Skip to main content

Formal Genetics of Humans: Linkage Analysis and Gene Clusters

  • Chapter
Human Genetics

Abstract

Genes are located in a linear fashion on the chromosomes. This has the logical consequence that genes located on the same chromosome are transmitted together, i. e., that their segregation is not independent. On the other hand, it is know from cytogenetics that chiasmata are formed during the first meiotic division, and that certain chromosome segments are exchanged between homologous chromosomes (crossing over; see Sect. 2.1.2.4). Hence, even genes located on the same chromosome are not always transmitted together; the probability of transmission of two linked genes depends on the distance between them and on the frequency with which they are separated by crossing over. If located on a fairly long chromosome, and if the distance is large enough that numerous crossing over events occur between them, genes located on the same chromosome may even seem to segregate independently. Such genes are syntenic but not linked. It was the great achievement of Morgan and his school in the first two decades of the twentieth century to exploit linkage for localizing genes relative to each other on chromosomes and developing gene maps in the fruit fly Drosophila melanogaster.

If “to take a possible example, an equally close linkage” (as between the genes for hemophilia and color blindness) “were found between the genes for blood group” and that “determining Huntington’s chorea, we should be able, in many cases, to predict which children of an affected person would develop this disease and to advise on the desirability or otherwise of their marriage.”

J. B. S. Haldane and J. Bell (1937) The linkage between the genes for colour-blindness and haemophilia in man. Proc. Roy. Soc. B 123, 119.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert E (1993) Immungenetik. In: Gemsa, Resch (eds) Lehrbuch der Immunologie. Thieme, Stuttgart

    Google Scholar 

  2. Bateson W, Saunders, Punnett RG (1908) Confirmations and extensions of Mendel’s principles in other animals and plants. Report to the Evolution Committee of the Royal Society, London

    Google Scholar 

  3. Bauer KH (1927) Homoiotransplantation von Epidermis bei eineiigen Zwillingen. Beitr Klin Chir 141: 442–447

    Google Scholar 

  4. Bernstein F (1931) Zur Grundlegung der Chromosomentheorie der Vererbung beim Menschen. Z Induktive Abstammungs Vererbungslehre 57: 113–138

    Google Scholar 

  5. Bishop MJ (1994) Guide to human genome computing. Academic, London

    Google Scholar 

  6. Bodmer WF (1972) Population genetics of the HL-A system: retrospect and prospect. In: Dausset J, Colombani J (eds) Histocompatibility testing. Munksgaard, Copenhagen, pp 611–617

    Google Scholar 

  7. Botstein D, White RL, Skolnick M, Davis RW (198o) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314–331

    Google Scholar 

  8. Bowman BH, Kurosky A (1982) Haptoglobin: the evolutionary product of duplication, unequal crossing over, and point mutation. Adv Hum Genet 12: 189–261

    Article  PubMed  CAS  Google Scholar 

  9. Bridges CB (1936) The bar “gene,” a duplication. Science 83: 210

    Article  PubMed  CAS  Google Scholar 

  10. Cantor RM, Rotter JI (1992) Analysis of genetic data: methods and interpretation. In: King A, Rotter JI, Motulsky AG (eds) The genetic basis of common diseases. Oxford University Press, New York, pp 49–7o

    Google Scholar 

  11. Chadefaux B, Allord D, Rethoré MO, Raoul O, Poissonier M, Gilgenkrantz S, Cheruy C, Jérôme H (1984) Assignment of human phosphoribosylglycinamide synthetase locus to region 21 q 22.1. Hum Genet 66: 190–192

    Article  PubMed  CAS  Google Scholar 

  12. Colin Y, Cherif-Zahar B, LeVankim C et al (1991) Genetic basis of the RhD-positive and the RhD-negative blood group polymorphism as determined by Southern analysis. Blood 78: 2747–2752

    Google Scholar 

  13. Dausset J, Cann H, Cohen D et al (1990) Centre d’études du polymorphisme humain (CEPH): collaborative genetic mapping of the human genome. Genomics 6: 575–577

    Google Scholar 

  14. Donahue RP, Bias WB, Renwick JH, McKusick VA (1968) Probable assignment of the Duffy blood-group locus to chromosome 1 in man. Proc Natl Acad Sci USA 61: 949

    Article  PubMed  CAS  Google Scholar 

  15. Donis-Keller H, Green P, Helms C et al (1987) A genetic linkage map of the human genome. Cell 51: 319–337

    Google Scholar 

  16. Elston RC, Glassman E (1967) An approach to the problem of whether clustering of functionally related genes occurs in higher organisms. Genet Res 9: 141–147

    Article  Google Scholar 

  17. Ferguson-Smith MA (1966) X-Y chromosomal interchange in the aetiology of true hermaphroditism and of XX Klinefelter’s syndrome. Lancet 2: 475–476

    Article  PubMed  CAS  Google Scholar 

  18. Gerhard DS, Kidd KK, Kidd JR, Egeland JA (1984) Identification of a recent recombination event within the human 3-globin gene cluster. Proc Natl Acad Sci USA 81: 7875–7879

    Article  PubMed  CAS  Google Scholar 

  19. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina C, Wallace MR, Sakaguchi AY, Young AB, Shoulson I, Bonilla E, Martin JB (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306: 234–238

    Google Scholar 

  20. Gusella JF, Tanzi RE, Anderson MA, Hobbs W, Gibbons K, Raschtchian R, Gilliam TC, Wallace MR, Wexler NS, Conneally PM (1984) DNA markers for nervous system diseases. Science 225: 1320–1326

    Article  PubMed  CAS  Google Scholar 

  21. Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. J Genet 12: tot-109

    Google Scholar 

  22. Haldane JBS, Smith CAB (1947) A new estimate of the linkage between the genes for colour blindness and haemophilia in man. Ann Eugen 14: 10–31

    Article  PubMed  CAS  Google Scholar 

  23. Harris H (1970) Cell fusion. Clarendon, Oxford

    Google Scholar 

  24. Harris H, Watkins JF (1965) Hybrid cells from mouse and man: artificial heterokyryons of mammalian cells from different species. Nature 205: 640

    Article  PubMed  CAS  Google Scholar 

  25. a. Houwen RHJ, Baharloo S, Blankenship K. (1994) Genome screening by searching for shared segments: mapping a gene for benign recurrent intrahepatic cholestasis. Nature [Genet] 8: 380–386

    Google Scholar 

  26. Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable “minisatellite” regions in human DNA. Nature 314: 67–73

    Article  PubMed  CAS  Google Scholar 

  27. Kajii E, Umenishi F, Iwamoto S, Ikemoto S (1993) Isolation of a new cDNA clone encoding an Rh polypeptide associated with the Rh blood group system. Hum Genet 91: 157–162

    Google Scholar 

  28. Kämpe O, Larhammer D, Wiwan k, Scheuning L, Claesson L, Gustafsson K, Pääbo S, Hyldig-Nielsen JJ, Rask L, Peterson PA (1983) Molecular analysis of MHC antigens. In: Möller E, Möller G (eds) Genetics of the immune response. Plenum, New York, pp 61–79

    Chapter  Google Scholar 

  29. Kang S-S, Wong PWK, Susmano A et al (1991) Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Hum Genet 48: 536–545

    Google Scholar 

  30. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  31. Kissmeyer-Nielsen F (ed) (1975) Histocompatibility testing 1975. Munksgaard, Copenhagen

    Google Scholar 

  32. Knippers R, Philippsen P, Schafer KP, Fanning E (1990) Molekulare Genetik, 5th edn. Thieme, Stuttgart

    Google Scholar 

  33. Krüger J, Vogel F (1975) Population genetics of unequal crossing over. J Mol Evol 4: 201–247

    Article  Google Scholar 

  34. Kurnit DM (1979) Down syndrome: gene dosage at the transcriptional level in skin fibroblasts. Proc Natl Acad Sci USA 76: 2372–2375

    Google Scholar 

  35. Landsteiner K, Wiener AS (1940) An agglutinable factor in human blood recognized by immune sera for rhesus blood. Proc Soc Exp Biol Med 43: 223

    CAS  Google Scholar 

  36. Lange K, Boehnke M (1982) How many polymorphic genes will it take to span the human genome? Am J Hum Genet 34: 842–845

    PubMed  CAS  Google Scholar 

  37. Lange K, Page BM, Elston RC (1975) Age trends in human chiasma frequencies and recombination fractions. I. Chiasma frequencies. Am J Hum Genet 27: 410–418

    Google Scholar 

  38. Lele KP, Penrose LS, Stallard HB (1963) Chromosome deletion in a case of retinoblastoma. Ann Hum Genet 27: 171

    Article  PubMed  CAS  Google Scholar 

  39. Levine P, Stetson RE (1939) An unusual case of intragroup agglutination. JAMA 113: 126–127

    Google Scholar 

  40. Lewis EB (1951) Pseudoallelism and gene evolution. Cold Spring Harbor Symp Quant Biol 16: 159–174

    Google Scholar 

  41. McClintock B (1944) The relation of homozygous deficiencies to mutations and allelic series in maize. Genetics 29: 478–502

    Google Scholar 

  42. McKusick VA (1995) Mendelian inheritance in man, th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  43. Migeon BR, Miller SC (1968) Human-mouse somatic cell hybrids with single human chromosome (group E): link with thymidine kinase activity. Science 162: 1005–1006

    Article  PubMed  CAS  Google Scholar 

  44. Mittwoch U (1992) Sex determination and sex reversal: genotype, phenotype, dogma and semantics. Hum Genet 89: 467–479

    Google Scholar 

  45. Mohr J (1954) A study of linkage in man. Munksgaard, Copenhagen (Opera ex domo biologiae hereditariae humanae universitatis hafniensis 33 )

    Google Scholar 

  46. Morgan TH (1910) Sex-limited inheritance in drosophila. Science 32: 120–122

    Article  PubMed  CAS  Google Scholar 

  47. Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7: 277–318

    Google Scholar 

  48. Morton NE (1956) The detection and estimation of linkage between the genes for elliptocytosis and the Rh blood type. am J Hum Genet 8: 80–96

    CAS  Google Scholar 

  49. Morton NE (1957) Further scoring types in sequential tests, with a critical review of autosomal and partial sex linkage in man. Am J Hum Genet 9: 55–75

    PubMed  CAS  Google Scholar 

  50. Morton NE (1976) Genetic markers in atherosclerosis: a review. J Med Genet 13: 81–90

    Article  PubMed  CAS  Google Scholar 

  51. Morton NE (1993) Genetic epidemiology. Annu Rev Genet 27: 521–538

    Google Scholar 

  52. Morton NE, Collins A (1990) Standard maps some 10. Ann Hum Genet 54: 235–251

    Google Scholar 

  53. Murray JC, Mills KA, Demopulos CM, Hornung S, Motulsky AG (1984) Linkage disequilibrium and evolutionary relationships of DNA variants (RFLPs) at the serum albumin locus. Proc Natl Acad Sci USA 81: 3486–3490

    Google Scholar 

  54. Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  55. Ohta T (1993) Diversifying selection, gene conversion, and random drift: interactive effects on polymorphism at MHC loci.

    Google Scholar 

  56. Ott J (1983) Linkage analysis and family classification under heterogeneity. Ann Hum Genet 47: 311–320

    Article  PubMed  CAS  Google Scholar 

  57. Ott J (1990) Cutting a Gordian knot in the linkage analysis of complex human traits. Am J Hum Genet 46: 219–221

    PubMed  CAS  Google Scholar 

  58. Ott J (1991) Analysis of human genetics linkage. Johns Hopkins University Press, Baltimore

    Google Scholar 

  59. Page DC, Mosher R, Simpson EM et al (1987) The sex-determining region of the human Y chromosome encodes a finger protein. Cell 51: 1091–1104

    Article  PubMed  CAS  Google Scholar 

  60. Penrose LS (1934/35) The detection of autosomal linkage in data which consist of pairs of brothers and sisters of unspecified parentage. Ann Eugen 6: 133-138

    Google Scholar 

  61. Race RR, Sanger R (1969) Xg and sex chromosome abnormalities. Br Med Bull 25: 99–103

    PubMed  CAS  Google Scholar 

  62. Race RR, Sanger R (1975) Blood groups in man, 6th edn. Blackwell, Oxford

    Google Scholar 

  63. Rappold GA (1993) The pseudoautosomal regions of the human sex chromosomes. Hum Genet 92: 315-324

    Google Scholar 

  64. Reid DH, Parsons PH (1963) Sex of parents and variation of recombination with age in the mouse. Heredity 18: 107

    Article  PubMed  CAS  Google Scholar 

  65. Renwick JH (1969) Progress in mapping human autosomes. Br Med Bull 25: 65

    PubMed  CAS  Google Scholar 

  66. Risch N (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46: 222–238

    PubMed  CAS  Google Scholar 

  67. Risch N (1990) Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 46: 229–241

    PubMed  CAS  Google Scholar 

  68. Risch N (1990) Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs. Am J Hum Genet 46: 242–253

    PubMed  CAS  Google Scholar 

  69. Schiebel K, Weiss B, Woehrle D, Rappold G (1993) A human pseudoautosomal gene, ADP/ATP translocase, escapes X-inactivation whereas a homologue on Xq is subject to X-inactivation. Nature Genet 3: 82–87

    Google Scholar 

  70. Sheppard PM (1975) Natural selection and heredity, 4th edn. Hutchinson, London

    Google Scholar 

  71. Sinclair AH, Berta P, Palmer MS et al (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Na-ture 346: 240–244

    CAS  Google Scholar 

  72. Smith SM, Penrose LS, Smith CAB (1961) Mathematical tables for research workers in human genetics. Churchill, London

    Google Scholar 

  73. Smithies O, Connell GE, Dixon GH (1962) Chromosomal rearrangements and the evolution of haptoglobin genes. ity. Academic, New York

    Google Scholar 

  74. Snell GD, Dausset J, Nathenson S (1977) Histocompatibil Nature Proceedings of the 4th International Congress of Human 196: 232

    Google Scholar 

  75. Sorensen H, Dissing J (1975) Association between the C3F gene and atherosclerotic vascuolar diseases. Hum Hered 25: 279–283

    Article  PubMed  CAS  Google Scholar 

  76. Southern EM (1982) Application of DNA analysis to map-over at the Rh-locus. Vox Sang io: 721

    Google Scholar 

  77. Steinberg AG (1965) Evidence for a mutation or crossing Medica, Amsterdam, pp 445–460

    Google Scholar 

  78. Stern C (1973) Principles of human genetics, 3rd edn. Freeman, San Francisco

    Google Scholar 

  79. Sturtevant AH (1925) The effects of unequal crossing over at the bar locus in drosophila. Genetics io: 117

    Google Scholar 

  80. Svejgaard A, Hauge M, Jersild C, Platz P, Ryder LP, Staub Nielsen L, Thomsen M (1979) The HLA system. An intro ductory survey, 2nd edn. Karger, Basel

    Google Scholar 

  81. Tiepolo 1, Zuffardi 0 (1976) Localization of factors con trolling spermatogenesis in the nonfluorescent portion of the human Y chromosome. Hum Genet 34: 119–124

    Article  PubMed  CAS  Google Scholar 

  82. Trowsdale J, Ragoussis J, Campbell JD (1991) Map of the human MHC. Immunol Today 12: 429–467

    Google Scholar 

  83. Vogel F (1969) Does the human X chromosome show evi-dence for clustering of genes with related functions? J Genet Hum 17: 475–477

    Google Scholar 

  84. Vogt P, Keil R, Kirsch S (1993) The “AZF” function of the human Y chromosome during spermatogenesis. In: Sum-ner AT, Chandley AC (eds) Chromosomes today, vol 2. Chapham and Hall, London, pp 227–239

    Google Scholar 

  85. Weiss MC, Green H (1967) Human-mouse hybrid cell lines containing partial complements of human chromo-somes and functioning human genes. Proc Natl Acad Sci USA 58: 1104–1111

    Article  PubMed  CAS  Google Scholar 

  86. Weitkamp LR (1972) Human autosomal linkage groups. ping the human genome. Cytogenet Cell Genet 32: 52–57

    Google Scholar 

  87. White R, Lalouel J-M (1987) Investigation of genetic link-age in human families. Adv Hum Genet 16: 121–228

    PubMed  CAS  Google Scholar 

  88. White R, Leppert M, Bishop DT, Barker D, Berkowitz J, Brown C, Callahan P, Holm T, Jerominski L (1985) Con-struction of linkage maps with DNA markers for human chromosomes. Nature 313: 101–105

    Article  PubMed  CAS  Google Scholar 

  89. Wolf U, Schempp W, Scherer G (1992) Molecular biology of the human Y chromosome. Rev Physiol Biochem Phar-macol 121: 148–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel, F., Motulsky, A.G. (1997). Formal Genetics of Humans: Linkage Analysis and Gene Clusters. In: Human Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03356-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03356-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03358-6

  • Online ISBN: 978-3-662-03356-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics