Skip to main content

Part of the book series: Springer Laboratory ((SPLABORATORY))

Abstract

Molecular size, or more precisely, molecular hydrodynamic volume governs the separation process of SEC. That is, as a mixture of solutes of different size passes through a column packed with porous particles, the molecules that are too large to penetrate the pores of the packing elute first, as shown in Fig. 2.1. Smaller molecules, however, that can penetrate or diffuse into the pores, elute at a later time or elution volume. Thus a sample is separated or fractionated by molecular size, the profile of which describes the molecular weight distribution (MWD) or size distribution of the mixture. If the SEC system is calibrated with a series of solutes of known MW, as shown in Fig. 2.2, a relationship between log MW and elution volume is obtained. This relationship can then be used as a calibration curve to determine the MWD and MW averages of samples, as explained in Chap. 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dawkins JV, Hemming M (1975) Makromol Chem 176: 1777, 1795, 1815

    Google Scholar 

  2. Cassasa EF (1967) J Polym Sci, Part B 5: 773

    Article  Google Scholar 

  3. Cassasa EF (1971) J Phys Chem 75: 3929

    Article  Google Scholar 

  4. Giddings JC, Kucera E, Russel CP, Myers MN (1968) J Phys Chem 72: 4397

    Article  CAS  Google Scholar 

  5. Porath J (1963) J Pure Appl Chem 6: 233

    Article  CAS  Google Scholar 

  6. Squire PG (1964) Arch Biochem Biophys 107: 471

    Article  CAS  Google Scholar 

  7. Laurent TC, Killander J (1964) J Chromatogr 14: 317

    Article  CAS  Google Scholar 

  8. Ogston AG (1958) Trans Faraday Soc 54: 1754

    Article  Google Scholar 

  9. Van Kreveld, Van Den Hoed N (1973) J Chromatogr 83: 111

    Article  Google Scholar 

  10. Yau WW, Malone CP (1971) Polym Prepr ( Am Chem Soc, Div Polym Chem ) 12: 797

    Google Scholar 

  11. Kubin M, Vozka S (1980) J Polym Sci, Polym Symp 68: 209

    Article  Google Scholar 

  12. Hager D (1980) J Chromatogr 187: 285

    Article  CAS  Google Scholar 

  13. Ackers GK (1964) Biochem 3: 723

    Article  CAS  Google Scholar 

  14. Smith WB, Kollmansberger (1965) J Phys Chem 69: 4157

    Article  CAS  Google Scholar 

  15. Yau WW, Malone CP (1967) J Polym Sci., Part B 5: 663

    Article  CAS  Google Scholar 

  16. Di Marzio EZ, Guttman CM (1969) J Polym Sci, Part B 7: 267

    Article  Google Scholar 

  17. Dimarzio EZ, Guttman CM (1979) Macromolecules 3: 131

    Article  Google Scholar 

  18. Guttman CM, Dimarzio EZ (1970) Macromolecules 3: 681

    Article  CAS  Google Scholar 

  19. Verhoff HF, Sylvester ND (1970) Macromol Sci - Chem A4: 979

    Article  CAS  Google Scholar 

  20. Aubert JH, Tirrell M (1980) Sep Sci Technol 15: 123

    Article  Google Scholar 

  21. Aubert JH, Tirrell M (1980) Rheol Acta 19: 452

    Article  CAS  Google Scholar 

  22. Cheng WJ (1986) J Chromatogr 362: 309

    Article  CAS  Google Scholar 

  23. Yau WW, Kirkland JJ, Bly DD (1979) Modern Size Exclusion Chromatography. Wiley, New York

    Google Scholar 

  24. Yau WW, Malone CP, Suc Han HL (1970) Sep Sci 5: 259

    Article  CAS  Google Scholar 

  25. Yau WW, Suchan HL, Malone CP (1968) J Polym Sci Part A-2 6: 1349

    Article  CAS  Google Scholar 

  26. Yau WW, Malone CP, Fleming SW (1968) J Polym Sci Part B 6: 803

    Article  CAS  Google Scholar 

  27. Chang TL (1968) Anal Chim Acta 42: 51

    Article  CAS  Google Scholar 

  28. Hoagland DA (1996) ACS Symp Ser 635: 173

    Article  CAS  Google Scholar 

  29. Dawkins JV (1976) J Polym Sci, Polym Phys Ed 14: 569

    Article  CAS  Google Scholar 

  30. Tanford C (1961) Physical Chemistry of Macromolecules. Wiley, New York

    Google Scholar 

  31. Kratochvil P (1987) Classical Light Scattering from Polymer Solutions. Elsevier, Amsterdam

    Google Scholar 

  32. Mays JW, Hadjichristidis N (1991) In: Barth HG, Mays JW (eds) Modern Methods of Polymer Characterization, Chapter 7. Wiley, New York

    Google Scholar 

  33. Flory PJ, Fox TG (1951) J Am Chem Soc 73: 1904

    Article  CAS  Google Scholar 

  34. Snyder LR, Kirkland JJ (1979) Introduction to Modern Liquid Chromatography. Wiley, New York

    Google Scholar 

  35. Katz E, Eksteen R, Schoenmakers P, Miller N (1998) Handbook of HPLC. Dekker, New York

    Book  Google Scholar 

  36. DIN 55672–1 Gelpermeationschromatographie (GPC) Teil 1: Tetrahydrofuran (THF) as Elutionsmittel (1995–02)

    Google Scholar 

  37. Bly DD (1968) J Polym Sci Part C 21: 13

    Google Scholar 

  38. ASTM D3536–76 (Reapproved 1986) Test Method for Molecular Weight Averages and Molecular Weight Distribution of Polystyrene by Liquid Exclusion Chromatography (Gel Permeation Chromatography - GPC) (1986–10)

    Google Scholar 

  39. Yau WW, Stoklosa HJ, Bly DD (1977) J Appl Polym Sci 21: 1911

    Article  CAS  Google Scholar 

  40. Hamielic AE, Ray WH (1969) J Appl Polym Sci 13: 1319

    Article  Google Scholar 

  41. Provder T, Rosen EM (1970) Sep Sci 5: 437

    Article  CAS  Google Scholar 

  42. Yau WW (1977) Anal Chem 49: 395

    Article  CAS  Google Scholar 

  43. Barth HG (1984) LC Magazine 2:24 (Jan)

    Google Scholar 

  44. Yau WW, Kirkland JJ, Bly DD, Stoklosa HJ (1976) J Chromatogr 125: 219

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mori, S., Barth, H.G. (1999). Fundamental Concepts. In: Size Exclusion Chromatography. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03910-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03910-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08493-5

  • Online ISBN: 978-3-662-03910-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics