Skip to main content

Complex Effects in Turbulent Flows

  • Chapter
Turbulent Flows

Abstract

When a boundary layer undergoes a rapid acceleration through a strongly favourable pressure gradient, the violent eruptions away from the wall, near the edge of the viscous sublayer cease when the pressure gradient reaches a critical value given by (Schraub & Kline, 1965; Moretti & Kays, 1965):

$$ {K_{acc}} \equiv \frac{v}{{U_e^2}}\frac{{d{U_e}}}{{dx}} = - \frac{v}{{\rho U_e^3}}\frac{{dP}}{{dx}} = 3.5\,{10^{ - 6}} $$
((6.1a))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell, C.J. (1974) Scaling laws for pipe flows. PhD Thesis, Univ. Melbourne, Australia.

    Google Scholar 

  • Abramowitz, M. & Stegun, I.A. (1972) Handbook of Mathematical Functions, Dover Publ. Inc., New York.

    MATH  Google Scholar 

  • Abujelala, M.T. & Lilley, D.G. (1984) Limitations and empirical extensions of the K-e model as applied to turbulent confined swirling flows. Chem. Engng. Comm., Vol.31, pp.223–236.

    Google Scholar 

  • Acharya, M. & Escudier, M. (1987) Turbulent flow over mesh roughness. In Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W. & Whitelaw, J.H. Turbulent shear flows, Vol.5, Springer Verlag.

    Google Scholar 

  • Achenbach, E. (1974) Vortex shedding from spheres, J. Fluid Mech., Vol.62, pp.209–221.

    Google Scholar 

  • Adams, E.W. & Johnston, J.P. (1984) A mixing-length model for the prediction of convex curvature effects on turbulent boundary layers. Trans. ASME J, J. Eng. Gas Turbines & Power, Vol.106, pp. 142–148.

    Google Scholar 

  • Afzal, N. & Narasimha, R. (1976) Axisymmetric turbulent boundary layer along a circular cylinder at constant pressure. J. Fluid Mech., Vol.74, Pt.1, pp.113–128.

    Google Scholar 

  • Afzal, N. & Singh, K.P. (1976) Measurements in an axisymmetric turbulent boundary layer along a circular cylinder. Aero. Quart., Vol.27, Pt.3, pp.217–228.

    Google Scholar 

  • Agarwal, R.K. & Bower, W.W. (1982) Navier-Stokes computations of turbulent compressible two-dimensional impinging jet flowfields. AIAA Journ., Vol.20, No.5, pp.577–584.

    MATH  Google Scholar 

  • Agarwal, N.K.& Simpson, R.L. (1990) The backflow structure of steady and unsteady separating turbulent boundary layers. AIAA Journ., Vol.28, pp.1764–1771.

    Google Scholar 

  • Ahmed, S. & Brundrett, E. (1971) Turbulent flow in non circular ducts. Mean flow properties in the development of a square duct. Part 1. Mean flow properties in the devleoping region of a square duct. Int. J. Heat Mass Transfer, Vol.14, pp.365–375.

    Google Scholar 

  • Aleksin, V.A. (1998) Simulation of the effect of the freestream turbulence parameters on the boundary layer of a curvilinear airfoil. Fluid Dynamics, Vol.33, No.5, pp.701–709.

    MATH  Google Scholar 

  • Alfredsson, P.H., Johansson, A.V., Haritonidis, J.H. & Exkelmann, H. (1988) The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys. Fluids, Vol.31, No.5, pp.1026–1033.

    Google Scholar 

  • Algiferi, A.H., Bhardwaj, R.K. & Rao, Y.V.N. (1987) Prediction of the decay process in turbulent swirl flow. Proc.Inst. Mech. Engnrs., Vol.201, pp.279–283.

    Google Scholar 

  • Alving, A.E. & Fernholz, H.H. (1995) Mean-velocity scaling in and around a mild, turbulent separation bubble. Phys. Fluids A, Vol.7, No.8, pp.1956–1969.

    Google Scholar 

  • Alving, A.E., Smits, A.J. & Wattmuff, J.H. (1990) Turbulent boundary layer relaxation from convex curvature. J. Fluid Mech., Vol. 211, pp.529–556.

    Google Scholar 

  • Ames, F.E. & Moffat, R.J. (1990) Heat transfer with high intensity, large scale turbulence: the flat plate turbulent boundary layer and the cylindrical stagnation point Stanford Univ. Report HMT-44.

    Google Scholar 

  • Anderson, S.D. & Eaton, J.K. Experimental study of a pressure-driven three-dimensional turbulent boundary layer. AIAA Journ., Vol.25, pp.1086–1092 (1987).

    Google Scholar 

  • Anderson, S.D. & Eaton, J.K. (1989) Reynolds stress development in pressure-driven three-dimensional turbulent boundary layers. J. Fluid Mech., Vol.202, pp.263–294.

    Google Scholar 

  • Andreopoulos, J. & Bradshaw, P. (1981) Measurements of the turbulence structure in the boundary layer on a rough surface. Boundary Layer Met., Vol.20, pp.201–213.

    Google Scholar 

  • Antonia, R.A. & Luxton, R.E. (1971a) The response of a turbulent boundary layer to an upstanding step change in surface roughness. Trans. ASME, Journ. Basic Eng., Vol.93, pp.22–34.

    Google Scholar 

  • Antonia, R.A. & Luxton, R.E. (1971b) Energy balance in a turbulent boundary layer on a rough wall. Phys.Fluids, Vol.14, No. 5, pp.1027–1029.

    Google Scholar 

  • Antonia, R.A. & Luxton, R.E. (1971c) The response of a turbulent boundary layer to a step change in surface roughness, Part I, Smooth to Rough, Journ. Fluid Mech., Vol. 48, Part 4, pp.721–761.

    Google Scholar 

  • Antonia, R.A., Shah, D.A. & Browne, L.W.B. (1987), Spectra of velocity derivatives in a turbulent wake, Phys.Fluids, Vol.30, No.11, pp.3455–3462.

    Google Scholar 

  • Antonia, R.A., Zhu, Y. & Kim, J. (1993) On the measurement of lateral velocity derivatives in turbulent flows, Exp. Fluids, Vol.15, pp.65–69.

    Google Scholar 

  • Anwer, M. & So, R.M.C. (1989) Rotation effects on a fully developed turbulent pipe flow. Exp. Fluids, Vol. 8, pp.33–40.

    Google Scholar 

  • Arndt, R.E.A. & Ippen, A.T. (1968) Rough surface effects on cavitation inception. J. Basic Engng. Trans. ASME, Vol.90, pp.249–261

    Google Scholar 

  • Azzola, J., Humphrey, J.A.C., Lacovides, H., Launder, B.E. (1986) Developing turbulent flow in a U-bend of circular cross-section measurement and computation. Trans. ASME, J. Fluids Eng., Vol. 43, pp.771–783.

    Google Scholar 

  • Azzola, J., Humphrey, J.A.C., Lacovides, H. & Launder, B.E. (1987) Trans. ASME, J. Fluids Eng., Vol.108, pp.214.

    Google Scholar 

  • Back, L.H. & Seban, R.A. (1967) Convective heat transfer in a convergent-divergent nozzle. Proc. Heat Transf.Fluid Mech. Inst., Vol.20, p.410.

    Google Scholar 

  • Badri-Narayanan, M.A. (1968) An experimental study of reverse transition in a two-dimensional channel flow. J. Fluid Mech., Vol.31, p.609.

    Google Scholar 

  • Badri Narayanan, M.A., Khadgy, Y.N. & Viswanath, P.R. (1974) Similarities in pressure distribution in separated flow behind backward-facing steps. Aero. Quarterly, Vol.25, pp.305–312.

    Google Scholar 

  • Badri Narayanan, M.A. & Ramjee, V. (1969) On the criteria for reverse transition in a two-dimensional boundary layer flow. J. Fluid Mech., Vol.35, Pt.2, pp.225–241.

    Google Scholar 

  • Baker, C.J. (1980) The turbulent horseshoe vortex. J. Wind Eng. Industr. Aero., Vol.6, pp.9–23.

    Google Scholar 

  • Baker, A.J. & Orzechowski, J.A. (1983) An interaction algorithm for three-dimensional turbulent subsonic aerodynamic juncture region flow. AIAA Journ., Vol.21, pp.524–533.

    MATH  Google Scholar 

  • Bandyopadhyay, P.R. (1986) Review — Mean flow in turbulent boundary layers disturbed to alter skin friction. Trans. ASME, J. Fluids Eng., Vol.108, pp.127–145.

    Google Scholar 

  • Bandyopadhyay, P.R. (1987) Rough-wall turbulent boundary layers in the transitional régime. J. Fluid Mech., Vol.180, pp.231–266.

    Google Scholar 

  • Bandyopadhyay, P.R. (1990) Convex curvature concept of viscous drag reduction. In Bushneil, D.M. & Hefner, J.N. (Eds.) Viscous drag reduction in boundary layers. Vol.123, pp.285–324.

    Google Scholar 

  • Bandyopadhay, P.R. & Watson, R.D. (1988) Structure of rough-wall boundary layers. Phys. Fluids, Vol.31, No.7, pp.1877–1883.

    Google Scholar 

  • Bardina, J., Lyrio, A.A., Kline, S J., Ferziger J. H. & Johnston, J.P. (1981) A prediction method for planar diffuser flows, Trans. ASME, Journ. Fluids Eng., Vol.103, pp.315–321.

    Google Scholar 

  • Bardina, J. Ferziger, J. H. & Rogallo, R.S. (1985) Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech., Vol.154, pp.321–336.

    Google Scholar 

  • Barlow, R.S. & Johnston, J.P. (1988a) Structure of a turbulent boundary layer on a concave surface. J. FluidMech., Vol.191, pp.137–176.

    Google Scholar 

  • Barlow, R.S. & Johnston, J.P. (1988b) Local effects of large-scale eddies on bursting in a concave boundary layer. J. Fluid Mech., Vol.191, pp.177–195.

    Google Scholar 

  • Barnwell, R.J., Wahls, R.A. & DeJarnette, F.R. (1989) Defect stream function, law of the wall/wake method for turbulent boundary layers. AIAA Journ., Vol. 27, No.12, pp.1707–1721.

    Google Scholar 

  • Baskaran, V., Smits, A.J. & Joubert, P.N. (1987) A turbulent flow over a curved hill. Part 1. Growth of an internal boundary layer, J. Fluid Mech., Vol.182, pp.47–83.

    Google Scholar 

  • Batchelor, G.K. (1951) Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Quart. J. Mech. Appl. Math., Vol.4, pp.29–41.

    MathSciNet  MATH  Google Scholar 

  • Bearman, P.W. (1978) Turbulence effects on bluff body mean flow. Proc. 3rd. U.S. Nat. Conf. Wind Engng., Florida, p.LV-1.

    Google Scholar 

  • Bearman, P.W. & Morel, T. (1983) Effect of freestream turbulence on the flow around bluff bodies. Progr. Aerosp.Sei., Vol.20, pp.97–123.

    Google Scholar 

  • Besserman, D.L. & Tanrikut, S. (1991) Comparison of heat transfer measurements with computations for turbulent flow around a 180° bend. Proc. Int. Gas-Turb. and Aero Congress (ASME Paper 91-GT-2J, Orlando, Fl.

    Google Scholar 

  • Bettermann, D. (1966) Contribution à l’étude de la convection forcée le long de plaques rugueuses. Int. J. Heat MassTransfer, Vol.9, pp.153–164.

    Google Scholar 

  • Bissonnette, L.R. & Mellor, G.L. (1974) Experiments on the behavior of an axisymmetric turbulent boundary layer with a sudden circumferential strain, J. Fluid Mech., Vol.63, Pt.2, pp.369–413.

    Google Scholar 

  • Blackwelder, R. & Kovasznay, L.S.G. (1972) Large-scale motion of a turbulent boundary layer during relaminarization. J. Fluid Mech., Vol.53, Part 1, pp.61–83.

    Google Scholar 

  • Blair, M.F. (1983) Influence of freestream turbulence on boundary layer heat tranfser and mean profile development Part 1 — experimental data. Trans. ASME, Journ. Heat Tranfer, Vol.105, No.2, pp.33–40 and 41–47.

    Google Scholar 

  • Bo, T., Iacovides, H. & Launder, B.E. (1995) Developing buoyancy-modified turbulent flow in ducts rotating in orthogonal mode. Trans. ASME J. Turbomachinery, Vol.117, pp.474–484.

    Google Scholar 

  • Borishenko, A.I., Kostikov, O.N. & Chumachenko, V.I. (1973) Experimental investigation of turbulent flow characteristics in a rotating channel. J. Eng. Phys., Vol.24, No.6, pp.1103–1108.

    Google Scholar 

  • Bradshaw, P. (1965) The effect of wind tunnel screens on nominally two-dimensional boundary layers. J. FluidMech., Vol.22, Pt.4, pp.679–688.

    Google Scholar 

  • Bradshaw, P. (1967a) Irrotational fluctuations near a turbulent boundary. J. Fluid Mech., Vol.27, Part 2, pp.209–230.

    Google Scholar 

  • Bradshaw, P. (1967b) ‘Inactive’ motion and pressure fluctuations in turbulent boundary layers. J. Fluid Mech., Vol.30, Part 2, pp.241–258.

    Google Scholar 

  • Bradshaw, P. (1969) The analogy between streamline curvature and byoyancy in turbulent shear flow, J. FluidMech., Vol.36, Part 4, pp.177–191.

    MATH  Google Scholar 

  • Bradshaw, P. (1972) The understanding and prediction of turbulent flow, Aeron. Journal, Vol.76, p.403–418.

    Google Scholar 

  • Bradshaw, P. (1973) Effects of streamline curvature on turbulence, AGARDograph 169.

    Google Scholar 

  • Bradshaw, P. (1978) (Ed.) Turbulence, Topics in Applied Physics, Vol.12, Springer Verlag, Berlin.

    Google Scholar 

  • Bradshaw, P. & Pankhurst, R.C. (1964) The design of low-speed wind tunnels. Progr. Aeron. Sci., Vol.5, pp. 1–69.

    Google Scholar 

  • Bradshaw, P. & Pontikos, N.S. (1985) Measurements in the turbulent boundary layer on an infinite swept wing. J. Fluid Mech., Vol.159, pp.105–130.

    Google Scholar 

  • Bradshaw, P. & Terrell, M.G. (1969) The response of a turbulent boundary layer on an infinite swept wing to the removal of pressure gradient. NPL Aero Rep. 1305.

    Google Scholar 

  • Bradshaw, P. & Wong, F.Y.F. (1972) Reattachment of a turbulent boundary layer. J. Fluid Mech., Vol. 52, Part 1, pp.113–135.

    Google Scholar 

  • Bremhorst, K. & Walker, T.B (1973). Spectral measurements of turbulent momentum transfer in fully-developed pipe flow. J. Fluid Mech., Vol.61, pp.173–186.

    Google Scholar 

  • Brinich, P.F. & Graham, R.W. (1977). Flow and heat transfer in a curved channel. NASA TN D-8464

    Google Scholar 

  • Brown, K.C. & Joubert, P.N. (1969) The measurement of skin friction in turbulent boundary layers with adverse pressure gradients, J. Fluid Mech., Vol.35, Part 4, pp.737–757.

    Google Scholar 

  • Brundrett, E. & Baines, W.D.(1964) The production and diffusion of vorticity in duct flow, J. Fluid Mech., Vol.19, pp.375–392.

    MATH  Google Scholar 

  • Bunker, R.S., Metzger, D.E. & Wittig, S. (1990a) Local heat transfer in turbulent disk cavities. PU: Rotor-stator cooling with hub injection of coolant. ASME 90-GT-25, Proc. of Gas Turbine and Aeroengine Congress, Brussels, Belgium.

    Google Scholar 

  • Bunker, R.S., Metzger, D.E. & Wittig, S. (1990b) Local heat transfer in turbulent disk cavities. Pt.2: Rotor cooling with radial-location injection of coolant. ASME 90-GT-26, Proc. of Gas Turbine and Aeroengine Congress, Brussels, Belgium.

    Google Scholar 

  • Cannon, J.N. & Kays, W.M. (1969) Heat transfer to a fluid flowing inside a pipe rotating about its longitudinal axis. Trans. ASME, J. Heat Transfer, Vol.91, No.1, pp.135–139.

    Google Scholar 

  • Case, P. (1966) Measurements of entrainment by a free rotating disk. J. R. Aero. Soc., Vol.71, p.124.

    Google Scholar 

  • Castro, I.P. (1984) Effects of free-stream turbulence at low Reynolds number boundary layers. Trans.ASME, J.Fluids Eng., Vol. 106, pp.298–306.

    Google Scholar 

  • Castro, I.P. & Epik, E. (1995) Boundary layer relaxation after a separated region. Proc. 10th. Symp. TurbulentShear Flow, Penn. State Univ., pp.5–1, 6.

    Google Scholar 

  • Castro, I.P. & Haque, A. (1987) The structure of a turbulent boundary layer bounding a separation region, J. FluidMech., Vol.179, pp.439–468.

    Google Scholar 

  • Cebeci, T. & Abbott, D.E. (1975) Boundary layers on a rotating disk. AIAA Journ., Vol. 13, pp.829–832 .

    Google Scholar 

  • Cebeci, T. & Bradshaw, P. (1977) Momentum Transfer in Boundary Layers, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Cham, T.S. & Head, M.R. (1969) Turbulent boundary layer flow on a rotating disk. J. Fluid Mech., Vol.37, Pt.1, pp. 129–148.

    Google Scholar 

  • Cham, T.S. & Head, M.R. (1970) The turbulent boundary layer on a rotating cylinder in an axial stream. J. FluidMech., Vol.42, Pt.1, pp.1–16.

    Google Scholar 

  • Cham, T.S. & Head, M.R. (1971) The turbulent boundary layer on a rotating nose-body. Aero. Quart., Vol.22, Pt.4, pp.389–402.

    Google Scholar 

  • Chambers, F.W., Murphy, H.D. & Mc Eligot, D.M. (1983) Laterally converging flow. Part 2: Temporal shear stress, J. Fluid Mech., Vol.127, pp.403–428.

    Google Scholar 

  • Chandrasekhar, N. & Swamy, N.V.C. (1976) Wall shear stress inference for three-dimensional turbulent boundary layer profiles. Trans. ASME, J. Appl. Mech., Vol.43, pp.20–27.

    Google Scholar 

  • Chang, P.K. (1970) Separation of Flow. Pergamon Press, Oxford.

    MATH  Google Scholar 

  • Chang, K.C. & Chen, C.S. (1993) Development of a hybrid K-e model for swirling recirculating flows under moderate to strong swirl intensities. Int. J. Num. Methods Fluids, Vol.16, pp.421–443.

    MATH  Google Scholar 

  • Chang, S.M., Humphrey, J.A.C. & Modavi, A. (1983) Turbulent flow in a strongly curved U-bend and downstream tangent of square cross-sections. Physico-chemical Hydrodynamics, Vol.4, pp.243.

    Google Scholar 

  • Charnay, G., Comte-Bellot, G. & Mathieu, J. (1971) Development of a boundary layer on a flat plate in an external turbulent flow. Paper No.27, AGARD CP-93.

    Google Scholar 

  • Charnay, G., Comte-Bellot, G. & Mathieu, J. (1972) Etude de la frontière libre d’une couche limite turbulente perturbée. Comptes Rendus Acad. Sciences, Paris, Ser.A, Vol.275, pp.615–618.

    Google Scholar 

  • Charnay, G., Mathieu, J. & Comte-Bellot, G. (1976) Response of a turbulent boundary layer to random fluctuations in the external stream. Phys. Fluids, Vol.19, No.9, pp.1261–1273.

    Google Scholar 

  • Cheah, S.C., Iacovides, H., Jackson, D.C., Ji, H. & Launder, B.E. (1994) Experimental investigation of enclosed rotor-stator disk flows. Exp. Thermal Fluid Science, Vol.9, pp.445–455.

    Google Scholar 

  • Chen, K.K. (1972) Compressible turbulent boundary layer heat transfer to rough surfaces in pressure gradient. AIAAJourn., Vol.10, No.5, pp. 623–629.

    Google Scholar 

  • Chen, C.P. (1986) Calculation of confined swirling jets. Comm. Appl. Numer. Meths., Vol.2, pp.333–338.

    MATH  Google Scholar 

  • Chen, J.C. & Lin, CA. (1997) Computations of strongly swirling flows with quadratic pressure-strain model. Proc. 11th. Symp. Turbulent Shear Flows, Grenoble, pp.P3–59, 64.

    Google Scholar 

  • Chen, H.C. & Patel, V.C (1988) Near-wall models for complex flows including separation. AIAA Journ., Vol.26, pp.641–648.

    Google Scholar 

  • Chen, C.K. & Roberson, J.A. (1974) Turbulence in wakes of roughness elements. Journ. Hydraulics Div. ASCE, Vol.100, pp.53–67.

    Google Scholar 

  • Chesnakas, C J. & Simpson, R.L. (1994) Full three-dimensional measurements of the cross-flow separation region of a 6:1 prolate spheroid. Exp. Fluids, Vol.17, pp.68–74.

    Google Scholar 

  • Chesnakas, C.J.& Simpson, R.L. (1996) Measurements of the turbulence structure in the vicinity of a 3-D separation. Trans. ASME, J. Fluids Engng., Vol.118, pp.268–275.

    Google Scholar 

  • Chevray, R. & Tutu, N.K. (1978) Intermittency and preferential transport of heat in a round jet, J. Fluid Mech., Vol. 88, Part 1, pp.133–160.

    Google Scholar 

  • Chew, J.W. (1991) A theoretical study of ingress for shrouded rotating disk systems with radial outflow. J.Turbomachinery, Vol.113, pp.91–97.

    Google Scholar 

  • Chew, J.W., Owen, J.M. & Pincombe, J.R. (1984) Numerical predictions for laminar source-sink flow in a rotating cylindrical cavity. J. Fluid Mech., Vol.155, p.233.

    Google Scholar 

  • Chew, J.W. & Rogers, R.H. (1988) An integral method for the calculation of turbulent forced convection in a rotating cavity with radial outflow. Int. J. Heat Fluid Flow, Vol.9, pp.37–48.

    Google Scholar 

  • Chien, K.Y. (1982) Predictions of channel and boundary layer flows with a low-Reynolds number two-equation model of turbulence, AIAA Journ., Vol.20, No.1, pp.33–38.

    MathSciNet  MATH  Google Scholar 

  • Choi, Y.D., Iacovides, H. & Launder, B.E. (1989) Numerical computation of turbulent flow in a square sectioned 180 deg. bend. Trans. ASME, J. Fluids Eng, Vol.111, pp.59–68.

    Google Scholar 

  • Chung, M.K., Park, S.W. & Kim, K.C. (1987) Curvature effects on third-order velocity correlation and its model representation. Phys. Fluids, Vol. 30, No.3, pp.626–628.

    Google Scholar 

  • Churchill, S.W. (1993) Theoretically based expressions in closed form for the local and mean coefficients of skin friction in fully turbulent flow along smooth and rough plates. Int. J. Heat Fluid Flow, Vol.14, No.3, pp.231–239.

    Google Scholar 

  • Ciochetto, D.S. & Simpson, R.L. (1995) An investigation of three-dimensional turbulent boundary layers, 10th.Symp. Turbulent Flows, Penn. State Univ. Paper 7–25, 30.

    Google Scholar 

  • Cionco, R.M. (1972) Intensity of turbulence within canopies with simple and complex roughness elements. Boundary Layer Met., Vol.2, pp.543–465.

    Google Scholar 

  • Cobb, C. & Saunders, O.A. (1956) Heat transfer from a rotating disk. Proc. Roy. Soc. London, Vol.A236, pp.343–351.

    Google Scholar 

  • Cokljat, D., Carter, J.G. & Emerson, D.R. (1996) Calculation of flow in transition duct using second-order closure and wall functions. AIAA J., Vol.34, No.11, pp.2437–2439.

    MATH  Google Scholar 

  • Colebrook, C.F. (1939) Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws. Journ. Inst. Civil Engngrs., Vol.11, pp. 133–156.

    Google Scholar 

  • Colebrook, C.F. & White, CM. (1937) Experiments with fluid motion in roughened pipes. Proc. Roy. Soc.London, Vol.A161, pp.367–381.

    Google Scholar 

  • Coleman, H.W., Moffat, R.J. & Kays, W.M. (1977) The accelerated fully rough turbulent boundary layer. J. FluidMech., Vol.82, Pt. 3 pp.507–528.

    Google Scholar 

  • Coles, D. (1956) The law of the wake in the turbulent boundary layer. J. Fluid Mech., Vol.1, pp. 191–226.

    MathSciNet  MATH  Google Scholar 

  • Coles, D.E. & Hirst, E.A. (1968) Proc. Computation of Boundary Layers, AFOSR-IFP Conf. Vol.1.

    Google Scholar 

  • Compton, D.A. & Eaton, J.K. (1997) Near-wall measurements in a three-dimensional turbulent boundary layer. J. Fluid Mech., Vol.350, pp. 189–208.

    Google Scholar 

  • Consigny, H. & Richards, B.E. (1982) Short-duration measurements of heat transfer rate to a gas turbine rotor blade. Trans. ASME, Journ. Engng. Power, Vol.4, pp.542.

    Google Scholar 

  • Costis, C.E., Hoang, N.T. & Telionis, D.P. (1989) Laminar separating flow over a prolate spheroid. J. Aircraft, Vol.86, pp.810–816.

    Google Scholar 

  • Crane, R.I. & Winoto, S.H. (1980) Longitudinal vortices in a concave surface boundary layer. In AGARD CP 271 on Turbulent boundary layers — Experiments, Theory and Modeling .

    Google Scholar 

  • Cutler, A.D. & Bradshaw, P. (1993a) Strong vortex/boundary layer interactions. Part I. Vortices high. Exp. Fluids, Vol.14, pp.321–332.

    Google Scholar 

  • Cutler, A.D. & Bradshaw, P. (1993b) Strong vortex/boundary layer interactions. Part II. Vortices low. Exp. Fluids, Vol.14, pp.393–401.

    Google Scholar 

  • Cutler, A.D. & Johnston, J.P. (1989) The relaxation of a turbulent boundary layer in an adverse pressure gradient. J. Fluid Mech., Vol.200, pp.367–387.

    Google Scholar 

  • Daily, J.W. & Nece, R.E. (1960) Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. J. Basic Engng. Trans. ASME, Vol.82, p. 117

    Google Scholar 

  • Daily, J.W., Ernst, W.D. & Asbedian, V. (1964) Enclosed rotating disks with superposed throughflow; mean steady and periodic unsteady characteristics of induced flow. Report No.64, Hydrodynamic Lab, MIT64, MIT, Cambridge, MA.

    Google Scholar 

  • Dalle Donne, M. & Meyer, L. (1977) Turbulent convective heat transfer from rough surfaces with two-Dimensional rectangular ribs. Int. J. Heat Mass Transfer, Vol.20, No.6, pp.583–620.

    Google Scholar 

  • Davis, D.O. & Gessner, F.B. (1992) Experimental investigation of turbulent flow through a rectangular-to-circular transition duct. AIAA Journ., Vol.30, No.2, pp.367–375.

    Google Scholar 

  • Debisschop, J.R. & Nieuwstadt, F.T.M. (1996) Turbulent boundary layer in an adverse pressure gradient; effectiveness of riblets. AIAA Journ., Vol.34, pp.932–937.

    Google Scholar 

  • DeChow, R. & Felsch, K.O. (1977) Measurements of the mean velocity and of the Reynolds stress tensor in a three-dimensional boundary layer induced by a cylinder standing on a flat plate. Symp. Turbulent Shear Flows, pp.9.11–9.20, University Park, PA.

    Google Scholar 

  • Degani, A.T., Smith, F.T. & Walker, J.D.A. (1992) The three-dimensional turbulent boundary layer near a plane of symmetry. J. Fluid Mech., Vol. 234, pp.329–360.

    MathSciNet  MATH  Google Scholar 

  • Degani, A.T., Smith, F.T. & Walker, J.D.A. (1993) The structure of a three-dimensional turbulent boundary layer. J. Fluid Mech., Vol. 250, pp.43–68.

    MathSciNet  MATH  Google Scholar 

  • DeGrande, G. & Hirsch, C. (1978) Three-dimensional incompressible turbulent boundary layers. Free Univ Brussels, VUB-STR-8 Report, Brussels, Belgium .

    Google Scholar 

  • Demuren, A.O. & Rodi, W. (1984) Calculation of turbulence-driven secondary motion in non circular ducts, J.Fluid Mech., Vol.140, pp.189–222.

    MATH  Google Scholar 

  • Dengel, P. & Fernholz, H.H. (1990) An experimental investigation of an incompressible turbulent boundary layer in the vicinity of separation, J. Fluid Mech., Vol.212, pp.615–636.

    Google Scholar 

  • Denli, N & Landweber, L. (1979) Thick axisymmetric boundary layer on a circular cylinder. Journ. Hydronautics, Vol.13, No.3, pp.93–104.

    Google Scholar 

  • Devenport, W.J. & Simpson, R. (1990) Time dependent and time averaged turbulence structure near the nose of a wing-body junction. J. Fluid Mech., Vol.210, pp.23–55.

    Google Scholar 

  • Devenport, W.J. & Sutton, P. (1991) Near-wall behavior of separated and reattaching flows. AIAA Journ., Vol.20, No.1, pp.25–31.

    Google Scholar 

  • Dianat, M. & Castro, I.P. (1991) Turbulence in a separated boundary layer. J. Fluid Mech., Vol.226, pp.91–123.

    Google Scholar 

  • Dijkstra, D. & Van Heijst, GJ.F. (1983) The flow between two finite rotating disks enclosed by a cylinder. J. Fluid Mech., Vol.128, pp.123–157.

    MATH  Google Scholar 

  • Dickinson, S.C. (1986) An experimental investigation of appendage-flat plate junction flow. Vol.1: description. DTNSRDC Rep.86/051.

    Google Scholar 

  • Dorfman, L.A. (1963) Hydrodynamic resistance and the heat loss of rotating solids, Oliver & Boyd.

    Google Scholar 

  • Driver, D.M. (1991) Reynolds shear stress measurements in a separated boundary layer flow. AIAA paper 91–1787, 22nd. Fluid Dyn. Plasma Lasers Conf.

    Google Scholar 

  • Driver, D.M. & Hebbar, S.K. (1987) Experimental study of a three-dimensional, shear-driven, turbulent boundary layer. AIAA Journ., Vol.25, No.1, pp.35–42.

    Google Scholar 

  • Driver, D.M. & Hebbar, S.K. (1989) Three-dimensional shear-driven boundary layer flow. AIAA Journ., Vol. 27, No.12, pp.1689–1697.

    Google Scholar 

  • Driver, D.M. & Johnston, J.P. (1990) Experimental study of a three-dimensional shear-driven turbulent boundary layer with stream wise adverse pressure gradient. NASA TM102211.

    Google Scholar 

  • Driver, D.M. & Seegmiller, H.L. (1985) Features of a reattaching turbulent shear layer in divergent channel flow. AIAA Journ., Vol.23, pp.163–171.

    Google Scholar 

  • Durbin, P.A. (1993) On modeling three-dimensional turbulent wall layers. Phys. Fluids, Vol.A5, No.5, pp.1231–1238.

    Google Scholar 

  • Durbin, P.A. & Belcher, S.E. (1992) Scaling of adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech., Vol.238, pp.699–722.

    MATH  Google Scholar 

  • Dvorak, F.A. (1969) Calculation of turbulent boundary layers on rough surfaces in pressure gradient, AIAA Journ. Vol.7, No.9, pp.1752–1759.

    Google Scholar 

  • East, L.F. & Hoxey, R.P. (1969) Low-speed three-dimensional turbulent boundary layer data. ARC R &.M 3653.

    Google Scholar 

  • East, L.F., Smith, P.D. & Merryman, P.J. (1977) Prediction of the development of separated boundary layer by the lag-entrainment method. RAE TR 77046.

    Google Scholar 

  • East, L.F. & Sawyer, W.G. (1979) An investigation of the structure of equilibrium boundary layers. In Turbulent boundary layers: experiment Theory and Modelling, AGARD CP-271, pp.6–1, 19.

    Google Scholar 

  • Eaton, J.K. (1991) Turbulence structure and heat transfer in three-dimensional turbulent boundary layer data. Proc.9th. Symp. Energy Engng. Sci. Argonne Nat. lab.

    Google Scholar 

  • Elder, J.W. (1960) An experimental investigation of turbulent spots and breakdown to turbulence. J. Fluid Mech., Vol.9, Vol.9, pp.235–246.

    MATH  Google Scholar 

  • Elena, L. & Schiestel, R. (1994) Turbulence modeling of confined flow in rotating disk systems. AIAA Journ., Vol.33, pp.812–821.

    Google Scholar 

  • Elena, L. & Schiestel, R. (1996) Turbulence modeling of rotating confined flows. Int. J. Heat Fluid Flow, Vol.17, pp.283–289.

    Google Scholar 

  • Ellis, L.B. & Joubert, P.N. (1976) Turbulent shear flow in a curved duct. J. Fluid Mech., Vol.62, Pt.1, pp.65–84.

    Google Scholar 

  • Elsenaar, A. & Boelsma, S.H. (1974) Measurements of the Reynolds-stress tensor in a three-dimensional turbulent boundary layer under infinite swept wing conditions. NLR TR 74095V.

    Google Scholar 

  • Enayet, M.M., Gibson, M.M., Taylor, A.M.K.P. & Yanneskis, M. (1982). Laser-Doppler measurements of laminar and turbulent flow in a pipe bend. Int. J. Heat Fluid Flow, Vol.3, pp.213–219.

    Google Scholar 

  • Erian, F.F. & Tong, Y.H. (1971) Turbulent flow due to a rotating disk. Phys. Fluids, Vol.14, No.12, pp.2588–2591.

    Google Scholar 

  • Erm, L.P., Smits, A.J. & Joubert, P.N. (1987) Low-Reynolds-number turbulent boundary layers on a smooth flat surface in a zero pressure gradient. In Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W. & Whitelaw, J.H. Turbulent shear flows 5, pp.186–196. Springer Verlag.

    Google Scholar 

  • Eskinazi, S. & Yeh, H. (1956) Fully developed turbulence in a curved channel. J. Aero. Sci., Vol.23, pp.23–35 .

    MATH  Google Scholar 

  • Evans, R.L. (1974) Free-stream turbulence effects on a turbulent boundary layer. ARC CP1282.

    Google Scholar 

  • Farthing, P.R. & Owen, J.M. (1991) De-swirled radial inflow in a rotating cavity. Int. J. Heat Fluid Flow, Vol.12, No.1, pp.63–70.

    Google Scholar 

  • Favarolo, S.C., Nejad, A.S. & Ahmed, S.A. (1989) Experimental investigation of isothermal swirling flow in an axisymmetric dump combustor, J. Propulsion, Vol.7, No.3, pp. 348–356.

    Google Scholar 

  • Fendell, F.E. (1972) Singular perturbation and turbulent shear flow near walls, J. Astronaut. Sci., Vol.20, No.3, pp.129–165.

    Google Scholar 

  • Fernholz, H. (1964) Halbempirische Gesetze zur Berechnung turbulenter Grenzschichten nach der Methods der Integralbedingungen. Ing. Archiv, Vol.33, pp.384–395.

    Google Scholar 

  • Fernholz, H.H., Krause, E., Nockemann, M. & Schober, M. (1995) Comparative measurements in the canonical boundary layer at Ree ≤ 6×104 on the wall of the DNW. Phys. Fluids, Vol.A7, pp. 1275–1281.

    Google Scholar 

  • Fernholz, H.H. & Vagt, J.D. (1981) Turbulence measurements in an adverse-pressure-gradient three-dimensional turbulent boundary layer along a circular cylinder. J. Fluid Mech., Vol.111, pp.233–269.

    Google Scholar 

  • Fiedler, H. & Head, M.R. (1966) Intermittency measurements in the turbulent boundary layers. J. Fluid Mech., Vol.25, Pt.4, pp.719–735.

    Google Scholar 

  • Firouzian, M., Owen, J.M., Pincombe, J.R. & Rogers, R.H. (1985) Flow and heat transfer in a rotating cavity witha radial inflow of fluid. Part 1: the flow structure. Int. J. Heat Fluid Flow, Vol.6, p.228.

    Google Scholar 

  • Flack, K.A. & Johnston, J.P. (1994) Near-wall flow in a three-dimensional turbulent boundary layer on the end wall of a rectangular bend. AIAA Paper 94–0405, 32nd. Aerosp. Sci. Meeting, Reno, NV.

    Google Scholar 

  • Fox, R.W. & Kline, S.J. (1962) Flow régimes in curved subsonic diffusers. Trans. ASME, Journ. Basic Eng., Ser.D, Vol.84, pp.303–312.

    Google Scholar 

  • Frei, D. & Thomann, H. (1980) Direct measurements of skin friction in a turbulent boundary layer witha strong adverse pressure gradient. J. Fluid Mech., Vol.101, pp.79–95.

    Google Scholar 

  • Fu, S., Huang, P.G., Launder, B.E. & Leschziner, M.A. (1988) A comparison of algebraic and differential second-moment closures for axisymmetric turbulent shear flows with and without swirl. J. Fluids Engng. Trans. ASME, Vol.110, pp.216–221.

    Google Scholar 

  • Fu, T.C., Shekarriz, A., Katz, J. & Huang, T.T. (1994) The flow structure in the lee of an inclined 6:1 prolate spheroid. J. Fluid Mech. Vol.269, pp.79–106.

    Google Scholar 

  • Fulachier, L., Arzoumanian, E. & Dumas, R. (1982) Effect on a developed turbulent boundary layer of a sudden local wall motion. Proc. IUTAM Symp. Three-dimensional Turbulent Boundary Layers, pp.188–198. Fernholz, H.H. & Krause, E. (Eds.), Springer Verlag, Berlin

    Google Scholar 

  • Furuya, Y., Nakamura, I., Yamashita, S. & Ishii, T. (1977) Experimental investigation of the relatively thick turbulent boundary Layer on a rotating cylinder in axial flows (2nd. Report, Flows under pressure gradients) Bull. JSME, Vol.20, No.140; pp.191–200.

    Google Scholar 

  • Galbraith, R.A.McD. & Head, M.R. (1975) Eddy viscosity and mixing length from measured boundary layer developments. Aero. Quarterly, Vol. 26, pt.2, pp. 133–154 .

    Google Scholar 

  • Gan, X., Kilic, M. & Owen, J.M. (1993) Flow between contrarotating discs. ASME Paper 93-GT-286. Int. Gas Turbine Aeroeng. Congr., Cincinnati.

    Google Scholar 

  • Gan, X., Kilic, M. & Owen, J.M.(1994) Superposed flow between two disks contrarotating at differential speeds. IntJ. Heat Fluid Flow, Vol.15, No.6, pp.438–446.

    Google Scholar 

  • Gartshore, I.S., Durbin, P.A. & Hunt, J.C.R. (1983) The production of turbulent stress in a shear flow by irrotational fluctuations. J. Fluid Mech., Vol.137, pp.307–329.

    Google Scholar 

  • Gavrilakis, S. (1992) Numerical simulation of low Reynolds number turbulent flow through a straight square duct. J. Fluid Mech., Vol.244, pp.101–129.

    Google Scholar 

  • George, W.K. & Castillo, L. (1993) Boundary layers with pressure gradient: another look at the equilibrium boundary layer. In So, R.M.C., Speziale, C.G. & Launder, B.E. (Eds.) Near-Wall Turbulent Flows, pp.901–910 Elsevier.

    Google Scholar 

  • Gessner, F.B. (1973) The origin of secondary flow in turbulent flow along a corner. J. Fluid Mech., Vol.58, p.1.

    Google Scholar 

  • Gessner, F.B. & Emery, A.F. (1976) A Reynolds-stress model for turbulent corner flows — Part 1, Development of the model, Trans. ASME I, J. Fluids Eng., Vol.98, pp.261–268.

    Google Scholar 

  • Gessner, F.B. & Emery, A.F. (1981) The numerical prediction of developing flow in rectangular ducts. Trans. ASME I, J. Fluids Eng., Vol.103, pp.445–455.

    Google Scholar 

  • Gessner, F.B. & Jones, J.B. (1965) On some aspects of fully-developed turbulent flow in rectangular channels, J. Fluid Mech., Vol.23, Part 4, pp.689–713.

    Google Scholar 

  • Gessner, F.B. & Po, P.K. (1976) A Reynolds-stress model for turbulent corner flows — Part 2, Comparison between theory and experiments, Trans. ASME I, J. Fluids Eng., Vol.98, pp.269–277.

    Google Scholar 

  • Gessner, F.B., Po, J.K. & Emery, A.F. (1979) Measurements of developing turbulent flow in a square duct. In Durst, F., Launder, B.E., Schmidt, F.W. & Whitelaw, J.H. (Eds.) Turbulent Shear Flows. Vol.1, pp.119–136. Lect. Notes in Phys. Springer Verlag.

    Google Scholar 

  • Ghose, S. & Kline, S.J. (1978) Prediction of transitory stall in two-dimensional diffusers, Trans. ASME, Journ. Fluids Eng., Vol.100, pp.419–426.

    Google Scholar 

  • Gibson, M.M. (1978) An algebraic stress and heat flux model for turbulent shear flow with stream wise curvature. Int. J. Heat Mass Transfer, Vol.21, pp.1609–1617.

    MathSciNet  MATH  Google Scholar 

  • Gibson, M.M.(1985) Effects of streamline curvature on turbulence. In Le Penven, L., Gence, J.N. & Comte-Bellot, G. In Davis, S.H. & Lumley, J.L. (Eds.) Frontiers in Fluid Mechanics, pp.184–198. Springer Verlag, Berlin.

    Google Scholar 

  • Gibson, M.M., Jones, W.P. & Younis, B.A. (1981) Calculation of turbulent boundary layers on curved surfaces, Phys. Fluids, Vol.24, pp.386–395.

    MATH  Google Scholar 

  • Gibson, M.M. & Launder, B.E. (1978) Ground effects on pressure fluctuations in the atmospheric boundary layer, J. Fluid Mech., Vol.86, part 3, pp.491–511.

    MATH  Google Scholar 

  • Gibson, MM., Verriopoulos, C.A. & Vlachos, N.S. (1984) Turbulent boundary layer on a mildly convex surface: Mean flow and turbulence measurements. I- Mean-flow and turbulence measurements. Exp. Fluids, Vol.2, pp. 17–24.

    Google Scholar 

  • Gibson, M.M. & Younis, B.A. (1986) Calculation of swirling jets with a Reynolds-stress closure. Phys. Fluids, Vol.29, No.1, pp.38–48.

    Google Scholar 

  • Gillis, J.C. & Johnston, J.P. (1983) Turbulent boundary-layer flow and structure on a convex wall and its redevelopment on a flat wall. J. Fluid Mech., Vol.135, pp. 123–153.

    Google Scholar 

  • Goldberg, U. & Reshotko, E. (1984) Scaling and modeling of three-dimensional pressure-driven turbulent boundary layers. AIAA Journ., Vol.22, pp.914–920.

    MATH  Google Scholar 

  • Goldstein, S. (1935) On the resistance to the rotation of a rotating disk immersed in a fluid. Proc. Camb. Phil. Soc., Vol.31, p.232.

    MATH  Google Scholar 

  • Goldstein, S. (1936) A note on roughness. Aero. Res. Council, R&M, 1763.

    Google Scholar 

  • Graber, DJ., Daniels, W.A. & Johnson, B.V. (1987) Disk pumping test. AFWAL-TR-87–2050, Wright Patterson Air Force Base, OH, USA.

    Google Scholar 

  • Grabow, R.M. & White, C.O. (1975) Surface roughness effects on nose-tip ablation characteristics. AIAA Journ., Vol.13, No.5, pp.605–609.

    Google Scholar 

  • Granville, P.S. (1986) Eddy viscosities and mixing lengths for turbulent boundary layers on flat plates, smooth or rough. DTNSRDC Rep. 86/067.

    Google Scholar 

  • Granville, P.S. (1987a) Baldwin-Lomax factors for turbulent boundary layers in pressure gradients. AIAA Journ., Vol. 25, No.12, pp.1624–1627.

    Google Scholar 

  • Granville, P. (1987b) Mixing lengths or eddy viscosities for thick axisymmetric turbulent boundary layers near a wall. J. Ship Research, Vol.31, No.3, pp.207–216.

    MathSciNet  Google Scholar 

  • Grass, A.J. (1971) Structural features of turbulent flow over smooth and rough surfaces, J. Fluid Mech., Vol.50, Part 2, pp.233–255.

    Google Scholar 

  • Green, J.E. (1973) On the influence of freestream turbulence on a turbulent boundary layer as it relates to wind-tunnel testing at subsonic speeds. AG ARD Rept. 602, pp.4–1 to 4–8 .

    Google Scholar 

  • Gregory, N., Stuart, J.T. & Walker, W.S. (1955) On the stability of three-dimensional boundary layers with applications to a flow due to a rotating disk. Phil. Trans. Roy. Soc. London, Vol.A248, pp.155–199 .

    MathSciNet  Google Scholar 

  • Gupta, A.K. & Kaplan, R.E. (1972) Statistical characteristics of Reynolds stress in a turbulent boundary layer, Phys. Fluids, Vol.15, pp.981–985.

    Google Scholar 

  • Habib, M.A. & Whitelaw, J.H. (1979) Velocity characteristic of a confined coaxial jet. Trans. ASME, J. Fluids Eng., Vol.101, pp.521–529.

    Google Scholar 

  • Hama, F.R. (1954) Boundary layer characteristics for smooth and rough surfaces. Trans. Soc. Naval Arch. Marine Eng., Vol.62, pp.353–358.

    Google Scholar 

  • Hancock, P.E. & Bradshaw, P. (1983) The effect of free-stream turbulence on turbulent boundary layers. Trans. ASME, J. Fluids Eng., Vol.105, pp.284–289.

    Google Scholar 

  • Hancock, P.E. & Bradshaw, P. (1989) Turbulence structure of a boundary layer beneath a turbulent free stream. J. Fluid Mech., Vol. 205, pp.45–76.

    Google Scholar 

  • Hanjalic, K. & Launder, B.E. (1972) A Reynolds-stress model for turbulence and its application to thin shear flows. J. Fluid Mech., Vol.52, pp.491–511.

    Google Scholar 

  • Hanjalic, K. & Launder, B.E. (1976) Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence, J. Fluid Mech., Vol.74, pp.593–610.

    MATH  Google Scholar 

  • Hanjalic, K., Jakirlic, S. & Durst, F. (1994) A computational study of joint effects of transverse shear and streamwise acceleration on the three-dimensional boundary layers. Int. J. Heat Fluid Flow, Vol.15, No.4, pp.269–282.

    Google Scholar 

  • Hawthorne, W.R. (1951) Secondary circulation in fluid flow. Proc. Roy. Soc. London, Vol.A206, pp.374–387.

    MathSciNet  Google Scholar 

  • Head, M.R. (1976a) Equilibrium and near-equilibrium turbulent boundary layers. J. Fluid Mech., Vol.73, pp.1–8.

    Google Scholar 

  • Head, M.R.(1976b) Eddy viscosity in turbulent boundary layers, Aero. Quarterly, Vol.27, pp.270–275.

    Google Scholar 

  • Head, M.R. & Bradshaw, P. (1971) Zero and negative entrainment in turbulent shear flow, J. Fluid Mech., Vol.46, pp.385–394.

    Google Scholar 

  • Head, M.R. & Galbraith, R.A.McD. (1975) Eddy viscosity and entrainment in equilibrium boundary layers. Aero. Quarterly, Vol.26, pp.229–242.

    Google Scholar 

  • Head, M.R. & Prahlad, T.S.(1974) The boundary layer on a plane of symmetry, Aeron. Quarterly, Vol.25, pp.293–304.

    Google Scholar 

  • Healzer, J.M., Moffat, R.J. & Kays, W.M. (1974) The turbulent boundary layer on a porous rough plate: experimental heat transfer with uniform blowing. AIAA Paper 74–680, ASME Paper 74-HT-14, AIAA/ASME Thermophysics and Heat Transfer Conf., Boston, Mass. See also Report HMT-18 Thermosci. Div., DeptmL Mech. Engng., Stanford Univ., CA.

    Google Scholar 

  • Hebbar, K.S. & Melnik, W.L. (1978) Wall region of a relaxing three-dimensional incompressible turbulent boundary layer. J. Fluid Mech., Vol.85, pp.33–56.

    Google Scholar 

  • Henbest, S.M. (1983) The structure of turbulent pipe flow. PhD Thesis, Univ. Melbourne, Australia.

    Google Scholar 

  • Herring, H J. & Norbury, J.F. (1967) Some experiments on equilibrium turbulent boundary layers in favourable pressure gradients, J. Fluid Mech., Vol.27, Pt.3, pp.541–549 .

    Google Scholar 

  • Higuchi, H. & Rubesin, M.W. (1979) Behavior of a turbulent boundary layer subjected to sudden transverse strain, AIAA Journ., Vol. 17, No.9, pp.931–941.

    MATH  Google Scholar 

  • Hill, P.G. & Moon, I.M. (1962) Effects of Coriolis on the turbulent boundary layer in rotating fluid machines. MIT Gas Turbine Lab. Report, No.69.

    Google Scholar 

  • Hillier (1976) CERL Report RD/L/N242/75.

    Google Scholar 

  • Hillier, R. & Cherry, N.J. (1981) The effects of stream turbulence on separation bubbles. J. Wind Eng. Ind. Aerod. Vol.8, pp.49–58.

    Google Scholar 

  • Hinze, J.O. (1975) Turbulence, McGraw-Hill.

    Google Scholar 

  • Hirai, S., Takagi, T. & Matsumoto, M. (1988) Prediction of the laminarization phenomena in an axially rotating pipe flow. Trans. ASME, Journ. Fluids Engng., Vol.110, pp.424–430.

    Google Scholar 

  • Hirt, F. & Thomann, H. (1986) Measurement of wall shear stress in turbulent boundary layers subject to strong pressure gradients. J. Fluid Mech., Vol.171, pp.547–562.

    Google Scholar 

  • Hoffmann, P.H. & Bradshaw, P. (1978) Turbulent boundary layers on surfaces of mild longitudinal curvature. Depmt.Aeron., Imperial College, London, IC Aero. Report 78–04.

    Google Scholar 

  • Hoffmann, J.A. & Mohammadi, K. (1991) Velocity profiles for turbulent boundary layers under freestream turbulence. Trans. ASME, Journ. Fluids Engng., Vol.113, pp.399–404.

    Google Scholar 

  • Hoffmann, P.H., Muck, K.C. & Bradshaw, P. (1985) The effect of concave surface curvature on turbulent boundary layers, J. Fluid Mech., Vol.161, pp.371–403.

    Google Scholar 

  • Hogg, S. & Leschziner, M.A. (1989a) Computation of highly swirling confined flow with a Reynolds stress turbulence model. AIAA Journ., Vol.27, No.1, pp.57–63.

    Google Scholar 

  • Hogg, S. & Leschziner, M.A. (1989b) Second-moment closure calculation of strongly swirling confined flow with large density variations. IntJ. Heat Fluid Flow, Vol.10, pp.16.

    Google Scholar 

  • Holloway, A.G.L. & Gupta, R. (1993) The influence of linear mechanisms during the adjustment of sheared turbulence to flow curvature. Phys. Fluids, Vol. A5, No.12, pp.3197–3206.

    Google Scholar 

  • Holloway, A.G.L. & Tavoularis, S. (1992) The effects of curvature on sheared turbulence. J. Fluid Mech., Vol.237, pp.569–603.

    Google Scholar 

  • Hooper, J.D. & Harris, R.W. (1982) Austral. Atomic Energy Commission Report No.E516.

    Google Scholar 

  • Hornung, H.G. & Joubert, P.N. (1963) The mean velocity in three-dimensional turbulent boundary layers. J. Fluid Mech., Vol. 15, pt.3, pp.368–384.

    MATH  Google Scholar 

  • Huang, P.G. & Bradshaw, P. (1995) Law of the wall for turbulent flows in pressure gradients. AIAA Journ., Vol.33, No.4, pp.624–632.

    MATH  Google Scholar 

  • Huffman, G.D., Zimmerman, D.R. & Bennett, W.A. (1972) The effect of free-stream turbulence level on turbulent boundary-layer behaviour. AGARD CP 164, pp.91–115.

    Google Scholar 

  • Humphrey, J.A.C., Taylor, A.K.M.P. & Whitelaw, J.H. (1977) Laminar flow in a square duct of strong curvature. J. Fluid Mech., Vol.53, p.509.

    Google Scholar 

  • Humphrey, J.A., Whitelaw, J.H. & Yee, G. (1981) Turbulent flow in a square duct with strong curvature, J. Fluid Mech., Vol.103, pp.443–463.

    Google Scholar 

  • Hunt, J.C.R. & Joubert, P.N. (1979) Effects of small streamline curvature on turbulent duct flow. J. Fluid Mech., Vol.91, Part 4, pp.633–659.

    Google Scholar 

  • Huser, A. & Biringen, S. (1993) Direct numerical simulation of turbulent flow in a square duct. J. Fluid Mech., Vol. 257, pp.65–95.

    MATH  Google Scholar 

  • Lacovides, H. & Chew, J.W. (1993) Computation of convective heat transfer in rotating cavities. Int. J. Heat Fluid Flow, Vol.14, No.2, pp.146–154.

    Google Scholar 

  • Lacovides, H., Launder, B.E. & Li, H.Y. (1996) The computation of flow development through stationary and rotating U-ducts of strong curvature. Int. J. Heat Fluid Flow, Vol.17, pp.22–33.

    Google Scholar 

  • Lacovides, H., Launder, B.E., Loizou, P.A. & Zhao, H.H. (1990) Turbulent boundary-layer development around a square-sectioned U-bend: measurements and computations. Trans. ASME, J. Fluids Eng., Vol.112, pp.409–415.

    Google Scholar 

  • Lacovides, H. & Theophanopoulos, LP. (1991) Turbulence modelling of axisymmetric flow inside rotating cavities. Int. J. Heat Fluid Flow, Vol.12, pp.2–11.

    Google Scholar 

  • Lacovides, H. & Launder, B.E. (1995) Computational fluid dynamics applied to internal gas-turbine blade cooling: a review. IntJ. Heat Fluid Flow, Vol.16, pp.454–470.

    Google Scholar 

  • Imao, S., Itoh, M. & Harada, T. (1996) Turbulent characteristics of the flow in an axially rotating pipe. Int. J. Heat Fluid Flow, Vol.17, pp.444–451.

    Google Scholar 

  • Ince, N.Z. & Launder, B.E. (1995) Three-dimensional and heat-loss effects on turbulent flow in a nominally tow-dimensional cavity. Int. J. Heat Fluid Flow, Vol.16, pp.171–177.

    Google Scholar 

  • Inman, P.N. & Bradshaw, P. (1981) Mixing length in low Reynolds number, low speed turbulent boundary layers. AIAA Journ., Vol.19, pp.653–655.

    Google Scholar 

  • Ioselevich, V.A. & Pilipenko, V.I. (1974) Logarithmic velocity profile for flow of a weak polymer solution near a rough surface. Sov. Phys. Dokl., Vol.18, p.790.

    Google Scholar 

  • Itoh, M. & Hasegawa, I. (1994) Turbulent boundary layer on a rotating disk in infinite quiescent fluid. JSME international J., Ser.B, Vol.37, No.3, pp.449–456.

    Google Scholar 

  • Itoh, M., Yamada, Y., Imao, S. & Gouda, M. (1990) Experiments on turbulent flow due to an enclosed rotating disk. Proc. 1st. Symp. Engineering Turbulence Modeling and Measurements (Rodi, W. & Ganic, E.N. Eds.) Elsevier, New York, pp.659–668.

    Google Scholar 

  • Jeans, A.H. & Johnston, J.P. (1982) The effects of concave curvature on turbulent boundary layer structure. Rep. MD-40, Thermosci. Div. Mech. Eng., Stanford Univ., Stanford, CA.

    Google Scholar 

  • Johnson, J.P. & Flack, K.A. (1996) Review — Advances in three-dimensional boundary layers with emphasis on the wall-layer regions. Trans. ASME, Journ. Fluids Eng., Vol.118, pp.219–230.

    Google Scholar 

  • Johnson, P.L. & Johnston, J. (1989) Active and inactive motions in a turbulent boundary layer — interactions with freestream turbulence. Proc. 7th. Symp. Turbulent Shear Flows, pp.20.2.1–6. Stanford Univ.

    Google Scholar 

  • Johnson, R.W. & Launder, B.E. (1985) Local Nusselt number and temperature field in turbulent flow through a heated square sectioned U-bend. Int. J. Heat Fluid Flow, Vol.6, pp.177.

    Google Scholar 

  • Johnston, J.P. (1960) On the three-dimensional turbulent boundary layer generated by secondary flow, Trans. ASME D, J. Basic Eng., Vol.82, No.3, pp.233–248.

    Google Scholar 

  • Johnston, J.P. (1970) Measurements in a three-dimensional turbulent boundary layer induced by a swept, forward-facing step. J. Fluid Mech., Vol.42, Pt.4, pp.823–844.

    Google Scholar 

  • Johnston, J.P. (1976) Internal Rows. In Bradshaw (Ed.) Turbulence, Topics in Appl. Physics, Vol.19, Springer Verlag.

    Google Scholar 

  • Johnston, J.P. Halleen, R.M. & Lezius, D.K. (1972) Effects of span wise rotation on the structure of the two-dimensional fully-developed turbulent channel flow, J. Fluid Mech., Vol.56, Part 3, pp.533–588.

    Google Scholar 

  • Jones, O.C. (1976) An improvement in the calculation of turbulent friction in rectangular ducts. Trans. ASME, J. Fluids Eng., Vol., pp.173–181.

    Google Scholar 

  • Jones, W.P. & Launder, B.E. (1972a) The prediction of laminarization with a two-equation model, Int. J. Heat Mass Transfer, Vol.15, pp.301–314.

    Google Scholar 

  • Jones, W.P. & Launder, B.E. (1972b) Some properties of sink-flow turbulent boundary layers. J. Fluid Mech., Vol.56, Part 2, pp.337–351.

    Google Scholar 

  • Jones, W.P. & Launder, B.E. (1973) The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer, Vol.16, pp.1119–1130.

    Google Scholar 

  • Jones, W.P. & Pascau, A. (1989) Calculation of confined swirling flows with a second-moment closure. Trans. ASME, J. Fluids Eng., Vol.111, pp.248–255.

    Google Scholar 

  • Kader, B.A. & Yaglom, A.M. (1978) Similarity treatment of moving-equilibrium turbulent boundary layers in adverse pressure gradient. J. Fluid Mech., Vol.89, Pt.2, pp.305–342.

    MathSciNet  Google Scholar 

  • Kawamura, H. & Mishima, T. (1991) Numerical prediction of turbulent swirling flow in a rotating pipe by a two-equation model of turbulence (fully developed swirling flow). Trans. JSME, Vol.57 (536B), pp.1251–1256 (in Japanese).

    Google Scholar 

  • Keith, W.L. & Bennett, J.C. (1991) Low frequency spectra of the wall shear stress and wall pressure in a turbulent boundary layer. AIAA Journ., Vol. 29, pp.523–530.

    Google Scholar 

  • Khodadadi, J.M. & Vlachos, N.S. (1990) Effects of turbulence model constants on computation of confined swirling flows. AIAA Journ., Vol.28, pp.750–752.

    Google Scholar 

  • Kikuyama, K., Murakami, M. & Nishibori, K. (1983) Development of three-dimensional turbulent boundary layer in an axially rotating pipe. Trans. ASME, J. Fluids Eng., Vol.105, No.2, pp.154–160.

    Google Scholar 

  • Kim, J. (1983) The effect of rotation on turbulence structure. In Proc. 4th. Symp. Turbulent Shear Flows, pp.6.14/19; Karlsruhe, Germany.

    Google Scholar 

  • Kim, K.Y. & Chung, M.K. (1988) Calculation of a strongly swirling turbulent round jet with recirculation by an algebraic stress model. Int.J.Meat Fluid Flow, Vol.9, No.1, pp.62–68.

    Google Scholar 

  • Kim, J., Moin, P. & Moser, R.D. (1987) Turbulence statistics in fully-developed channel flow at low Reynolds number, J. Fluid Mech. Vol.177, pp.133–166.

    MATH  Google Scholar 

  • Kim, W.J. & Patel, V.C. (1994) Origin and decay of longitudinal vortices in developing flow in a curved rectangular duct. Trans. ASME, Journ. Fluids Engng., Vol.116, pp.45–52.

    Google Scholar 

  • Kitchens, C.W Jr., Gerber, N. & Sedney, R. (1975) Computational implications of the zone of dependence concept for three-dimensional boundary layers on a spinning body. USA Ballistic Res. Labs. Rept. No.1774. Aberdeen Proving Grounds, Maryland.

    Google Scholar 

  • Kitoh, O. (1991) Experimental study of turbulent swirling flow in a straight pipe. Journ. Fluid Mech., Vol. 225, pp.445–479.

    Google Scholar 

  • Kiya, M., Sasaki, K. & Arie, M. (1984) Bull. JSME, Vol.50, pp.967–973 (in Japanese)

    Google Scholar 

  • Klebanoff, P.S. (1954) Characteristics of turbulence in a boundary layer with zero pressure gradient. NASA TN 3178.

    Google Scholar 

  • Klebanoff, P.S. (1955) Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Rept.1247.

    Google Scholar 

  • Klein, D. (1977) Pressure measurements and flow visualization over roughness elements. PhD Thesis, Univ. Missouri, Columbia.

    Google Scholar 

  • Kline, S.J., Bardina, J.G. & Strawn, R.C. (1983) Correlation of the detachment of two-dimensional boundary layers, AIAA Journ., Vol.21, pp.68–73.

    Google Scholar 

  • Kline, S.J., Cantwell, B.J. & Lilley, G.M., Eds. (1981) Complex Turbulent Flows. 1980–1981AFOSR-HTTM-Stanford Conf. on Turbulent Flows. Stanford University.

    Google Scholar 

  • Knight, D.W. & Patel, H.S. (1985) Boundary shear in smooth rectangular ducts. JMydraulics Eng. ASCE, Vol.111, pp.29–47.

    Google Scholar 

  • Kobayashi, R., Maekawa, H. & Uchiyama, K. (1995) Turbulent flow accompanied by Taylor-Görtler vortices in a two-dimensional curved channel. Flow Meas. Instrum., Vol.6, pp.93–100.

    Google Scholar 

  • Kobayashi, M., Maekawa, H., Shimizu, Y. & Uchiyama, K. (1994) Experimental study on turbulent flow in two-dimensional curved channel (Space/time correlations and spectra of velocity fluctuations). JSME Internat. J. Ser.B, Vol.37, No.1, pp.38–46.

    Google Scholar 

  • Kobayashi, R. & Fujisawa, N. (1982) Turbulence characteristics of plane wall jets. Rep. Inst. High Speed Mech. Tohoku Univ., Vol.45, pp.95–114, Tohoku, Japan.

    Google Scholar 

  • Kobayashi, R. & Fujisawa, N. (1983a) Curvature effects on two-dimensional turbulent wall jets. Ing. Arch., Vol.53, pp.409–417.

    Google Scholar 

  • Kobayashi, R. & Fujisawa, N. (1983b) Curvature effects on two-dimensional turbulent wall jets along concave surfaces. Bull. JSME, Vol.26, No.222, pp.2074–2080.

    Google Scholar 

  • Kobayashi, R. & Fujisawa, N. (1983c) Turbulence measurements in wall jets along strongly concave surfaces. Acta Meccanica, Vol.47, pp.39–52.

    Google Scholar 

  • Kobayashi, R., Kohama, Y. & Takamadate, Ch. (1980) Spiral vortices in boundary layer transition régime on a rotating disk. Acta Meccanica, Vol.35, pp.71–82.

    MATH  Google Scholar 

  • Kobayashi, T. & Yoda, M. (1987) Modified K-e model for turbulent swirling flow in a straight pipe. JSME Int. J., Vol.30, No.259, pp.66–71.

    Google Scholar 

  • Kohama, Y. (1987) Crossflow instability in rotating disk boundary layer. AIAA Paper 87–1340.

    Google Scholar 

  • Koloseus, H.J. & Davidian, J. (1966) Free-surface instability correlations and roughness concentration effects on flow over hydrodynamically-rough surfaces. USGS Water Supply Paper 1592C.

    Google Scholar 

  • Koyama, H., Masuda, S., Ariga, I. & Watanabe, I. (1979) Stabilizing and destabilizing effects of Coriolis force on two-dimensional laminar and turbulent boundary layers, TransASME A, J. Eng. Power, Vol.101, pp.23–31.

    Google Scholar 

  • Kreith, F. (1955) The influence of curvature on heat transfer to incompressible fluids. Trans. ASME, J. Fluids Eng., Vol.33, No.11, pp.1247–1256.

    Google Scholar 

  • Kreplin, H.P.., Vollmers, H. & Meier, H.U. (1982) Measurements of the wall shear stress on a prolate spheroid. Z. Flugwiss. Weltraumforsch., Vol.6, Pt.4, pp.248–252.

    Google Scholar 

  • Kristoffersen, R. & Andersson, H.I. (1993) Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. J. Fluid Mech., Vol. 256, pp.163–197.

    MATH  Google Scholar 

  • Krogstad, P.(1991) Modifications of Van-Driest damping function to include the effects of surface roughness. AIAA Journ., Vol.29, No.6, pp.888–894.

    Google Scholar 

  • Krogstad, P.A. & Antonia, R.A. (1994) Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech., Vol. 277, pp.1–21 .

    Google Scholar 

  • Krogstad, P.A., Antonia, R.A. & Browne, L.W.B. (1992) Comparison between rough- and smooth-wall turbulent boundary layers. J. Fluid Mech., Vol.245, pp.599–617.

    Google Scholar 

  • Krogstad, P.A. & Skare, P.E. Influence of a strong adverse pressure gradient on the turbulent structure in a bounbary layer. Phys. Fluids, Vol.7, No.8, pp.2014–2024.

    Google Scholar 

  • Lakshminarayana, B. (1986) Turbulence modelling for complex shear flows. AIAA Journ., Vol.24, No.12, pp.1900–1917 .

    Google Scholar 

  • Lam, C.K.G. & Bremhorst, K.A. (1981) Modified form of the k-e model for predicting wall turbulence. Trans. ASME I, J. Fluids Eng., Vol.103, pp.456–460.

    Google Scholar 

  • Laufer, J. (1954) The structure of turbulence in fully developed pipe flow. NACA Report 1174.

    Google Scholar 

  • Launder, B.E., Priddin, CH. & Sharma, B.I. (1977) The calculation of turbulent boundary layers on spinning and curved surfaces, Trans. ASME, J. Fluids Eng., Vol.99, No.1, pp.237–239.

    Google Scholar 

  • Launder, B.L., Reece, G.J. & Rodi, W. (1975) Progress in the development of a Reynolds-stress closure, J. Fluid Mech., Vol.68, pp.537–566.

    MATH  Google Scholar 

  • Launder, B.E. & Sharma, B.I. (1974) Application of the energy dissipation model; of turbulence to the calculation of flow near a spinning disk. Letters in Heat Mass Transfer, Vol.1, pp. 131–138.

    Google Scholar 

  • Launder, B.E. & Shima, N. (1989) Second-moment closure for the near-wall sublayer: development and application. AIAA Journ., Vol.27, pp.537–566.

    Google Scholar 

  • Launder, B.E. & Tselepidakis, D.P.(1990) Contribution to the second-order modeling of sublayer turbulent transport. In Kline, S.J. & Agfan, N.H. (Eds.) Near-wall Turbulence : 1988 Zoran Zaric Memorial Conf. p.818. Hemisphere Publ. Company, New York.

    Google Scholar 

  • Launder, B.E. & Tselepidakis, D.P. (1994) Application of a new second-moment closure to turbulent channel flow rotating in orthogonal mode. Int. J. Heat Fluid flow, Vol.15, No.1, pp.2–10.

    Google Scholar 

  • Launder, B.E. & Ying, W.G. (1972) Secondary flows in ducts of square cross-section, J.Fluid Mech., Vol.54, Part 2, pp.289–295.

    Google Scholar 

  • Launder, B.E. & Ying, W.M. (1973) Prediction of flow an heat transfer in ducts of square crosssection, Heat &Fluid flow, Vol.3, pp.115. See also Proc. Inst. Mech. Eng. Vol.187, pp.455–461.

    Google Scholar 

  • Lawn, CJ. (1971) The determination of the rate of dissipation in turbulent pipe flow. J. Fluid Mech., Vol.48, Part 3, pp.477–505.

    Google Scholar 

  • Leschziner, M.A. & Rodi, W. (1981) Calculation of annular and twin parallel jets using various discretization schemes and turbulence-model variations. Trans. ASME, J. Fluids Eng., Vol.103, No.2, pp.352–360 .

    Google Scholar 

  • Leschziner, M.A. & Rodi, W. (1984) Computation of strongly swirling axisymmetric free jets. AIAA Journ., Vol.22, No.11, pp.1742–1747.

    MATH  Google Scholar 

  • Leutheusser, H.J. (1963) Turbulent flow in rectangular ducts. J. Hydraul. Div. ASCE, Vol. HY3, pp. 1–19 .

    Google Scholar 

  • Li, H. & Tomita, Y. (1994) Characteristics of swirling flow in a circular pipe. Trans. ASME, Journ. Fluids Eng., Vol.116, pp.370–373.

    Google Scholar 

  • Lian, Q.X. (1991) A visual study of the coherent structure of turbulent boundary layer in flow with adverse pressure gradient. J. Fluid Mech., Vol.215, pp.101–124.

    Google Scholar 

  • Liebeck, R.H. (1978) Design of subsonic airfoils for high lift, Jourrn. Aircraft, Vol.15, pp.547–561.

    Google Scholar 

  • Lighthill, J. (1963) Boundary layer theory, In Rosenhead, L. (Ed.) Theory of Laminar Flows, Oxford at the Clarendon Press.

    Google Scholar 

  • Ligrani, P.M. & Moffat, R.J. (1986) Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech., Vol.162, pp.69–98.

    MathSciNet  Google Scholar 

  • Ligrani, P.M., Moffat, R J. & Kays, W.M. (1983) Artificially thickened turbulent boundary layers for studying heat transfer and skin friction on rough surfaces. Trans. ASME I, Journ. Fluids Eng., Vol.105, Pt.2, pp. 146–153.

    Google Scholar 

  • Lilley, D.G. (1977a) Swirl flows in combustion: A review, AIAA Journ., Vol.15, No.8, pp.1063–1078 .

    Google Scholar 

  • Lilley, D.G. (1977b) Swirling flows in combustion. Progr. Energy Comb. Sci., Vol.3.

    Google Scholar 

  • Lilley, D.G. (1977c) Nonisotropic turbulence in swirling flows. Acta Astronáutica, Vol.4.

    Google Scholar 

  • Lin, CK., Miau, J.J., Chen, Q.S., Chou, J.H., Pan, D. & Lin, S.F. (1993) Flow visualization in a circular-to-rectangular transition duct. Int. J. Turbojet Eng., Vol.10, pp.61–74.

    Google Scholar 

  • Littell, H.S. & Eaton, J.K. (1994) Turbulence characteristics of the boundary layer on a rotating disk. J. Fluid Mech., Vol.266, pp. 175–207.

    Google Scholar 

  • Liu, CK., Kline, S.J. & Johnston, J.P. (1966) An experimental study of turbulent boundary layers on rough walls. Report MD-15. Thermosci. Div., Deptmt. Mech. Engng., Stanford Univ., CA.

    Google Scholar 

  • Löfdahl, L., Truong, T.V. & Bruns, L.M. (1995) Measurements of turbulent quantities in a complex three-dimensional boundary layer flow. Exp. Fluids, Vol.18, pp.335–342.

    Google Scholar 

  • Lohmann, R.P. (1976) The response of developed turbulent boundary layer to local transverse surface motion. Trans. ASME, J. Fluids Eng., Vol.98, No.3, pp.354–361.

    Google Scholar 

  • Lueptow, R.M. & Haritonidis, J.H. (1987) The structure of the turbulent boundary layer on a cylinder in axial flow. Phys. Fluids, Vol.30, No.10, pp.2993–3005.

    Google Scholar 

  • Lueptow, R.M. & Leehey, P. (1986) The eddy viscosity in a turbulent boundary layer on a cylinder. Phys. Fluids, Vol.29, No.12, pp.4232–4233.

    Google Scholar 

  • Lueptow, R.M., Leehey, P. & Stellinger. (1985) The thick turbulent boundary layer on a cylinder: Mean and fluctuating velocities. Phys. Fluids, Vol.28, No.12, pp.3495–3505.

    Google Scholar 

  • Luxton, R.E., Bull, M.K. & Rajagopalan, S. (1984) The thick turbulent boundary layer on a long fine cylinder in axial flow. Aeron. Journ., Vol.88, No.875, pp.186–199.

    Google Scholar 

  • Maciejewski, P.K. & Moffat, RJ. (1992) Heat Transfer with very high free-stream turbulence: Part 1, Part II-analysis of results, Trans. ASME, J. Fluids Engng, Vol. 114, pp.827–833 ; pp.834–839.

    Google Scholar 

  • MacMullin, R., Elrod, W. & Rivir, R. (1989) Free-stream turbulence from a circular wall jet on a flat plate heat transfer and boundary layer flow. Trans. ASME, Journ. Turbomachinery, Vol.111, pp.78–86.

    Google Scholar 

  • Madavan, N.K., Deutsch, S. & Merkle, C.L. (1985) Measurements of local skin friction in a microbubble-modified turbulent boundary layer. J. Fluid Mech., Vol. 156, pp.237–256.

    Google Scholar 

  • Madabhushi, R.K. & Vanka, S.P. (1991) Large-eddy simulation of turbulence-driven secondary flow in a square duct. Phys. Fluids, Vol. A3, No.11, pp.2734–2745.

    Google Scholar 

  • Maitani, T. (1979) A comparison of turbulence statistics in the surface layer over plant canopies with those over several other surfaces. Boundary Layer Met., Vol.17, pp.213–222.

    Google Scholar 

  • Malecki, P. (1994) Etude de modèles de turbulence pour les couches limites tridimensionnelles. PhD Thesis, ENSAE, Toulouse.

    Google Scholar 

  • Marchman, J.F. (1987) Journ. Aircraft, Vol.24, pp.107.

    Google Scholar 

  • Marshall, J.K. (1971) Drag measurements in roughness arrays of varying density and distribution. Agric. Meteorol., Vol.8, pp.262–292.

    Google Scholar 

  • Mayer, E. (1939) Effect of transition in crosssectional shape on the developmenty of the velocity and pressure distribution of the tyurbulent flow in pipe. NACA TM 903.

    Google Scholar 

  • Mayle, R.E., Blair, M.F. & Kopper, F.C (1979) Turbulent boundary layer heat transfer on curved surfaces. Trans. ASME C: Journ. Heat Transfer, Vol.101, pp.521.

    Google Scholar 

  • McDonald, H. (1968) The effect of pressure gradient on the law of the wall in turbulent flow. J. Fluid Mech., Vol. 35, pp.311–336.

    Google Scholar 

  • McDonald, H. & Kreskovsky, J.P. (1974) Effect of free-stream turbulence on the turbulent boundary layer. Int. J. Heat Mass Transfer, Vol.17, No.7, pp.705–716.

    Google Scholar 

  • McGuirk, J.J. & Rodi, W. (1977) The calculation of three-dimensional turbulent free jets. Proc. 1st. Turbulent Shear Flows, Durst, F., Launder, B.E., Schmidt, F.W. & Whitelaw, J. (Eds.), pp.71–83. Springer verlag.

    Google Scholar 

  • Mehta, R.D. & Bradshaw, P. (1988) Longitudinal vortices imbedded in turbulent boundary layers, part 2: vortex pair with ‘common flow’ upwards. J. Fluid Mech., Vol. 188, pp.529–546.

    Google Scholar 

  • Meier, H.U. & Kreplin, H.P. (1980a) Experimental investigation of the boundary layer transition and separation on a body of révolution. Z. Flugwiss. Weltraumforsch., Vol.4, No.2, pp.65–71.

    Google Scholar 

  • Meier, H.U. & Kreplin, H.P. (1980b) Influence of free-stream turbulence on boundary-layer development. AIAA Journ., Vol.17, pp.11–15.

    Google Scholar 

  • Melling, A. & Whitelaw, J.H. (1976) Turbulent flow in a rectangular duct, J. Fluid Mech., Vol.78, Part 2, pp.289–315.

    Google Scholar 

  • Mellor, G.L. (1966) The effect of pressure gradients on the flow near a smooth wall, J. Fluid Mech., Vol.24, Part 2, pp.255–274.

    Google Scholar 

  • Mellor, G.L. (1972) The large Reynolds-number asymptotic theory of turbulent boundary layers, int. J. Eng. Sci., Vol.10, pp.851–873.

    MathSciNet  Google Scholar 

  • Mellor, G.L. & Gibson, D.M (1966). Equilibrium turbulent boundary layers, Journ. Fluid Mech., Vol.24, Part 2, pp.225–253.

    Google Scholar 

  • Menna, J.D. & Pierce, FJ. (1988) The mean flow structure around and within a turbulent junction vortex. Part I. The upstream and surrounding three-dimensional boundary layer. Trans. ASME, J. Fluids Eng. Vol.110, No.4, pp.406–414.

    Google Scholar 

  • Menter, F. (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journ., Vol.32, No.8, pp.1598–1605.

    Google Scholar 

  • Meroney, R.N. & Bradshaw, P. (1975) Turbulent boundary layer growth over a longitudinally curved surface, AIAA Journ., Vol.13, No.11, pp.1448–1553.

    Google Scholar 

  • Miau, J.J., Lin, T.S., Chou, J.H., Lin, S.A. & Lin, C.K. (1990) Flow distorsion in a circular-to-rectangular transition duct. AIAA Journ., Vol.28, pp. 1447–1456.

    Google Scholar 

  • Miau, J.J., Lin, E. C. ,Chen, Q. S., Chou, J. H., Pan, D. & Lin, CK. (1996) Swirling flows in circular-to-rectangular transition duct. Exp. Fluids, Vol.20, pp.401–409.

    Google Scholar 

  • Mitchell, J.E. & Hanratty, T.J. (1966) A study of turbulence at a wall using an electrochemical wall shear-stress meter. J. Fluid Mech., Vol.26, pp.199–221.

    Google Scholar 

  • Miyake, Y. & Kajishima, T. (1986a) Numerical simulation of the effect of Coriolis force on the structure of turbulence. Global effects. Bull. JSME, Vol.29, pp.3341–3346.

    Google Scholar 

  • Miyake, Y. & Kajishima, T. (1986b) Numerical simulation of the effect of Coriolis force on the structure of turbulence. Structure of turbulence. Bull. JSME, Vol.29, pp.3347–3351.

    Google Scholar 

  • Moin, P. & Kim, J. (1982) Numerical investigation of turbulent channel flow, J. Fluid Mech. Vol.118, pp.341–377.

    MATH  Google Scholar 

  • Moon, I.M. (1964) Effect of Coriolis forces on the turbulent boundary layer in rotating machines. MIT Gas Turbine Lab. Report, No.74.

    Google Scholar 

  • Moore, W.L. (1951) An experimental investigation of boundary layer development along a rough surface. PhD Thesis, State Univ. Iowa., IO.

    Google Scholar 

  • Moore, J. (1967) Effect of Coriolis on turbulent flow in rotating rectangular channels. MIT Gas Turbine Lab. Report, No.89.

    Google Scholar 

  • Moretti, P.M. & Kays, W.M. (1965) Heat transfer to a turbulent boundary layer with varying free stream velocity and varying surface temperature. Int. J. Heat Mass Transfer, Vol.8, pp.1187–1202.

    Google Scholar 

  • Morse, A.P. (1988) Numerical prediction of turbulent flow in rotating cavities. J. Turbomachinery, Vol.110, pp.202–215.

    Google Scholar 

  • Morse, A.P. (1991a) Assessment of laminar-turbulent transition in closed disc geometries. J. Turbomachinery, Vol.113, pp.131–138.

    Google Scholar 

  • Morse, A.P. (1991b) Application of a low Reynolds number K-e turbulence model to high-speed rotating cavity flows. J. Turbomachinery, Vol.113, pp.98–105.

    Google Scholar 

  • Moser, R.D. & Moin, P. (1987) The effects of curvature in wall-bounded turbulent flows, J. Fluid Mech., Vol.175, pp.479–510.

    Google Scholar 

  • Moses, H.L. (1964) The behavior of turbulent boundary layers in adverse pressure gradients. PhD Thesis, MIT Gas Turbine Lab. Report 73.

    Google Scholar 

  • Muck, K.C. (1982) Turbulent boundary layers on mildly curved surfaces. PhD Thesis, Imperial College, London, England.

    Google Scholar 

  • Muck, K.C., Hoffman, P.H. & Bradshaw, P. (1985) The effect of convex curvature in wall bounded turbulent flows. J. Fluid Mech., Vol.161, pp.347–369.

    Google Scholar 

  • Mulhearn, PJ. (1978) Turbulent flow over a periodic rough surface. Phys. Fluids, Vol.21, No.7, pp.1113–1115

    Google Scholar 

  • Mulhearn, P.J. & Finnigan, J J. (1978) Turbulent flow over a very rough, random Surface. Boundary Layer Met., Vol.15, pp.109–132.

    Google Scholar 

  • Müller, U.R. (1982) Measurement of the Reynolds stresses and the mean-flow field in a three-dimensional pressure-driven boundary layer. J. Fluid Mech., Vol.119, pp.121–153.

    Google Scholar 

  • Murakami, M. & Kikuyama, K. (1980) Flow in axially rotating pipes. Trans. ASME, J. Fluids Eng., Vol.102, No.1, pp. 97–103.

    Google Scholar 

  • Murlis, J., Tsai, H.M. & Bradshaw, P. (1982) The structure of turbulent boundary layers at low Reynolds numbers. J. Fluid Mech., Vol.122, pp. 13–56.

    Google Scholar 

  • Murphy, H.D., Chambers, F.W. & Mc Eligot, D.M. (1983) Laterally converging flow. Part 2: Temporal wall shear stress, J. Fluid Mech., Vol.127, pp.403–428.

    Google Scholar 

  • Myong, H.K. (1991) Numerical investigation of fully developed turbulent fluid flow and heat transfer in a square duct. Int. J. Heat Fluid Flow, Vol.12, No.4, pp.344–352.

    Google Scholar 

  • Myong, H.K. (1993) A Numerical study on the generation of turbulence-driven secondary flow in a square duct. Trans. ASME, J. Fluids Eng., Vol.115, No.1, pp.172–175.

    Google Scholar 

  • Myong, H.K. & Kasagi, N. (1990a) Prediction of anisotropy of the near-wall turbulence with an anisotropic low-Reynolds-number K-e turbulence model. Trans. ASME, J. Fluids Eng., Vol.112, pp.521–524.

    Google Scholar 

  • Myong, H.K. & Kasagi, N. (1990b) A new approach to the improvement of K-ε turbulence model for wall-bounded shear flows. JSME Int. J. Ser.II, Vol.33, No.1, pp.63–72.

    Google Scholar 

  • Nagano, Y. & Shimada, M. (1995) Rigourous modeling of dissipation-rate equation using direct simulations. JSME International, Ser.B, Vol.58, p.51.

    Google Scholar 

  • Nagano, Y. & Tagawa, M. (1990) An improved K-e model for boundary layer flows. Trans. ASME, J. Fluids Eng., Vol.112, No.1, pp.33–39.

    Google Scholar 

  • Nagano, Y., Tagawa, M. & Tsuji, T. (1991) Effect of adverse pressure gradients on mean flows and turbulence statistics in a boundary layer. Proc. 8th. Turbulent Shear Flow Symp., Tech. Univ. Munich, pp.2–3–1, 6.

    Google Scholar 

  • Nagano, Y., Tsuji, T. & Houra, T. (1997) Structure of turbulent boundary layer subjected to adverse pressure gradient. Proc. 11th. Turb. Shear Flows, Grenoble, Vol.3, pp.33–7–33–12.

    Google Scholar 

  • Naimi, M. & Gessner, F.B. (1995) A calculation method for developing turbulent flow in rectangular ducts of arbitrary aspect ratio. Trans. ASME, Journ. Fluids Eng., Vol.117, pp.249–258.

    Google Scholar 

  • Nakamura, Y. & Ohya, Y. (1983) The effects of turbulence on the mean flow past square rods. J. Fluid Mech., Vol.137, pp.333–347.

    Google Scholar 

  • Nakamura, Y. & Ohya, Y. (1984) The effects of turbulence on the mean flow past two-dimensional rectangular cylinders. J. Fluid Mech., Vol. 149, pp.255–273.

    Google Scholar 

  • Nakamura, Y. & Ozono, S. (1987) The effect of turbulence on a separated and reattaching flow. J. Fluid Mech., Vol. 178, pp.477–490.

    Google Scholar 

  • Nakayama, A. & Chow, W.L. & Sharma, D. (1983) Calculation of fully developed turbulent flows in duct of arbitrary cross-section. J. Fluid Mech., Vol.128, pp.199–217.

    MATH  Google Scholar 

  • Nakayama, A. & Koyama, H. (1984) A wall law for turbulent boundary layers in adverse pressure gradients. AIAA Journ., Vol. 22, No.10, pp.1386–1389.

    MATH  Google Scholar 

  • Nallasamy, M. (1987) Computation of confined turbulent coaxial jet flows. J. Propulsion, Vol.3, No.3, pp.263–268.

    Google Scholar 

  • Naot, D. & Rodi, W. (1982) Numerical simulations of secondary currents in channel flow, J. Hydraulics Div. ASCE, Vol.108 (HY8) pp.948–968.

    Google Scholar 

  • Naot, D., Shavit, A. & Wolfshtein, M. (1974) Numerical calculation of Reynolds stresses in a square duct with secondary flow, Wärme- u Stoffübertragung, Vol.7, No.3, pp.151–161.

    Google Scholar 

  • Narasimha, R. & Sreenivasan, K.R. (1973) On relaminarization. Adv. Appl. Mechanics, Vol.13.

    Google Scholar 

  • Nash, J.F. (1965) Turbulent boundary layer behavior and the auxiliary equation. AGARDograph 97, pp.275–279.

    Google Scholar 

  • Nash, J.F. & Patel, V.C. (1972) Three-Dimensional boundary layers. SBC Technical Books

    Google Scholar 

  • Nejad, A.S., Vanka, S.P., Favarolo, S.C., Saminy, M. & Langenfeld, C. (1990) Application of laser velocimetry for characterization of confined swirling flow. J. Engineering Gas Turbines Power, Vol.111, pp.37–45.

    Google Scholar 

  • Neves, J.C., Moin, P. & Moser, R.D. (1994) Effects of convex transverse curvature on wall-bounded turbulence. Part 1. The velocity and vorticity. J. Fluid Mech., Vol. 272, pp.349–381.

    MATH  Google Scholar 

  • Neves, J.C. & Moin, P. (1994) Effects of convex transverse curvature on wall-bounded turbulence. Part 2. The pressure fluctuations. J. Fluid Mech., Vol. 272, pp.383–406.

    MATH  Google Scholar 

  • Nezu, I., Nakagawa, H. & Tominaga, A. (1985) Secondary currents in a straight channel flow and the relation to its aspect ratio. In Bradbury, LJ.S., Durst, F., Launder, B.E., Schmidt, F.W. & Whitelaw, J.H. (Eds.) Turbulent shear flow, Vol.4, pp.246–260. Springer Verlag, Heidelberg.

    Google Scholar 

  • Niederschulte, M.A., Adrian, R.J. & Hanratty, TJ. (1990) Measurements of a turbulent flow in a channel with particle image velocimetry. Exp. Fluids, Vol.9, pp.222–230.

    Google Scholar 

  • Nikjooy, M. & Mongia, H.C. (1991) A second-order modeling study of confined swirling flow. Int. J. Heat Fluid Flow, Vol.12, No.1, pp.12–19.

    Google Scholar 

  • Nikjooy, M., Mongia, H.C. Samuelsen, G.S. & McDonnell, V.G. (1989) A numerical and experimental study of confined swirling jets. AIAA Paper AIAA-89–2898.

    Google Scholar 

  • Nikjooy, M., So, R.M.C. & Hwang, B.C. (1985) A comparison of three algebraic stress closures for combustor flow calculations. ASME Paper 85-WA/FE-3.

    Google Scholar 

  • Nishino, K. & Kasagi, N. (1989) Turbulence statistics measurements in a two-dimensional channel flow using a three-dimensional particle tracking velocimeter. Proc. 7th. Symp. Turbulent Shear Flows, Stanford, p.22.1.1.

    Google Scholar 

  • Nisizima, S. (1987) Numerical study of turbulent channel flows using an improved anisotropic k-e model. Trans. JSME, Ser.B, Vol.53, No.495, pp.3166–3172.

    Google Scholar 

  • Northrop, A. & Owen, J.M. (1988) Heat transfer measurements in rotating-disc systems. Part 2: The rotating cavity with a radial outflow of cooling air. Int. J. Heat Fluid Flow, Vol.9, No.1, pp.27–36.

    Google Scholar 

  • Ölçmen, S.M. & Simpson, R.L. (1989) Some near-wall features of three-dimensional boundary layers. In Num. Physical Aspects for Aerodynamic Flows, Cebeci, T. (Ed.).

    Google Scholar 

  • Ölcmen, S. & Simpson, R.L. (1992) Perspective: on the near-wall similarity of three-dimensional turbulent boundary layers. Trans. ASME, J. Fluids Eng., Vol. 114, pp.487–495.

    Google Scholar 

  • Ölçmen, S.M. & Simpson, R.L. (1995) An experimental study of a three-dimensional pressure-driven turbulent boundary layer. J. Fluid Mech., Vol.290, pp.225–262.

    Google Scholar 

  • Osaka, H., Nishino, T., Oyama, S. & Kageyama, Y. (1982) Self preservation for a turbulent boundary layer over a d-type surface. Memoirs Faculty Engng. Yamaguchi Univ., Vol.33, pp.9–16.

    Google Scholar 

  • Owen, J.M. (1988) Air-cooled gas-turbine discs: a review of recent research. Int. J. Heat Fluid Flow, Vol.9, No.4, pp.354–365.

    MathSciNet  Google Scholar 

  • Owen, J.M., Pincombe, J.R. & Rogers, R.H. (1985) Source-sink flow inside a rotating cylindrical cavity. Journ. Fluid Mech., Vol.155, pp.233–266.

    Google Scholar 

  • Owen, J.M. & Rogers, R.H. (1989) Flow and Heat Transfer in Rotating Disc Systems. Vol.1: Rotor Stator Systems, Research Studies Press, Taunton (John Wiley Inc., New York).

    Google Scholar 

  • Owen, J.M. & Pincombe, J.R. (1980) Velocity measurements inside a rotating cavity with a radial outflow of fluid. J. Fluid Mech., Vol. 99, p.111.

    Google Scholar 

  • Panchapakesan, N.R., Nickels, T.B., Joubert, P.N. & Smits, A.J. (1997) Lateral straining of turbulent boundary layers. Part 2. Streamline convergence. J. Fluid Mech., Vol.349, pp.1–30.

    Google Scholar 

  • Panovsky, H.A. & Dutton, J.A. (1984) Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley.

    Google Scholar 

  • Park, S.W. & Chung, M.K. (1989) Curvature-dependent two-equation model for prediction of two-dimensional recirculating flows. AIAA Journ., Vol. 27, No.3, pp.340–344.

    Google Scholar 

  • Patel, V.C. (1965) Calibration of the Preston tube and limitations on its use in pressure gradients, J. Fluid Mech., Vol.23, Part 1, pp. 185–208.

    Google Scholar 

  • Patel, V.C. (1973) A unified view of the law of the wall using mixing-length theory, Aero. Quart., Vol.24, Pt.1, pp.55–70.

    Google Scholar 

  • Patel, V.C. & Baek, J.H. (1987a) Boundary layers in planes of symmetry, Part I: experiments in turbulent flows. AIAA Journ., Vol.25, pp.550–559.

    Google Scholar 

  • Patel, V.C. & Baek, J.H. (1987b) Boundary layers in planes of symmetry, Part II: calculation of laminar and turbulent flows. AIAA Journ., Vol.25, pp.812–824.

    Google Scholar 

  • Patel, V.C. & Head, M.R. (1968) Reversion of turbulent to laminar flow, J. Fluid Mech., Vol.34, pt.2, pp.371–392.

    Google Scholar 

  • Patel, V.C. & Lee, Y.T. (1977) Thick axisymmetric turbulent boundary layer and near wake of a low-drag body of revolution. IIHR Report No.210, the Univ. Iowa.

    Google Scholar 

  • Patel, V.C. & Sotiropoulos, F. (1997) Longitudinal curvature effects in turbulent boundary layers. Progr. Aerosp. Sci., Vol.33, pp. 1–70.

    Google Scholar 

  • Patrick, W.P. & McCormick, D.C. (1988) Laser velocimeter and total pressure measurements in circular-to-rectangular transition ducts. NASA CR-182286

    Google Scholar 

  • Pauley, W.R. & Eaton, J.K. (1988) Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer. AIAA Journ., Vol.26, pp.816–823.

    Google Scholar 

  • Pauley, W.R., Eaton, J.K. & Cutler, A.D. (1993) Diverging boundary layers with zero streamwise pressure gradient and no wall curvature. AIAA Journ., Vol.31, No.12, pp.2212–2219.

    Google Scholar 

  • Perkins, H.J. (1970) The formation of streamwise vorticity in turbulent flow, J. Fluid Mech., Vol.44, pp.721–740.

    MATH  Google Scholar 

  • Perry, A.E. , Bell, J.B. & Joubert, P.N. (1966) Velocity and temperature profiles in adverse pressure gradient turbulent boundary layers. J. Fluid Mech., Vol.25, Part 2, pp.299–320.

    Google Scholar 

  • Perry, A.E., Henbest, S. & Chong, M.S. (1986) A theoretical and experimental study of wall turbulence. J. Fluid Mech., Vol.165, pp.163–199.

    MathSciNet  MATH  Google Scholar 

  • Perry, A.E. & Joubert, P.N. (1963) Rough-wall boundary layers in adverse pressure gradients. J. Fluid Mech., Vol.17, pp.193–211.

    MATH  Google Scholar 

  • Perry, A.E., Li, J.D. (1990) Experimental support for the attached-eddy hypothesis in zero-pressure gradient boundary layers. J. Fluid Mech., Vol. 218, pp.405–438.

    Google Scholar 

  • Perry, A.E., Lim, K.L. & Hembest, S.M. (1987) An experimental study of the turbulence structure on smooth- and rough-wall boundary layers. J. Fluid Mech., Vol. 177, pp.437–466.

    Google Scholar 

  • Perry, A.E., Marusic, I. & Li, J.D. (1993) Recent ideas and development in the modelling of wall turbulence. In So, R.M.C., Speziale, C.G. & Launder, B.E. (Eds.) Near-Wall Turbulent Flows, pp.1029–1030. Elsevier.

    Google Scholar 

  • Perry, A. & Schofield, W.H. (1973) Mean velocity and shear stress distributions in turbulent boundary layers, Phys. Fluids, Vol.16, No.12, pp.2068–2074.

    Google Scholar 

  • Perry, A.E., Schofield, W.H. & Joubert, P.N. (1969) Rough wall turbulent boundary layers. J. Fluid Mech., Vol.37, Pt.2, pp.383–413.

    Google Scholar 

  • Phadke, U.P. & Owen, J.M. (1988) Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems. Part 1: The behavior of simple-shrouded rotating-disk systems in quiescent environment. Int. J. Heat Fluid Flow, Vol.9, No.2, pp.98–105.

    Google Scholar 

  • Phillips, O.M. (1955) The irrotational motion outside a free turbulent boundary. Proc. Cambridge Phil. Soc., Vol.51, pp.220–229.

    MATH  Google Scholar 

  • Pierce, F.J. & Duerson, S.H. (1975) Reynolds stress tensors in an end wall three-dimensional channel boundary layer. Trans. ASME, Journ. Fluids Eng., Vol.97, pp.61–67.

    Google Scholar 

  • Pierce, F.J. & Ezekewe, C.I. (1976) Measured uw stress gradients in a three-dimensional turbulent boundary layer. Trans. ASME, Journ. Fluids Eng., Vol.98, No.4, pp.768–770.

    Google Scholar 

  • Pierce, F.J. & Harsh, M.D. (1988) The mean flow structure around and within a turbulent junction vortex. Part II. The separated and junction vortex flow. Trans. ASME, J. Fluids Eng., Vol.110, No.4, pp.415–423.

    Google Scholar 

  • Pierce, F.J., McAllister, J.E. & Tennant, M.H. (1983a) A review of near-wall similarity models in three-dimensional turbulent boundary layers. Trans.ASME, J. Fluids Eng. Ser.I, Vol.105, pp.251–256.

    Google Scholar 

  • Pierce, F.J., McAllister, J.E. & Tennant, M.H. (1983b) Near-wall similarity in a pressure-driven three-dimensional turbulent boundary layer. Trans ASME, J. Fluids Eng. SerJ, Vol.105, pp.257–262.

    Google Scholar 

  • Pierce, F.J. & Shin, J. (1992) The development of a turbulent junction vortex system. Trans. ASME, J. Fluids Eng., Vol.114, pp.559–565.

    Google Scholar 

  • Pierce, F.J. & Tree, I.K. (1990) The mean flow structure in the symmetry plane of a tubulent junction vortex. Trans. ASME, J. Fluids Eng., Vol.112, pp.16–22.

    Google Scholar 

  • Pimenta, M.M., Moffat, R J. & Kays, W.M.(1975) The turbulent boundary layer: an experimental study of the transport of momentum and heat with the effect of roughness. Report HMT-21, Thermosci. Div., Deptmt. Mech. Engng. Stanford Univ., CA.

    Google Scholar 

  • Pompeo, L., Bettelini, M.S.G. & Thomann, H. (1993) Laterally strained turbulent boundary layers near a plane of symmetry. J. Fluid Mech., Vol. 257, pp.507–532.

    Google Scholar 

  • Popovich, A.T. & Hummel, R.L. (1967) Experimental study of the viscous sublayer in turbulent pipe flow, AJChE Journ., Vol.13, No 5, pp.854–860.

    Google Scholar 

  • Pourahmadi, F. & Humphrey, J.A.C. (1983) Prediction of curved channel flow with an extended k-e model of turbulence. AIAA Journ., Vol. 21, No.10, pp.1365–1373.

    MATH  Google Scholar 

  • Prabhu, A., Narasimha, R. & Rao, B.N.S. (1983) Structure and mean flow similarity in curved turbulent boundary layers. In Dumas, R. & Fulachier, L. (Eds.) Structure of Complex Turbulent Shear Flows, pp.100–105. Springer Verlag, Berlin.

    Google Scholar 

  • Prabhu, A. & Rao, B.N.S. (1985) Turbulent boundary layers in a longitudinally curved stream. Depmt. Aero. Eng. Rep. 81-FM-10, Indian Inst. Sci. Bangalore, India; see also AIAA 81–1193.

    Google Scholar 

  • Prahlad, T.S. (1973) Mean velocity profiles in three-dimensional incompressible turbulent boundary layers. AIAA Journ., Vol.11, pp.359–365.

    Google Scholar 

  • Prandtl, L. (1926) Über die ausgebildete Turbulenz. Verh. 2nd. Intl. Kong. Für Tech. Mech. Zürich (english Translation, NACA TM 435, p.62)

    Google Scholar 

  • Prandtl, L. & Schlichting, H. (1933) Das Wiederstandgesetz rauher Platten. Werft Reederer Hafen, Vol.15, pp.1–4.

    Google Scholar 

  • Raetz, G.S. (1957) A method of calculating three-dimensional laminar boundary layers of steady compressible flows. Northrop Aircraft Inc. Rep. No. NAI-58–73.

    Google Scholar 

  • Raghunathan, S. & McAdam, R.J.W. (1983) Free-stream turbulence effects on attached subsonic turbulent boundary layers. AIAA Journ., Vol.21, No.4, pp.503–508.

    Google Scholar 

  • Rai, M.M. & Moin, P. (1991) Direct simulation of turbulent flow using finite difference schemes. J. Comp. Phys., Vol.96, p.15.

    MATH  Google Scholar 

  • Ramaprian, B.R. & Shivaprasad, B.G. (1977) Mean flow measurements in boundary layers along mildly curved surfaces, AIAA Journ., Vol.15, No.2, pp.189–196.

    Google Scholar 

  • Ramaprian, B.R. & Shivaprasad, B.G. (1978) The structure of turbulent boundary layers along mildly curved surfaces. J. Fluid Mech., Vol.85, Part 2, pp.273–303.

    Google Scholar 

  • Rao, G.N.V. (1967) The law of the wall in a thick axisymmetric turbulent boundary layer. Trans. ASME, Journ. Basic Eng. Ser.D, Vol.89, pp.237–238.

    Google Scholar 

  • Rao, G.N.V. & Keshavan, N.R. (1972) Axisymmetric turbulent boundary layers in zero pressures gradients, Trans. ASME, J. Appl. Mech., Vol.39E, No.1, pp.25–32.

    Google Scholar 

  • Raupach, M.R. (1981) Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech., Vol.108, pp.363–382.

    MATH  Google Scholar 

  • Raupach, M.R., Antonia, R.A. & Rajagopalan, S. (1991) Rough-wall turbulent boundary layers. Appl. Mech. Rev., Vol.44, pp.1–25.

    Google Scholar 

  • Raupach, M.R., Coppin, P.A., & Legg, B.J. (1986) Experiments on scalar dispersion within a plant canopy. Part 1: The turbulence structure. Boundary Layer Met., Vol.35, pp.21–52.

    Google Scholar 

  • Raupach, M.R., Thorn, A.S. & Edwards, I. (1980) A wind tunnel study of turbulent flow close to regularly arrayed rough surfaces. Boundary Layer Met., Vol.18, pp.373–397.

    Google Scholar 

  • Rhode, D.L., Lilley, D.C. & McLaughlin, D.K. (1982) On the prediction of turbulent swirling flowfields found in axisymmetric combustor geometries. ASMEJ. Fluids Eng., Vol.104, pp.378–384.

    Google Scholar 

  • Ribeiro, M.M. & Whitelaw, J.H. (1980a) The structure of turbulent jets, Proc. Roy. Soc. London, Vol.A370, pp.281–301.

    Google Scholar 

  • Ribeiro, M.M. & Whitelaw, J.H. (1980b) Coaxial jets with and without swirl, J. Fluid Mech., Vol.96, Pt.4, pp.769–795.

    Google Scholar 

  • Richmond, R.L. (1957) Experimental investigation of thick, axially symmetric layers on cylinders at subsonic and hypersonic speeds. Hypersonic Research Proj. Memo. 39. Calif. Inst Tech. Pasadena, CA.

    Google Scholar 

  • Richmond, M.C. & Patel, V.C. (1991) Convex and concave surface curvature effects in wall-bounded turbulent flows. AIAA Journ., Vol.29, No.6, pp.895–902.

    Google Scholar 

  • Roach, P.E. & Brierley, D.H. (1989) The influence of a turbulent freestream on zero pressure gradient transitional boundary layer development including the condition test cases T3A and T3B, In Numerical Simulation of UnsteadyFlows and Transition to Turbulence, Pironneau, O. et Al. (Eds.), Cambridge Univ. Press.

    Google Scholar 

  • Roback, R. & Johnson, B.V. (1983) Mass and momentum turbulent transport experiments with confined swirling co-axial jets. NASA CR-168252.

    Google Scholar 

  • Robertson, J.M. & Holt, C.F. (1972) Stream turbulence effects on turbulent boundary layer. J. Hydraulics Div.Proc. ASCE, Vol.98, No.H76, p.1095.

    Google Scholar 

  • Rodi, W. (1972) The prediction of free turbulent boundary layers by use of a two-equation model of turbulence. PhDThesis, Univ. Karlsruhe, Germany.

    Google Scholar 

  • Rodi, W. & Scheuerer, G. (1983) Calculation of curved shear layers with two-equation turbulence models. Phys.Fluids, Vol.26, No.6, pp.547–554.

    Google Scholar 

  • Rodi, W. & Scheuerer, G. (1985) Calculation of turbulent boundary layers under the effect of free-stream turbulence. Proc. 5th. Symp. Turbulent Shear Flows, pp.2.19–26, Cornell Univ.

    Google Scholar 

  • Rodi, W. & Scheuerer, G. (1986) Scrutinizing the k-e model under adverse pressure gradient conditions. Trans.ASME I, J. Fluids Eng., Vol.108, pp.174–179.

    Google Scholar 

  • Rogers, B.K. & Head, M.R. (1969) Measurements of three-dimensional boundary layers. J. Roy. Aeron. Soc., Vol.73, pp.796–798.

    Google Scholar 

  • Rotta, J.C. (1950) Das in Wandnähe gültige Geschwindigkeitsgesetz turbulenter Strömungen. Ing. Arch., Vol.18, pp.277–280.

    MathSciNet  MATH  Google Scholar 

  • Rotta, J.C. (1962) Universal aspects of the mechanism of turbulent boundary layer flow, Prog. Aero. Sci., Vol.2, pp.22–219.

    Google Scholar 

  • Sabot, J. & Comte-Bellot, G. (1976) Intermittency of coherent structures in the core region of fully developed turbulent pipe flow. J. Fluid Mech., Vol.74, part 4, pp.767–796.

    Google Scholar 

  • Sabot, J., Saleh, I. & Comte-Bellot, G. (1977) Effect of roughness on the intermittent maintenance of Reynolds shear stress in pipe flow. Phys. Fluids, Vol.20, No.10, Part 2, S150–155.

    Google Scholar 

  • Saddoughi, S.G. & Joubert, P.N. (1991) Lateral straining of turbulent boundary layers. Part 1. Streamline divergence. J. Fluid Mech., Vol.229, pp. 173–204 .

    Google Scholar 

  • Saddoughi, S.G., Hafez, S. & Joubert, P.N. (1991) Some preliminary results for the effects of streamline convergence on a fully developed turbulent boundary layer. Proc.2nd. Osaka Int. Coll. Viscous Fluid Dyn. OceanTechnology, pp.423–445.

    Google Scholar 

  • Saffman, P.G. & Wilcox, D.C. (1974) Turbulence-model predictions for turbulent boundary layers. AIAA Journ., Vol.12, pp.541–546.

    MATH  Google Scholar 

  • Saminy, M., Nejad, A.S., Langenfeld, CA. & Favarolo, S.C (1989) Non axisymmetric instabilities in a dump combustor with swirling inlet flow. J. Propulsion, Vol.6, No.1, pp.78–84.

    Google Scholar 

  • Samuel, A.E. & Joubert, P.N. (1974) A boundary layer developing in an increasingly adverse pressure gradient. J.Fluid Mech., Vol.66, Pt.3, pp.481–505.

    Google Scholar 

  • Sandborn, V.A. & Kline, S.J. (1961) Flow models in boundary layer stall inception. Trans. ASME D, J. BasicEng., Vol.83, pp.317–327.

    Google Scholar 

  • Sandborn, V.A. & Liu, C.Y. (1968) On turbulent boundary layer separation. J. Fluid Mech., Vol.32, Pt.2, pp.293–304.

    Google Scholar 

  • Schiestel, R. & Elena, L.(1997) Modeling of anisotropic turbulence in rapid rotation. Aerosp. Sci. Technol., Vol.7, pp.441–451.

    Google Scholar 

  • Schiestel, R., Elena, L. & Rezoug, T. (1993) Numerical modeling of turbulent flow and heat transfer in rotating cavities. Num. Heat Transfer, Vol.A24, pp.45–65.

    Google Scholar 

  • Schlichting, H. (1979) Boundary Layer Theory, Mc Graw Hill, 2nd. Edition, New York.

    MATH  Google Scholar 

  • Schofield, W.H. (1981) Equilibrium layers in moderate to strong adverse pressure gradients, J. Fluid Mech., Vol.113, pp.91–122.

    MATH  Google Scholar 

  • Schofield, W.H. (1986) Two-dimensional separating turbulent boundary layers, AIAA Journ., Vol.24, No.10, pp.1611–1620.

    Google Scholar 

  • Schraub, F.A. & Kline, S.J. (1965) A study of the structure of the turbulent boundary layer with and without longitudinal pressure gradients. Thermosci. Div. Report MD-12, Mechanical Engng. Deptmt., Stanford Univ., Stanford, CA.

    Google Scholar 

  • Schubauer, G.B. & Spangenberg, W.B. (1960) Forced mixing in boundary layers. J. Fluid Mech., Vol. 8, pp.10–32.

    MATH  Google Scholar 

  • Schubauer, G.B. & Klebanoff, P.S. (1951) Investigation of separation of the turbulent boundary layer. NACA Rept.No. 1030.

    Google Scholar 

  • Schwarz, W.R. & Bradshaw, P. (1993) Measurements in a pressure-driven three-dimensional turbulent boundary layer during development and decay. AIAA Journ., Vol. 31, No.7, pp.1207–1214.

    Google Scholar 

  • Schwarz, W.R. & Bradshaw, P. (1994a) Turbulence structural changes for a three-dimensional boundary layer in a 30 deg. bend. J. Fluid Mech., Vol. 272, pp.183–209.

    Google Scholar 

  • Schwarz, W.R. & Bradshaw, P. (1994b) Term-by-term tests of stress-transport models in a three-dimensional boundary layer. Phys. Fluids, Vol.6, pp.986–998.

    Google Scholar 

  • Seginer, I., Mulhearn, P.J., Bradley, E.F. & Finnigan, J.J. (1976) Turbulent flow in a model plant canopy. Boundary Layer Met., Vol. 10, pp.423–453.

    Google Scholar 

  • Senstadt, O. & Moin, P. (1991) On the mechanisms of 3-D turbulent boundary layers. Proc. 8th. Symp. Turb.Shear Flows, Techn. Univ. Munich, pp.5–4–1, 5–4–5.

    Google Scholar 

  • Shabaka, I.M.M.A. & Bradshaw, P. (1981) Turbulent flow measurements in an idealized wing-body junction. AIAAJourn., Vol.19, pp.431–432.

    Google Scholar 

  • Shafi, H.S. & Antonia, R.A. (1994) Anisotropy of the Reynolds stresses in a turbulent boundary layer on a rough wall. Exp. Fluids, Vol.18, pp.213–215.

    Google Scholar 

  • Shanebrook, J.R. & Hatch, D.E. (1972) A family of hodograph models for the crossflow velocity component of three-dimeniosnal boundary layers; J. Basic Eng. Trans. ASME, pp.321–332.

    Google Scholar 

  • Sharif, M.A.R. & Wong, Y.K.E. (1995) Evaluation of the performance of three turbulence models in the prediction of confined swirling flows. Comp. Fluids, Vol.24, No.1, pp.81–100.

    MATH  Google Scholar 

  • Shih, T.H., Zhu, J., Liou, W.W., Chen, K.H., Liu, N.S. & Lumley, J.L. (1997) Modeling of turbulent flows. Proc. 11th. Symp. Turbulent Shear Flows, Vol.3, pp.31–1, 31–6.

    Google Scholar 

  • Shiloh, K. Shivaprasad, B.G. & Simpson, R.L. (1981) The structure of a separating turbulent boundary layer, Part 3: Transverse velocity measurements. J. Fluid Mech., Vol.113, pp. 17–90 .

    Google Scholar 

  • Shima, N. (1988) A Reynolds-stress model for near-wall and low-Reynolds number regions. Trans. ASME, J.Fluids Eng., Vol.110, pp.38–44.

    Google Scholar 

  • Shima, N. (1993a) Prediction of turbulent boundary layers with a second-moment closure: Part I: Effects of Periodic pressure gradient, wall transpiration, and free-stream turbulence. Trans. ASME, J. Fluids Eng., Vol.115, No.1, pp.56–63.

    Google Scholar 

  • Shima, N. (1993b) Prediction of turbulent boundary layers with a second-moment closure: Part II: Effects of streamline curvature and spanwise rotation. Trans. ASME, J. Fluids Eng., Vol.115, No.1, pp.64–69.

    Google Scholar 

  • Shivaprasad, B.G. & Ramaprian, B.R. (1978) Turbulence measurements in boundary layers along mildly curved surfaces, Trans. ASME, J. Fluids Eng., Vol.100, pp.37–46.

    Google Scholar 

  • Sigal, A. & Danberg, J.E. (1990) New correlations of roughness density effect on the turbulent boundary layer. AIAA Journ., Vol.28, No.3, pp.554–556.

    Google Scholar 

  • Simonich, J.C. & Bradshaw, P. (1978) Effect of free-stream turbulence on heat transfer through a turbulent boundary layer. Trans. ASME, J. Heat Transfer, Vol.100, pp.671–677.

    Google Scholar 

  • Simpson, R.L. (1973) A General correlation of roughness density effects on the turbulent boundary layer. AIAAJourn. Vol.11, No.2, pp.242–244.

    Google Scholar 

  • Simpson, R.L. (1977) Some important physical phenomena in flows with separated turbulent boundary layers. In Murthy, S.N.B. (Ed.) Turbulence in Internal Flows, Turbomachinery and Other Engineeering Applications, pp.311–345; Hemisphere Publ. Corp., Washington D.C.

    Google Scholar 

  • Simpson, R.L. (1983) A model for backflow mean velocity profile, AIAA Journ., Vol.21, pp. 142–143.

    Google Scholar 

  • Simpson, R.L. (1985) Two-dimensional turbulent separated flow. AGARDograph Vol.1, No.287.

    Google Scholar 

  • Simpson, R.L. (1989) Turbulent boundary layer separation. Ann. Rev. Fluid Mech., Vol.21, pp.205–234 .

    Google Scholar 

  • Simpson, R.L. (1996) Aspects of turbulent boundary layer separation. Progr. Aerosp. Sci., Vol.32, pp.427–521.

    Google Scholar 

  • Simpson, R.L., Agarwal, N.K., Nagabushana, K.A. & Olcmen, S. (1990) Spectral measurements and other features of separating turbulent flows. AIAA Journ., Vol.28, No.3, pp.446–452.

    Google Scholar 

  • Simpson, R.L., Strickland, J.H. & Barr, P.W. (1977) Features of a separating turbulent boundary layer in the vicinity of separation, J. Fluid Mech., Vol.79, Pt.3, pp.553–594 .

    Google Scholar 

  • Simpson, R.L., Chew, Y.T. & Shivaprasad, B.G. (1981a) The structure of a separating turbulent boundary layer, Part 1: Mean flow and Reynolds stresses. J. Fluid Mech., Vol.113, pp.23–51.

    Google Scholar 

  • Simpson, R.L., Chew, Y.T. & Shivaprasad, B.G. (1981b) The structure of a separating turbulent boundary layer, Part 2: Higher order turbulent results. J. Fluid Mech., Vol.113, pp.53–73.

    Google Scholar 

  • Simpson, R.L. & Wallace, D.B. (1975) Laminarescent turbulent boundary layers: experiments on sink flows. Project SQUID Tech. Rept. SMU-1-PU, Southern Methodist Univ., Dallas, TX.

    Google Scholar 

  • Singh, R.K. & Azad, R.S. (1995) Asymptotic velocity defect profile in an incipient-separating axisymmetric flow. AIAA Journ., Vol.33, No.1, pp.94–101.

    Google Scholar 

  • Sjolander, S.A. (1980) Eddy viscosity in two-dimensional and laterally strained boundary layer. PhD Dissertation, Cambridge.

    Google Scholar 

  • Skare, P.E. & Krogstad, P.-A. (1994) A turbulent equilibrium boundary layer near separation. J. Fluid Mech., Vol. 272, pp.319–348.

    Google Scholar 

  • Sloan, D.G., Smith, PJ. & Smoot, L.D. (1986) Modelling of swirl in turbulent flow systems. Prog. Energy and Combustion Science. Vol.12, pp. 163–250 .

    Google Scholar 

  • Smits, A.J., Young, S.T.B. & Bradshaw, P. (1979a) The effect of short regions of high surface curvature on turbulent boundary layers, J. Fluid Mech., Vol.94, Part 2, pp.209–242.

    Google Scholar 

  • Smits, A J., Eaton, J.A. & Bradshaw, P. (1979b) The response of a turbulent boundary layer to lateral divergence. J. Fluid Mech., Vol.94, Part 2, pp.243–268.

    Google Scholar 

  • Snarski, S.R. & Lueptow, R.M. (1995) Wall pressure and coherent structures in a turbulent boundary layer on a cylinder in axial flow. J. Fluid Mech., Vol.286, pp.137–171.

    Google Scholar 

  • So, R.M.C. (1975) A turbulent velocity scale for curved shear flows, J. Fluid Mech., Vol.70, Part 1, pp.43–62.

    Google Scholar 

  • So, R.M.C., Ahmed, S.A. & Mongia, H.K. (1984) An experimental investigation of gas jets in confined swirling air flow. NASA CR-3832.

    Google Scholar 

  • So, R.M.C., Lai, Y.G., Zhang, H.S. & Hwang, B.C. (1991a) Second-order near-wall turbulence closures: a review. AIAA Journ., Vol.29, No.11, pp.1819–1835.

    MATH  Google Scholar 

  • So, R.M.C. & Mellor, G.L. (1972) An experimental investigation of turbulent boundary layers along curved surfaces. NASA CR 1940.

    Google Scholar 

  • So, R.M.C. & Mellor, G.L. (1973) Experiments on convex curvature effects in turbulent boundary layers, J. Fluid Mech., Vol.60, Part 1, pp.43–62.

    Google Scholar 

  • So, R.M.C. & Mellor, G.L. (1975) Experiments on turbulent boundary layer on a concave wall, Aero. Quarterly, Vol.XXVI, pp.25–40.

    Google Scholar 

  • So, R.M.C., Zhang, H.S. & Speziale, C.G. (1991b) Near-wall modeling of the dissipation rate equation. AIAA Journ., Vol.29, No.12, pp.2069–2076.

    MATH  Google Scholar 

  • Sommer, H.T. (1983) Swirling flow in a research combustor, AIAA Paper AIAA-83–0313.

    Google Scholar 

  • Sotiropoulos, F. & Patel, V.C (1994) Prediction of turbulent flow through a transition duct using a second-moment closure. AIAA Journ., Vol.32, No.11, pp.2194–2204.

    Google Scholar 

  • Sotiropoulos, F. & Patel, V.C. (1995) Turbulence anisotropy and near-wall modelling in predicting three-dimensional shear flows. AIAA Journ., Vol.33, No.3, pp.504–514.

    Google Scholar 

  • Spalart, P.R. (1986) Numerical study of sink-flow boundary layers, J. Fluid Mech., Vol.172, pp.307–328.

    MATH  Google Scholar 

  • Spalart, P.R. (1988) Direct simulation of a turbulent boundary layer up to Rθ = 1410. J. Fluid Mech., Vol.187, pp.61–98.

    MATH  Google Scholar 

  • Spalart, P. & Leonard, A. (1985) Direct numerical simulation of equilibrium turbulent boundary layers. Proc. 5th. Turb. Shear Flow Symp., pp.9.35–9.40. Cornell Univ., Ithaca, NY.

    Google Scholar 

  • Spalart, P. & Watmuff, J.H. (1993) Experimental and numerical study of a turbulent boundary layer with pressure gradients. J. Fluid Mech., Vol.249, pp.337–371.

    Google Scholar 

  • Spangenberg, W.G., Rowland, W. R. & Mease, N.E. In Sovran, G. (Ed.) Fluid Mechanics of Internal Flow, pp.110–151. Elsevier (1967).

    Google Scholar 

  • Speziale, C.G. (1982) On turbulent secondary flows in pipes of non circular crosssection, Int. J. Eng. Sci., Vol.20, pp.863–872.

    MATH  Google Scholar 

  • Squire, H.B. & Winter, K.G. (1951) The secondary flow in a cascade of aerofoils in a uniform stream. J. Aero. Sci., Vol.18, pp.271–277.

    MATH  Google Scholar 

  • Sreenivasan, K.R. & Antonia, R.A. (1977) Properties of wall shear stress fluctuations in a turbulent duct flow. Trans. ASME, J. Appl. Mech., Vol.44, pp.389–385.

    Google Scholar 

  • Stevenson, W.H., Thompson, H.D. & Craig, R.R (1984). Laser velocimeter measurements in highly turbulent recirculating flows. Trans. ASME, Journ. Fluids Eng., Vol.106, No.2, pp.173–180.

    Google Scholar 

  • Stewart, R.W. (1956) Irrotational motion associated with free turbulent flows. J. Fluid Mech., Vol.1, pp.593–604.

    MathSciNet  MATH  Google Scholar 

  • Stewartson, K. (1953) On the flow between two rotating coaxial disks. Proc. Cambridge Phil. Soc., Vol.49, pp.333–341.

    MathSciNet  MATH  Google Scholar 

  • Stratford, B.S. (1959a) The prediction of separation of turbulent boundary layer. J. Fluid Mech., Vol.5, pp.1–16 .

    MathSciNet  MATH  Google Scholar 

  • Stratford, B.S. (1959b) An experimental flow with zero skin friction throughout its region of pressure rise. J. Fluid Mech., Vol.8, pp.143–155.

    MathSciNet  Google Scholar 

  • Sturgess, G.J. & Syed, S.A. (1990) Calculation of confined swirling flows. Int. Journ. Turbo and Jet Engines, Vol.7, pp.103–121.

    Google Scholar 

  • Su, M.D. & Friedrich, R. (1994) Investigation of fully developed turbulent flow in a straight duct with large-eddy simulation. Trans. ASME, J. Fluid Eng., Vol.116, pp.677–684.

    Google Scholar 

  • Swafford, T.W. (1983) Analytical approximation of two-dimensional separated turbulent boundary layer velocity profiles. AIAA Journ., Vol.21, No.6, pp.923–925.

    MATH  Google Scholar 

  • Swearingen, J.D. & Blackwelder, R.F. (1987) The growth and breakdown of streamwise vortices in the presence of a wall, J. Fluid Mech., Vol.182, pp.255–290.

    Google Scholar 

  • Symes, C.R. & Fink, L.E. (1977), In Proceedings of Structure and Mechanisms of Turbulence, Vol.1. Berlin.

    Google Scholar 

  • Syred, B. & Beér, J.M. (1974) Combustion in swirling flows: a review. Combustion and Flame, Vol.23, pp. 143–201.

    Google Scholar 

  • Tani, I. (1962) Production of longitudinal vortices inthe boundary layer along a concave wall, J. Geophys. Res., Vol.67, pp.3075–3080.

    Google Scholar 

  • Tarada, F. (1990) Prediction of rough-wall boundary layers using a low Reynolds number K-e model. Int. J. HeatFluid Flow, Vol.11, No.4, pp.331–345.

    Google Scholar 

  • Taylor, E.S. (1967) Discussion on the paper by P.N. Joubert, A.E. Perry and KX.Brown, In Fluid Mechanics ofInternal Flows, Elsevier.

    Google Scholar 

  • Taylor, A.K.M.F., Whitelaw, J.H. & Yianneskis, M. (1982a) Curved ducts with strong secondary motion: velocity measurements of developing laminar and turbulent flow. Trans. ASME, J. Fluids Eng., Vol.104, pp.350.

    Google Scholar 

  • Telionis, D.P. (1981) Unsteady viscous flows. Springer Series Comp. Physics, Springer Verlag.

    Google Scholar 

  • Theodorsen, T. & Regier, A. (1944) Experiments on drag of revolving disks, cylinders and streamline rods at high speeds. NACA Rep. 793.

    Google Scholar 

  • Thole, K.A., Bogard, D.G. & Whan-Tong, J.L.(1994) Generating high freestream turbulence levels. Exp. Fluids, Vol.17, pp.375–380.

    Google Scholar 

  • Thole, K.A. & Bogard, D.G. (1996) High freestream turbulence effects on turbulent boundary layers. Trans. ASME, Journ. Fluids Engng, Vol. 118, pp.277–284.

    Google Scholar 

  • Thomann, H. (1968) Effect of stream wise wall curvature on heat transfer in a turbulent boundary layer. J. FluidMech., Vol.33, pp.283–292.

    Google Scholar 

  • Torii, S. & Yang, W.J. (1995) Numerical prediction of fully developed turbulent swirling flows in axially rotating pipe by means of a modified K-e turbulence model. Int. J. Num. Meth. Fluids, Vol.5, pp.175–183.

    MATH  Google Scholar 

  • Townes, H.W. & Sabersky, R.H. (1966) Experiments on the flow over a rough surface. IntJ. Heat Mass Transfer, Vol.11, No.6, pp.729–738 .

    Google Scholar 

  • Townsend, A.A. (1960) The development of turbulent boundary layers with negligible wall stress, J. Fluid Mech., Vol.8, pp.143–155.

    MathSciNet  MATH  Google Scholar 

  • Townsend, A.A. (1961a) Equilibrium layers and wall turbulence, J. Fluid Mech., Vol.11, Part 1, pp.97–120.

    Google Scholar 

  • Townsend, A.A. (1961b) The behaviour of a turbulent boundary layer near separation. J. Fluid Mech., Vol.12, pp.536.

    MathSciNet  Google Scholar 

  • Townsend (1976) The Structure of Turbulent Shear Flow. 2nd. Edn. Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  • Townsend, A.A. (1979) Flow patterns of large eddies in a wake and in a boundary layer. J. Fluid Mech., Vol.95, pp.515–537.

    Google Scholar 

  • Traugott, S.C.(1958) Influence of solid-body rotation on screen-induced turbulence. NACA TN 4135.

    Google Scholar 

  • Turan, Ö, Azad, R.S. & Kassab, S.Z. (1987) Experimental and theoretical evaluation of the (math) spectral law. Phys.Fluids, Vol. 39, No.11, pp.3463–3474.

    Google Scholar 

  • Tutu, N.K. & Chevray, R. (1975) Cross-wire anemometry in high-intensity turbulence. J. Fluid Mech., Vol.71, p.785.

    Google Scholar 

  • Van den Berg, B. (1975) A three-dimensional law of the wall for turbulent shear flows. J. Fluid Mech., Vol.70, pp.149–160.

    MATH  Google Scholar 

  • Van den Berg, B. & Elsenaar, A. (1972) Measurements in a three-dimensional incompressible turbulent boundary layer in an adverse pressure gradient under infinite swept wing conditions. NLR-TR-72092U.

    Google Scholar 

  • Van den Berg, B., Elsenaar, A., Lindhout, J.P.F. & Wesseling, P. (1975) Measurements in an incompresssible turbulent boundary layer, under finite wing conditions, and comparison with theory. J. Fluid Mech., Vol.70, pp. 127–147.

    Google Scholar 

  • Van Driest, E.R. (1956) On turbulent flow near a wall. J. Aeron. Sci., Vol.23, pp.1007–1011.

    MATH  Google Scholar 

  • Viala, S., Deniau, H. & Aupoix, B. (1995) Prediction of relaminarization using low Reynolds number turbulence models. Proc. 10th. Symp. Turbulent Shear Flow, Penn. State Univ., pp.11–25, 30.

    Google Scholar 

  • Von Karman, Th. (1921) Über laminare une turbulente Reibung. ZAMM, Vol.1, pp.233–252.

    MATH  Google Scholar 

  • Vu, B.T. & Gouldin, F.C. (1982) Flow measurements in a model swirl combustor. AIAA Journ., Vol.20, No.5, pp.642–651.

    Google Scholar 

  • Wagner, R.E. & Velkoff, H.R. (1972) Measurements of secondary flows in a rotating duct. Trans. ASME, J. Eng.Power, Vol.94, Ser.A, pp.261–270.

    Google Scholar 

  • Wang, K.C. (1971) On the determination of the zones of influence and dependence for three-dimensional boundary layers. J. Fluid Mech., Vol.48, pp.397–404.

    MATH  Google Scholar 

  • Ward-Smith, A.J. (1971) Pressure Losses in Ducted Flows. Butterworth.

    MATH  Google Scholar 

  • Watmuff, J.H. & Westphal, R.V. (1989) A turbulent boundary layer at low Reynolds number with adverse pressure gradient Proc. 10th. Australian Fluid Mech. Conf., Melbourne.

    Google Scholar 

  • Watmuff, J.H., Witt, H.T. & Joubert, P.N. (1985) Developing turbulent boundary layers with system rotation. J.Fluid Mech., Vol.157, pp.405–448.

    Google Scholar 

  • White, A. (1964) Flow of a fluid in axially rotating pipe. J. Mech. Eng. Sci., Vol.6, No.1, pp.47–54.

    Google Scholar 

  • White, F.M. (1914)Viscous fluid flow. Mc Graw Hill.

    Google Scholar 

  • White, F.M., Lessman, R.C. & Christoph, G.H. (1975) A three-dimensional integral method for calculating incompressible skin friction. Trans. ASME, J. Fluids Eng., Vol.97, No.4, pp.550–557.

    Google Scholar 

  • Wietrzak, A. & Lueptow, R.M. (1994) Wall shear stress and velocity in a turbulent axisymmetric boundary layer. J. Fluid Mech., Vol.259, pp.191–218.

    Google Scholar 

  • Wilcox, D.C. (1988a) Reassessment of the scale-determining equation for advanced turbulence models. AIAAJourn., Vol.26, No.11, pp.1299–1310.

    MathSciNet  MATH  Google Scholar 

  • Wilcox, D.C. (1993) Turbulence modelling for CFD, Griffin.

    Google Scholar 

  • Wilcox, D.C. & Chambers, T.L. (1977) Streamline curvature effects on turbulent boundary layers, AIAA Journ., Vol.15, pp.574–580.

    Google Scholar 

  • Wilcox, D.C. & Traci, R.M. (1976) A complete model of turbulence, AIAA Paper 76–351, San Giego, CA.

    Google Scholar 

  • Wilkinson, S.P. & Malik, M.R. (1985) Stability experiments on the flow over a rotating disk. AIAA Journ., Vol.21, pp.588–595.

    Google Scholar 

  • Willmarth, W.W. (1975) Structure of turbulent boundary layers, Adv. Applied Mech., Vol.15, pp.159–254.

    Google Scholar 

  • Willmarth, W.W. & Bogar, J.B. (1977) Survey and new measurements of turbulent structure near the wall. Phys.Fluids Suppl., Vol.20, pp.S9-S21.

    Google Scholar 

  • Willmarth, W.W., Winkel, R.E., Sharma, L.K. & Bogar, TJ. (1976) Axially symmetric turbulent boundary layers on cylinders: Mean velocity profiles and wall pressure fluctuations. J. Fluid Mech., Vol.76, pt.1, pp.35–64.

    Google Scholar 

  • Willmarth, W.W. & Yang, C.S. (1970) Wall-pressure fluctuations beneath turbulent boundary layers on a flat plate and a cylinder. J. Fluid Mech., Vol.41, Pt.1, pp.47–80.

    Google Scholar 

  • Wood, D.H. & Antonia, R.A. (1975) Measurements in a turbulent boundary layer over a D-type surface roughness. Trans. ASME E: J. Appl. Mech., Vol.42, pp.591–597.

    Google Scholar 

  • Wood, D.H. & Ferziger, J.H. (1984) The potential flow bounded by a mixing layer and a solid surface. Proc. Roy.Soc. London, Ser.B; Vol.395, pp.265.

    MATH  Google Scholar 

  • Wood, D.H. & Westphal, R.V. (1988a) Velocity spectra in the irrotational flow outside a turbulent shear layer. Phys. Fluids, Vol.31, No.6, pp.1807–1813.

    Google Scholar 

  • Wood, D.H. & Westphal, R.V. (1988b) Measurements of the free-stream fluctuations above a turbulent boundary layer. Phys. Fluids, Vol.31, No.10, pp.2834–2840.

    Google Scholar 

  • Wooding, R.A., Bradley, E.F. & Marshall, J.K. (1973) Drag due to regular arrays of roughness elements of varying geometry. Boundary Layer Met., Vol.5, pp.285–308.

    Google Scholar 

  • Xia, J.Y. & Taylor, C. (1993) The prediction of turbulent flow and heat transfer in a tight square sectioned 1800 bend. Proc. 8th. Int. Conf. Num. Meth. Laminar & Turbulent Flows, Swansea, Wales.

    Google Scholar 

  • Yaglom, A.M. (1979) Similarity laws for constant-pressure and pressure-gradient turbulent wall flows, Ann. Rev.Fluid Mech., Vol.11, pp.505–540.

    Google Scholar 

  • Yajnik, K.S. (1970) Asymptotic theory of turbulent channel and boundary layer flows, J. Fluid Mech., Vol.42, pp.411–427.

    MATH  Google Scholar 

  • Yamada, Y. & Imao, S. (1980) Swirling flow in an axially rotating pipe. Trans. JSME, Vol.46, No.409, Ser.B, pp.1662–1680.

    Google Scholar 

  • Yamada, Y., Imao, S. & Toyozumi, K. (1985) Turbulence and its structure in an axially rotating pipe flows. Trans.JSME (B), Vol.54, No.46, pp.34–62 (in Japanese).

    Google Scholar 

  • Yasuhara, M. (1959) Experiments on axisymmetric boundary layers along a cylinder in incompressible flow. Trans.Japan Soc. Aerosp. Sci., Vol.2, p.33.

    Google Scholar 

  • Yoon, H.K. & Lilley, D.G. (1984) Further time-mean measurements in confined swirl flows. AIAA Journ., Vol.22, pp.514–515.

    Google Scholar 

  • Yoshida, H., Furuya, T. & Echigo, R. (1987) The effect of lateral divergence on the structure of a turbulent channel flow and its heat transfer. Proc. 6th. Symp. Turbulent Shear Flows, pp.2–1–1/6. Toulouse, France.

    Google Scholar 

  • Zandbergen, P.J. & Dijkstra, D. (1987) Von Karman swirling flows. Ann. Rev. Fluid Mech., Vol.19, pp.465–492.

    MathSciNet  Google Scholar 

  • Zhang, H., Faghri, M. & White, F.M. (1996) A new low-Reynolds number K-e model for turbulent flow over smooth and rough surfaces. Trans. ASME, Journ. Fluids Engng., Vol.118, pp.255–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piquet, J. (1999). Complex Effects in Turbulent Flows. In: Turbulent Flows. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03559-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03559-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08475-1

  • Online ISBN: 978-3-662-03559-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics