Skip to main content

Bacterial γ-Poly(glutamic Acid)

  • Chapter
Biopolymers from Renewable Resources

Part of the book series: Macromolecular Systems — Materials Approach ((MACROSYSTEMS))

Abstract

γ-Poly(glutamic acid), γ-PGA, is a bacterially synthesized water soluble nylon. It can be classified as a pseudo-poly(amino acid) which contains only glutamate repeat units. γ-PGA differs from proteins, however, in that the glutamate repeat units are polymerized by a ribosome-independent process. Furthermore, the glutamate repeat units are linked between the α-amino and γ-carboxylic acid functional groups (see below) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Troy FA (1973) J Biol Chem 248 (1): 305

    CAS  Google Scholar 

  2. Hanby WE, Rydon HN (1946) Biochem 40: 297

    CAS  Google Scholar 

  3. Thorne CB, Gomez CG, Noyes HE, Housewright RD (1954) J Bacteriol 68 (3): 307

    CAS  Google Scholar 

  4. Torii M (1959) J Biochem 46 (2): 189

    Google Scholar 

  5. Hara T, Ueda S (1982) Agricul Biol Chem 46 (9): 2275

    Article  CAS  Google Scholar 

  6. Kramar E (1921) Centr Bakteriol Parasitenk Abt I Orig 88: 401

    Google Scholar 

  7. Ivanovics G, Bruckner V (1937) Z Immunitatsforsch 25: 250

    CAS  Google Scholar 

  8. Ivanovics G (1965) In: Florkin M, Stotzm EH (eds) Comprehensive biochemistry: lipids and amino acids and related compounds. Elsevier, New York, vol 6, p 286

    Google Scholar 

  9. Ezepchuk YV (1968) Zh Microbiol Epidemiol Immunobiol 45: 110

    CAS  Google Scholar 

  10. Housewright RD (1962) In: Gunsalus IC, Stanier RY (eds) The bacteria. Academic Press, New York, vol. III, p 389

    Google Scholar 

  11. Nitecki DE, Goodman JW (1971) In: Weinstein B (ed.) Chemistry and biochemistry of amino acids, peptides, and proteins. Marcel Dekker, New York, vol. I, p 87

    Google Scholar 

  12. Troy FA (1982) In: Kleinkauf H, von Dohren H (eds) Peptide antibiotics biosynthesis and functions. Walter de Gruyter, New York, p 49

    Google Scholar 

  13. Buchanan RE, Gibbons NE (eds.) Bergey’s manual of determinative bacteriology, 8th edn. William Wilkins, Baltimore, p 530

    Google Scholar 

  14. Vasantha N, Freese E (1978) J Gen Micro 112: 329

    Article  Google Scholar 

  15. Foerster HF (1972) J Bacteriol 111 (2): 437

    CAS  Google Scholar 

  16. Bernlohr RW (1967) J Bacteriol 93 (3): 1031

    CAS  Google Scholar 

  17. Leonard CG, Housewright RD, Thorne CG (1958) J Bacteriol 76: 499

    CAS  Google Scholar 

  18. Lafferty RM, Korstko B, Korsatko W (1984) In: Rose AH, Tempest DW (eds) Advances in microbial physiology. Academic Press, Cleveland OH, vol 25, chap 6, p 136

    Google Scholar 

  19. McLean RJC, Beauchemin D, Clapham L, Beveridge TJ (1990) Appl Enrion Micro 56 (12): 3671

    CAS  Google Scholar 

  20. Birrer GA, Cromwick A-M, Gross RA (1994) Int J Biol Macromol 16 (5): 265

    Article  CAS  Google Scholar 

  21. Kubota H, Matsunobu T, Uotani K, Takebe H, Satoh A, Tanaka T, Taniguchi M (1993) Biosci Biotech Biochem 57 (7): 1212

    Article  CAS  Google Scholar 

  22. Cromwick A-M, Gross RA (1995) Int J Biol Macromol 17 (5): 259

    Article  CAS  Google Scholar 

  23. Goto A, Kunioka M (1992) Biosc Biotech Biochem 56 (7): 1031

    Article  CAS  Google Scholar 

  24. Sawa S, Murao S, Murakawa T, Omata S (1971) Nippon Nôgeikagaku Kaishi 45 (3): 123

    Google Scholar 

  25. Cromwick A-M, Birrer GA, Gross RA (1996) Biotechnol Bioeng 50: 222

    Article  CAS  Google Scholar 

  26. Murao S, Murakawa T, Omata S (1969) Nippon Nôgeikagaku Kaishi 43 (9): 595

    Article  CAS  Google Scholar 

  27. Murao S, Sawa S, Murakawa T, Omata S (1971) Nippon Nôgeikagaku Kaishi 45 (3): 118

    Article  CAS  Google Scholar 

  28. Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (6): 346

    Article  CAS  Google Scholar 

  29. Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (7): 407

    Article  CAS  Google Scholar 

  30. Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (8): 474

    Article  CAS  Google Scholar 

  31. Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (10): 619

    Article  CAS  Google Scholar 

  32. Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (10): 619

    Article  CAS  Google Scholar 

  33. Saito I, Iso N, Mizuno H, Kaneda H, Suyama Y, Kawamura S, Osawa S (1974) Agr Biol Chem 38 (10): 1941

    Article  CAS  Google Scholar 

  34. Ward RM, Anderson RF, Dean FK (1963) Biotech Bioeng V: 41

    Article  Google Scholar 

  35. Cheng C, Asada Y, Aida T (1989) Agric Biol Chem 53 (9): 2369

    Article  CAS  Google Scholar 

  36. Thorne CB, Leonard CG (1958) J Biol Chem 233 (5): 1109

    CAS  Google Scholar 

  37. Torii M (1959) J Biochem 46 (4): 513

    CAS  Google Scholar 

  38. Utsumi S, Torii M, Kurimura H, Yamamuro H, Amano T (1958) Biken’s J 1: 201

    CAS  Google Scholar 

  39. Utsumi S, Torii M, Kurimura H, Yamamuro H, Amano T (1959) Biken’s J 2: 165

    CAS  Google Scholar 

  40. Sawa S, Murakawa T, Murao S, Ornata S (1973) Nippon Nogeikagaku Kaishi 47 (3): 159

    Article  CAS  Google Scholar 

  41. Troy FA (1973) J Biol Chem 248 (1): 316

    CAS  Google Scholar 

  42. Thorne CB (1956) In: Symposia of the Society for General Microbiology. University Press, Cambridge, p 68

    Google Scholar 

  43. Thorne CB, Gomez CG, Molnar DM (1956) Bacteriol Proc Soc Am Bacteriol 107

    Google Scholar 

  44. Cromwick A-M, Gross RA (1995) Can J Microbiol 41: 902

    Article  CAS  Google Scholar 

  45. Grossowicz N, Wainfan E, Borek E, Waelsch H (1950) J Biol Chem 186: 111

    Google Scholar 

  46. Stumpf PK, Loomis NE (1950) Arch Biochem 25: 451

    CAS  Google Scholar 

  47. Hanes CS, Hird FJR, Isherwood FA (1950) Nature 166: 288

    Article  CAS  Google Scholar 

  48. Hanes CS, Hird FJR, Isherwood FA (1952) Biochem J 51: 25

    CAS  Google Scholar 

  49. Williams WJ, Thorne CB (1954) J Biol Chem 210: 203

    CAS  Google Scholar 

  50. Williams WJ, Litwin J, Thorne CB (1955) J Biol Chem 212: 427

    CAS  Google Scholar 

  51. Leonard CG, Housewright RD (1963) Biochim Biophys Acta 73: 530

    Article  CAS  Google Scholar 

  52. Housewright RD, Thorne CB (1950) J Bacteriol 60: 89

    CAS  Google Scholar 

  53. Thorne CB, Gomez CG, Housewright RD (1955) J Bacteriol 69: 357

    CAS  Google Scholar 

  54. Gardner JM, Troy FA (1979) J Biol Chem 254 (14): 6262

    CAS  Google Scholar 

  55. Volcani BE, Margalith P (1957) J Bacteriol 74: 646

    CAS  Google Scholar 

  56. Bruckner V, Kajtar M, Kovacs J, Nagy H, Wein J (1958) Tetrahedron 2: 211

    Article  CAS  Google Scholar 

  57. Tanaka T, Hiruta O, Futamura T, Uotani K, Satoh A, Taniguchi M, Oi S (1993) Biosci Biotech Biochem 57: 2148

    Article  CAS  Google Scholar 

  58. Torii M, Kurimura O, Utsumi S, Nozu H, Amano T (1959) Biken’s Journal 2: 265

    CAS  Google Scholar 

  59. Shah DT, McCarthy SP, Gross RA (1992) Polym Prep Am Chem Soc 33 (2): 488

    CAS  Google Scholar 

  60. Gross RA, McCarthy SP, Shah DT (1995) US Patent 5, 378, 807

    Google Scholar 

  61. Kubota H, Nambu Y, Endo TJ (1993) Polym Sci Part A: Polym Chem 31: 2877

    Article  CAS  Google Scholar 

  62. Borbély M, Nagasaki Y, Borbély J, Fan K, Bhogle A, Sevoian M (1994) Polym Bull 32: 127

    Article  Google Scholar 

  63. Tsubokawa N, Inagaki M, Endo T (1993) J Polym Sci Part A: Polym Chem 31: 563

    Article  CAS  Google Scholar 

  64. Swift G (1993) Accounts Chem Res 26: 105

    Article  CAS  Google Scholar 

  65. Ratner BD, Horbett TA (1995) In: Cooper SL, Bamford CH, Tsuruta T (eds) Polymer biomaterials in solution, as interfaces and as solids. VSP, Utrecht, The Netherlands, p xxiii

    Google Scholar 

  66. Hikichi K, Hirouki T, Konno A (1990) Polymer 22 (2): 103

    Article  CAS  Google Scholar 

  67. Rosenthal WS, O’Connell DJ, Axelrod DR, Bovarnick M (1956) J Exptl Med 103: 667

    Article  CAS  Google Scholar 

  68. Kessler BJ, DiGrado CJ, Benante C, Bovarnick M, Silber RH, Zambito AJ (1955) Proc Soc Exptl Biol Med 88: 651

    CAS  Google Scholar 

  69. Kream J, Borek BA, DiGrado J, Bovernick M (1954) Arch Biochem Biophys 53: 333

    Article  CAS  Google Scholar 

  70. Bovernick M, Eisenberg F, O’Connell D, Victor J, Owades P (1954) J Biol Chem 207: 593

    Google Scholar 

  71. Crescenzi V, D’Alagni M, Dentini M, Maltei B (1996) In: Ottenbrite RM, Huang SJ, Park K (eds) Hydrogels and biodegradable polymers for bioapplications. American Chemical Society, Washing DC, p 233

    Google Scholar 

  72. Choi HJ, Kunioka M (1995) Radiat Phys Chem 46: 175

    Article  CAS  Google Scholar 

  73. Kunioka M, Choi HJ (1996) J Environ Polym Deg 4 (2): 123

    Article  CAS  Google Scholar 

  74. Farrell RE, Gross RA, McCarthy SP, unpublished results

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, R.A. (1998). Bacterial γ-Poly(glutamic Acid). In: Kaplan, D.L. (eds) Biopolymers from Renewable Resources. Macromolecular Systems — Materials Approach. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03680-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03680-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08341-9

  • Online ISBN: 978-3-662-03680-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics