Skip to main content

From Giant Micelles to Fluid Membranes: Polymorphism in Dilute Solutions of Surfactant Molecules

  • Chapter
Soft Matter Physics

Abstract

The exceptional interfacial properties of amphiphilic molecules are due to the opposing affinities of their polar and hydrophobic parts with respect to water. A remarkable consequence of these properties is that we can produce transparent and macroscopically homogeneous mixtures of oil and water, the so-called microemulsions. Such thermodynamically stable mixtures are not, of course, homogeneous on microscopic scales. Here we can observe water and oil microdomains separated by amphiphilic molecular films. Stability and structure of microemulsions are determined by properties of this amphiphilic film; in particular, by the elasticity of its curvature. The relevant parameters are its elastic modulus K and its spontaneous curvature c 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. Benton, W.A., Miller, C.A. (1983) J. Phys. Chem. 87, 4981

    Article  Google Scholar 

  2. Landau, S.J., Hirsch, E., Zana, R. (1984) J. Phys. France 45, 1263

    Article  Google Scholar 

  3. Cates, M.E., Landau, S.J. (1990) J. Phys. Cond. Matt. 2, 6869

    Google Scholar 

  4. Cates, M.E., Roux, D., Anddelman, D., Milner, S.T., Safran, S.A. (1988) Europhys. Lett. 5, 733

    Article  CAS  Google Scholar 

  5. David, F. (1988) Europhys. Lett. 6, 603

    Article  Google Scholar 

  6. de Gennes, P.G., Taupin, C. (1982) J. Phys. Chem. 86, 2294

    Article  Google Scholar 

  7. Ekwall, P. (1975) Adv. Liq. Cryst. 1, 1 (Exhaustive review of phase behaviour and structures in concentrated solution.)

    CAS  Google Scholar 

  8. Gazeau, D., Bellocq, A.M., Roux, D, Zemb, T. (1989) Europhys. Lett. 9, 447

    Google Scholar 

  9. Helfrich, W. (1973) Z. Naturforsch. 28c, 693

    Google Scholar 

  10. Helfrich, W. (1978) Z. Naturforsch. 33a, 305

    Google Scholar 

  11. Helfrich, W. (1985) J. Phys. France 46, 1263

    Article  CAS  Google Scholar 

  12. Helfrich, W. (1987) J. Phys. France 48, 374

    Google Scholar 

  13. Hoffmann, H., Platz, G., Ulbricht, W. (1981) J. Phys. Chem. 85, 3160

    Article  Google Scholar 

  14. Israelachvili, J.M., Mitchell, D.J., Ninham, B.W. (1976) J. Chem. Soc. Faraday Trans. 72, 1525

    Google Scholar 

  15. Landau, L.D., Lifshitz, E.M. (1980) Statistical Physics Vol. I, 3rd edn., Pergamon, Oxford 5.16 Langevin, D., Meunier, J. ( 1987 ) Les Houches Workshop on Physics of Amphiphilic Layers, Springer, Berlin (See also the references cited in this work.)

    Google Scholar 

  16. Larche, F.C., Appell, J., Porte, G., Bassereau, P., Marignan, J. (1986) Phys. Rev. Lett. 56, 1700

    Article  CAS  Google Scholar 

  17. Mazer, N.A., Carey, M.C., Benedek, G.B. (1976) J. Phys. Chem. 80, 1075

    Article  CAS  Google Scholar 

  18. Peliti, L., Leibler, S. (1985) Phys. Rev. Lett. 54, 1690

    Google Scholar 

  19. Porte, G., Appell, J., Poggi, Y. (1980) J. Phys. Chem. 84, 3105

    Article  CAS  Google Scholar 

  20. Porte, G., Marignan, J., Bassereau, P., May, R. (1988) J. Phys. France 49, 511

    Google Scholar 

  21. Porte, G., Appell, J., Bassereau, P., Marignan, J. (1989) J. Phys. France 50, 1335

    Google Scholar 

  22. Roux, D., Safinya, C.R. (1988) J. Phys. France 49, 307

    Google Scholar 

  23. Safinya, C.R., Roux, D., Smith, G.S., Sinha, S.K., Dimon, P., Clark, N.A., Bellocq, A.M. (1986) Phys. Rev. Lett. 57, 2518

    Google Scholar 

  24. Strey, R., Schomäker, R., Roux, D., Nallet, F., Olsson, U. (1990) J. Chem. Soc. Faraday Trans. 86, 2253

    Google Scholar 

  25. Wheeler, J.C., Pfeuty, P. (1981) Phys. Rev. Lett. 46, 1409 and Phys. Rev. A 24, 1050 ( Note that, given the flexibility of the cylindrical micelles, another possible way of releasing endcap energy is to allow two ends of the same micelle to join. This produces a closed ring with no endcaps. It can be shown that, except for extremely dilute solutions, the closed ring population is very small and can be neglected in practice. Consult the two references here. )

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Porte, G. (1999). From Giant Micelles to Fluid Membranes: Polymorphism in Dilute Solutions of Surfactant Molecules. In: Daoud, M., Williams, C.E. (eds) Soft Matter Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03845-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03845-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03847-5

  • Online ISBN: 978-3-662-03845-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics