Skip to main content

Polymer Solutions: A Geometric Introduction

  • Chapter
Soft Matter Physics

Abstract

Why should a physicist be interested in polymers? They do not hold the key to vast sources of energy like atomic nuclei. They do not defy the intuition with ultrasmall dissipation like superconductors and superfluids. They do not reveal subtle new nonabelian symmetries as do subatomic particles. Nor do they hold secrets about the origin or fate of the universe. Polymers are just ordinary matter — just insulating organic molecules. These molecules are merely larger than usual and are in the form of chains of small monomer subunits. Yet these chain molecules have ways of interacting unmatched in other forms of matter. The study of polymers over the last few decades has forced us to broaden our notion of how matter can behave — how it can organize itself in space, how it can flow, and how it can transmit forces. These new behaviors arise from a few qualitative features of the polymer molecule’s structure. The potential for shaping these phenomena is just beginning to be realized as the power of synthetic chemists to control the molecular structure increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. Adam, M. (1988) Private communication

    Google Scholar 

  2. Daoud, M., Cotton, J.P., Farnoux, B., Jannink, G., Sarma, G., Benoit, H., DuPlessix, R., Picot, C., de Gennes, P. G. (1975) Macromolecules 8, 804

    Article  CAS  Google Scholar 

  3. Daoud, M., Jannink, G. (1976) J. Phys. France 37, 973

    Article  CAS  Google Scholar 

  4. Davidson, N.S., Fetters, L. J., Funk, W.G., Hadjichristidis, N., Graessley, W.W. (1987) Macromolecules 20, 2614

    Article  CAS  Google Scholar 

  5. de Gennes, P.G. (1979) Scaling Concepts in Polymer Physics. Cornell, Ithaca

    Google Scholar 

  6. de Gennes, P.G. (1982) C. R. Seances Acad. Sci. 295, 1061

    Google Scholar 

  7. des Cloizeaux, J. (1970) J. Phys. France 31, 715

    Article  Google Scholar 

  8. Einstein, A. (1905) Ann. Physik 17, 549

    Article  CAS  Google Scholar 

  9. Einstein, A. (1906) Ann. Physik 19, 371

    Article  CAS  Google Scholar 

  10. Elias, H.G. (1984) Macromolecules, 2nd edn. Plenum Press, New York, 124

    Google Scholar 

  11. Happel, J., Brenner, H. (1973) Low Reynolds number hydrodynamics, with special applications to particulate media, 2nd rev. Leiden (ed.) Noordhoff International Publishing

    Google Scholar 

  12. Jannink, G., des Cloizeaux, J. (1992) Polymers in Solution. Oxford University Press, Oxford

    Google Scholar 

  13. Mandelbrot, B.B. (1982) The Fractal Geometry of Nature. Freeman, San Fransisco

    Google Scholar 

  14. Simulation by M. Mondello, Hyung-Jin Yang and R. J. Roe at the University of Cincinnati using the Cray Y-MP at the Ohio Supercomputer Center.

    Google Scholar 

  15. Noda, I., Dato, N., Kitano, T., Nagasawa, M. (1981) Macromolecules 14, 668

    Article  CAS  Google Scholar 

  16. Onsager, L. (1949) Ann. N.Y. Acad. Sci. 51, 627

    Article  CAS  Google Scholar 

  17. Reif, F. (1965) Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York. For a discussion of osmotic pressure and its relation to excluded volume.

    Google Scholar 

  18. Witten, T.A., Cates, M.E. (1986) Tenuous Structures from Disorderly Growth Processes. Science 232, 1607

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Witten, T.A. (1999). Polymer Solutions: A Geometric Introduction. In: Daoud, M., Williams, C.E. (eds) Soft Matter Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03845-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03845-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03847-5

  • Online ISBN: 978-3-662-03845-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics