Mexico. J Sediment Petrol 47: 680–696

    Google Scholar 

  • Jaag 0 (1945) Untersuchungen über die Vegetation and Biologie der Algen des nackten Gesteins in den Alpen, im Jura and im schweizerischen Mittelland. Beitr Kryptogamenflora Schweiz 9a-560 Jorgensen BB (1988) Ecology of the sulphur cycle: oxidative pathways in sediments. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycle. Cambridge University Press, Cambridge, pp 31–63

    Google Scholar 

  • Jorgensen BB, Nelson DC (1988) Bacterial zonation, photosynthesis and spectral light distribution in hot spring microbial mats of Iceland. Microbial Ecol 16x33–147

    Google Scholar 

  • Karsten U (1996) Growth and organic osmolytes of geographically different isolates of Microcoleus chthonoplastes (Cyanobacteria) from benthic microbial mats: Response to salinity change. J Phycol 32: 501–506

    Article  Google Scholar 

  • Kaufman AJ, Knoll AH (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res 73: 27–49

    Google Scholar 

  • Kimberley MM, Holland HD (1992) Introduction to Precambrian weathering and paleosols. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early organic evolution: Implications for mineral and energy resources. Springer, Berlin Heidelberg New York, pp 9–15

    Chapter  Google Scholar 

  • Kinsman DJJ, Park RK (1976) Algal belt and coastal sabkha evolution, Trucial Coast, Persian Gulf. In: Walter MR (ed) Stromatolites: developments in sedimentology 2o. Elsevier, Amsterdam, pp 421–433

    Google Scholar 

  • Knoll AH, Golubic S, Green J, Swett K (1986) Organically preserved microbial endoliths from the Late Proterozoic of East Greenland. Nature (Lond) 321: 856–857

    Article  Google Scholar 

  • Knoll AH, Swett K, Mark J (1991) Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: The Draken conglomerate formation, Spitsbergen. J Paleontol 65531–570

    Google Scholar 

  • Kobluk DR, Risk MJ (1977) Micritization and carbonate-grain binding by endolithic algae. Am Assoc Petrol Geol Bull 61: 1069–1082

    Google Scholar 

  • Kühl M, Glud RN, Ploug H, Ramsing NB (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J Phycol 32: 799–812

    Article  Google Scholar 

  • Laborel J, Le Campion-Alsumard T (1979) Infestation massive du squelette de coraux vivants par des rhodophycées de type Conchocelis. C R Acad Sci 288 (Serie D): 1575–1577

    Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Hutchings P (1995) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117x49-157

    Google Scholar 

  • Livingstone D (1984) The preservation of algal remains in recent lake sediments. In: Haworeth EY, Lund JWG (eds) Lake sediments and environmental history. University of Minnesota Press, Minneapolis, pp 191–202

    Google Scholar 

  • Lukas KJ, Golubic S (1983) New endolithic cyanophytes from the North Atlantic Ocean: II. Hyella gigas, sp. nov. J Phyco119: 129–136

    Google Scholar 

  • Madsen KN, Nilsson P, Sundback K (1993) The influence of benthic micro algae on the stability of a subtidal sediment. J Exp Mar Biol Ecol 170x59–177

    Google Scholar 

  • Margulis L (1993) Symbiosis in cell evolution: Microbial communities in the Archaean and Proterozoic Eons, 2nd edn. WH Freeman, New York

    Google Scholar 

  • Mereschkowsky C (1905) Über Natur and Ursprung der Chromatophoren im Pflanzenreiche. Bot Zentralbl 25593–604

    Google Scholar 

  • Merz MUE (1992) The biology of carbonate precipitation in cyanobacteria. Facies 26: 81–102

    Article  Google Scholar 

  • Merz MUE, Zankl H (1993) The influence of the sheath on carbonate precipitation by cyanobacteria. In: Barattolo F, De Castro P, Parente M (eds) Studies on fossil benthic algae. Boll Soc Paleontol Ital (Spec) 1:325-331

    Google Scholar 

  • Merz MUE, Schlue WR, Zankl H (1995) PH-measurements in the sheath of calcifying filamentous cyanobacteria. Bull Inst Oceanogr (Monaco) (Spec Issue) 14: 281–289

    Google Scholar 

  • Monty CLV (1973) Precambrian background and Phanerozoic history of stromatolite communities, an overview. Ann Soc Geol Belg Bull 96585–624

    Google Scholar 

  • Nelissen B, van de Peer Y, Wilmotte A, De Wachteer R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16 S rRNA sequences. Mol Biol Evol 12: 1166–1173

    Google Scholar 

  • Neumann AC, Gebelein CD, Scoffin TP (1970) The composition, structure and erodability of subtidal mats, Abaco, Bahamas. J Sediment Petrol 40: 274–297

    Google Scholar 

  • Obenfüneschloss J (1991) Biologie and Ökologie von drei rezenten Süsswasser-Rivularien (Cyanobakterien)–Übertragbarkeit artspezifischer Verkalkungsstrukturen auf fossile Formen. Göttinger Arb Geol Paläontologie 5o: 1–86

    Google Scholar 

  • Palenik B, Swift H (1996) Cyanobacterial evolution and prochlorophyte diversity as seen in DNA-dependent RNA polymerize sequences. J Phycol 32: 638–646

    Article  Google Scholar 

  • Paterson DM (1994) Microbiological mediation of sediment structure and behavior. In: Stal LJ, Caumette P (eds) Microbial mats: structure, development and environmental significance. Ecological studies 35. Springer, Berlin Heidelberg New York, pp 97–109

    Google Scholar 

  • Pearl HW (1996) A comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments. Phycologia 3525–35

    Google Scholar 

  • Pentecost A (1991) Calcification processes in algae and cyanobacte-ria. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York, pp 3–20

    Chapter  Google Scholar 

  • Pentecost A, Riding R (1986) Calcification in cyanobacteria. In: Leadbeater BSC, Riding R (eds) Biomineralization in lower plants and animals. Syst Assoc Spec 3o: 73–90

    Google Scholar 

  • Pierson BK, Oesterle A, Murphy GL (1987) Pigments, light penetration, and photosynthetic activity on the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts. FEMS Microbiol Ecol 45: 365–376

    Google Scholar 

  • Radtke G, Le Campion-Alsumard T, Golubic S (1996a) Microbial assemblages of the bioerosional “notch” along tropical limestone coasts. Algol Stud 83:469–482

    Google Scholar 

  • Radtke G, Le Campion-Alsumard T, Golubic S (1996b) Microbial assemblages involved in tropical coastal bioerosion: an Atlantic-Pacific comparison. Proc 8th Int Coral Reef Sym 2: 1825–1830

    Google Scholar 

  • Riding R (1993) Phanerozoic patterns of marine CaCO3 precipitation. Naturwissenschaften 80: 513–516

    Google Scholar 

  • Robbins LL, Blackwelder PL (1992) Biochemical and ultrastructural evidence for the origin of whitings: A biologically induced calcium carbonate precipitation mechanism. Geology zo: 464–468

    Google Scholar 

  • Schlegel HG (1976) Allgemeine Mikrobiologie, 4th edn. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Schneider J (1976) Biological and inorganic factors in the destruction of limestone coasts. Contrib Sedimentol 6: 1–112

    Google Scholar 

  • Schneider J, Herrmann AG (1980) Saltworks–natural laboratories for microbiological and geochemical investigations during the evaporation of seawater. In: Coogan AH, Hauber L (eds) Fifth Symposium on Salt. Northern Ohio Geological Society, pp 371–381

    Google Scholar 

  • Schneider J, Torunski H (1983) Biokarst on limestone coasts, morphogenesis and sediment production. P.S.Z.N.I. Mar Ecol 4: 45–63

    Google Scholar 

  • Schopf JW (1968) Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia. J Paleontol 42: 651–588

    Google Scholar 

  • Schopf JW (1996) Cyanobacteria: Pioneers of the early Earth. Nove Hedwigia, Beiheft 112x3–32

    Google Scholar 

  • Schröder JG (1982) Biogene benthische Entkalkung als Beitrag zur Genese limnischer Sedimente. Beispiel: Attersee (Salzkammergut; Oberösterreich). PhD Diss, University of Göttingen, 179 pp

    Google Scholar 

  • Schröder HG, Schneider J (1983) Bilanzierung der biogenen Karbonatproduktion eines oligotrophen Sees (Attersee, Salzkammergut, - Österreich). Arch Hydrobiol 97356–372

    Google Scholar 

  • Schultze-Lam S, Harauz G, Beveridge TJ (1992) Participation of a cyanobacterial S layer in fine-grain mineral formation. J Bacterial 1747971–7981

    Google Scholar 

  • Seilacher A, Pflüger F (1994) From biomats to benthic agriculture: A biohistoric revolution. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediment. University of Oldenburg, Oldenburg, pp 97–105

    Google Scholar 

  • Seong-Joo L, Golubic S (1998) Multi-trichomous cyanobacterial microfossils from the Mesoproterozoic Gaoyuzhuang Formation, China: paleoecological and taxonomic implications. Lethaia 31: 169–184

    Article  Google Scholar 

  • Seong-Joo L, Golubic S (1999) Microfossil populations in the context of synsedimentary micrite deposition and acicular carbonate precipitation: Mesoproterozoic Gaoyuzhuang Formation, China. Precambrian Res 96: 183–208

    Google Scholar 

  • Sergeev VN, Knoll AH, Grotzinger JP (1995) Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, northern Siberia. Paleontol Soc Mem 39a-37

    Google Scholar 

  • Sorkhoh N, Al-Hasan R, Radwan S, Höpner T (1992) Self-cleaning of the Gulf. Nature (Lond) 359: 109

    Article  Google Scholar 

  • Stal LJ, Caumette P (eds) (1994) Microbial mats: structure, development and environmental significance. (Ecol Sci 35), Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Stolz JF (1990) Distribution of phototrophic microbes in the flat laminated microbial mats at Laguna Figueroa, Baja California, Mexico. BioSystems 23345–357

    Google Scholar 

  • Torunski H (1979) Biological erosion and its significance for the morphogenesis of limestone coasts and for nearshore sedimentation. Senckenbergiana Maritima 11x93–265

    Google Scholar 

  • Tudhope AW, Risk MJ (1985) Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia. J Sediment Petrol 55440–447

    Google Scholar 

  • van den Ende FP, van Gemerden H (1994) Relationship between functional groups of organisms in microbial mats. In: Stal LJ, Caumette P (eds) Microbial mats: structure, development and environmental significance. Ecological studies 35. Springer, Berlin Heidelberg New York, pp 339–352

    Google Scholar 

  • Walter MR (ed) (1976) Stromatolites: Developments in sedimentology 20. Elsevier, Amsterdam

    Google Scholar 

  • Walter MR, Bauld J, Brock TD (1976) Microbiology and morpho-genesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park. In: Walter MR (ed) Stromatolites: developments in sedimentology 2o. Elsevier, Amsterdam, pp 273–310

    Chapter  Google Scholar 

  • Walter MR, Grotzinger JP, Schopf JW (1992) Proterozoic stromatolites. In: Schopf JW, Klein C (eds) The Proterozoic biosphere. Cambridge University Press, Cambridge, pp 253–260

    Google Scholar 

  • Ward DM, Bauld J, Castenholz RW, Pierson BK (1992) Modern phototrophic microbial mats: anoxygenic, intermittently oxygenic/ anoxygenic, thermal, eukaryotic, and terrestrial. In: Schopf JW, Klein C (eds) The Proterozoic biosphere. Cambridge University Press, Cambridge, pp 309–324

    Google Scholar 

  • Winsborough BM, Seeler J-S, Golubic S, Folk RL, Maguire B Jr (1994) Recent fresh-water lacustrine stromatolites, stromatolitic mats and oncoids from northeastern Mexico. In: Bertrand-Sarfati J, Monty CLV (eds) Phanerozoic stromatolites II. Kluwer Academic Publishers, Amsterdam, pp 71- too

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271 Yallop ML, De Winder B, Paterson DM, Stal LJ (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar Coastal Shelf Sci 39565–582

    Google Scholar 

  • Yates KK, Robbins LL (1995) Experimental evidence for a CaCO3 precipitation mechanism for marine Synechocystis. Bull Inst Oceanogr (Monaco), Special Issue 14:51–59

    Google Scholar 

  • Zhang Y, Golubic S (1987) Endolithic microfossils (Cyanophyta) from early Proterozoic stromatolites, Hebei, China. Acta Micropaleontol Sin 4: 1–12

    Google Scholar 

  • Züllig H (1961) Die Bestimmung von Myxoxanthophyll in Bohrprofilen zum Nachweis vergangener Blaualgenenfaltungen. Verh Int Verein Limnol 14:263–27o [Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Golubic, S., Seong-Joo, L., Browne, K.M. (2000). Cyanobacteria: Architects of Sedimentary Structures. In: Riding, R.E., Awramik, S.M. (eds) Microbial Sediments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04036-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04036-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08275-7

  • Online ISBN: 978-3-662-04036-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics