Skip to main content

Network Lifetime Maximization with Adjustable Node Transmission Range

  • Conference paper
  • First Online:
Smart Cities/Smart Regions – Technische, wirtschaftliche und gesellschaftliche Innovationen

Zusammenfassung

Süßwasserquellen machen nur etwa 2,5 % der weltweiten Wasserkörper aus, daher ist die Aufrechterhaltung und Überwachung ihrer Qualität von entscheidender Bedeutung. Weltweit sind mehrere Todesfälle zu verzeichnen, die auf kontaminiertes oder verschmutztes Wasser zurückzuführen sind. Die wichtige Lösung unter den verschiedenen Methoden zur Überwachung der Wasserqualität ist die Verwendung von drahtlosen Sensoren. Drahtlose Sensorknoten, wenn sie zur Flussüberwachung (RNMs) eingesetzt werden, können Netzwerke bilden, die in drei verschiedene Arten unterschieden werden: 1) vorinstalliert, 2) treibende Knoten 3) eine Kombination aus vorinstallierten und treibenden Knoten. Um die Netzwerklebensdauer zu verbessern, wird ein Algorithmus zur Lebensdauermaximierung mit einem einstellbaren Netzwerkübertragungsbereich vorgeschlagen. Der einstellbare Übertragungsbereich berücksichtigt auch kontinuierliche und diskrete Werte. In dieser Arbeit werden Lösungen für diese Probleme analysiert und modelliert, zudem werden Algorithmen zur Lösung dieser Probleme bereitgestellt und die Netzwerkleistung untersucht. Unsere Simulationsergebnisse zeigen eine Verbesserung des einstellbaren Übertragungsbereichsalgorithmus im Hinblick auf den Energieverbrauch während der Datenpaketübertragung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zia H, Harris NR, Merrett GV, Rivers M, Coles N (2013) The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks. Comput Electron Agric 96:126–138

    Article  Google Scholar 

  2. Malik H, Szwilski A (2016) Towards monitoring the water quality using hierarchal routing protocol for wireless sensor networks. Procedia Comput Sci 98:140–147

    Article  Google Scholar 

  3. Zhu X, Yue Y, Wong P, Zhang Y, Meng J (2016) Novel numerical and computational techniques for remote sensor based monitoring of freshwater quality. In: Online Analysis and Computing Science (ICOACS), IEEE international conference of. IEEE, pp 91–95

    Google Scholar 

  4. Goubier ONP, Huynh HX, Truong TP, Traore M et al. Wireless sensor network-based monitoring, cellular modelling and simulations for the environment. [Online]. http://labsticc.univ-brest.fr/~rodin/Publis/PDF/PersadaGoubier16a.pdf. Last accessed May 2019

  5. Adu-Manu KS, Tapparello C, Heinzelman W, Katsriku FA, Abdulai J-D (2017) Water quality monitoring using wireless sensor networks: current trends and future research directions. ACM Trans Sen Netw (TOSN) 13(1):4

    Google Scholar 

  6. Zulkifli SN, Rahim HA, Lau WJ (2017) Detection of contaminants in water supply: a review on state-of-the-art monitoring technologies and their applications. Sens Actuators B Cheml 255:2657–2689

    Article  Google Scholar 

  7. Yakovleva N (2007) Perspectives on female participation in artisanal and small-scale mining: a case study of birim north district of hanaa. Resour Policy 32(1-2):29–41

    Article  Google Scholar 

  8. Amankwah E (2013) Impact of illegal mining on water resources for domestic and irrigation purposes. ARPN J Earth Sci 2(3):117–121

    MathSciNet  Google Scholar 

  9. Perspectives on Small-scale Mining in the Birim North District of Ghana(2015) Last time accessed: March 2018. [ Online ]. http://www.iiste.org/Journals/index.php/JEES/article/viewFile/25205/25809

  10. Kyebi Water Plant Shut Down As a Result of Evil Effects of Galamsey (2011) [Online]. https://www.modernghana.com/news/343119/kyebi-water-plant-shut-down-as-a-result-of-evil-effects-of-g.html. Last time accessed Mar 2018

  11. Ghana faces water crisis – Within 20 years due to activities of galamsey operators (2011) Last time accessed: March 2018. [Online]. https://www.graphic.com.gh/news/general-news/ ghana-faces-water-crisis-within-20-years-due-to-activities-of-galamsey-operators.html

  12. World Water Day: Ghana risks importing water ? Experts (2011) [Online]. https://www.myjoyonline.com/news/2017/March-22nd/world-water-day-ghana-risks-importing-water-experts.php. Last time accessed Mar 2018

  13. Du R (2016) Wireless sensor networks in smart cities: the monitoring of water distribution networks case. Licentiate thesis, School of Electrical Engineering, KTH Royal Institute of Technology, Stockholm

    Google Scholar 

  14. Ostfeld A, Uber JG, Salomons E, Berry JW, Hart WE, Phillips CA, Watson J-P, Dorini G, Jonkergouw P, Kapelan Z et al (2008) The battle of the water sensor networks (bwsn): a design challenge for engineers and algorithms. J Water Resour Plan Manag 134(6):556–568

    Article  Google Scholar 

  15. Eliades D, Polycarpou M (2008) Iterative deepening of pareto solutions in water sensor networks. Water Distrib Sys Analysis Symp 2006:1–19

    Google Scholar 

  16. Akbas MI, Erol-Kantarcı M, Turgut D (2015) Localization for wireless sensor and actor networks with meandering mobility. IEEE Trans Comput 64(4):1015–1028

    Article  MathSciNet  Google Scholar 

  17. Luo X, Yang J (2017) Problems and challenges in water pollution monitoring and water pollution source localization using sensor networks. In Chinese Automation Congress (CAC), 2017. IEEE, pp 5834–5838.

    Google Scholar 

  18. Khalfallah Z, Fajjari I, Aitsaadi N, Rubin P, Pujolle G (2016)A novel 3d underwater wsn deployment strategy for fullcoverage and connectivity in rivers. In: Communications (ICC), IEEE International Conference on. IEEE, 2016, pp 1–7

    Google Scholar 

  19. Wu C-H, Chung Y-C (2007) Heterogeneous wireless sensor network deployment and topology control based on irregular sensor model. In International conference on grid and pervasive computing. Springer, pp 78–88

    Google Scholar 

  20. Jenkins L (2014) Challenges in deployment of wireless sensor networks. In Industrial and Information Systems (ICIIS), 9 th international conference on. IEEE, 2014, pp 1–1

    Google Scholar 

  21. Rahman AU, Alharby A, Hasbullah H, Almuzaini K (2016) Corona based deployment strategies in wireless sensor network: a survey. J Netw Comput Appl 64:176–193

    Article  Google Scholar 

  22. Guo J, Jafarkhani H (2016) Sensor deployment with limited communication range in homogeneous and heterogeneous wireless sensor networks. IEEE Trans Wirel Commun 15(10):6771–6784

    Article  Google Scholar 

  23. Zhao L-H, Liu W, Lei H, Zhang R, Tan Q (2016) Detecting boundary nodes and coverage holes in wireless sensor networks. Mob Inf Syst 2016

    Google Scholar 

  24. Olariu S, Stojmenovic I (2006) Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting. In INFOCOM 2006. 25th IEEE international conference on computer communications. Proceedings. Citeseer, pp 1–12

    Google Scholar 

  25. Liu A, Jin X, Cui G, Chen Z (2013) Deployment guidelines for achieving maximum lifetime and avoiding energy holes in sensor network. Inf Sci 230:197–226

    Article  Google Scholar 

  26. Khan MA, Sher A, Hameed AR, Jan N, Abassi JS, Javaid N (2016) Network lifetime maximization via energy hole alleviation in wireless sensor networks. In :International conference on broadband and wireless computing, communication and applications. Springer, pp 279–290

    Google Scholar 

  27. El Khamlichi Y, Tahiri A, Abtoy A, Medina-Bulo I, Palomo-Lozano F (2017) A hybrid algorithm for optimal wireless sensor network deployment with the minimum number of sensor nodes. Algorithms 10(3):80

    Article  MathSciNet  Google Scholar 

  28. Rong D (2016) Wireless sensor networks in smart cities: the monitoring of water distribution networks case. PhD dissertation, KTH Royal Institute of Technology

    Google Scholar 

  29. Du R, Fischione C, Xiao M (2016) Flowing with the water: on optimal monitoring of water distribution networks by mobile sensors. In INFOCOM -The 35th Annual IEEE international conference on computer communications, IEEE. IEEE, 2016, pp 1–9

    Google Scholar 

  30. Caruso A, Paparella F, Vieira LFM, Erol M, and Gerla M The meandering current mobility model and its impact on underwater mobile sensor networks. In INFOCOM 2008. The 27th conference on computer communications, IEEE. IEEE, 2008, pp. 221–225

    Google Scholar 

  31. Tran-Quang V, Huu PN, Miyoshi T (2011) A transmission range optimization algorithm to avoid energy holes in wireless sensor networks. IEICE Trans Commun 94(11):3026–3036

    Article  Google Scholar 

  32. Katsriku FA, Wilson M, Yamoah GG, Abdulai JD, Rahman BMA, Grattan KTV (2015) Framework for time relevant water monitoring system. In: Gamatié A (Hrsg) Computing in research and development in Africa. Springer, Cham

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kofi Sarpong Adu-Manu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adu-Manu, K.S., Katsriku, F., Abdulai, JD., Marx Gómez, J., Heinzelmann, W. (2019). Network Lifetime Maximization with Adjustable Node Transmission Range. In: Marx Gómez, J., Solsbach, A., Klenke, T., Wohlgemuth, V. (eds) Smart Cities/Smart Regions – Technische, wirtschaftliche und gesellschaftliche Innovationen. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25210-6_54

Download citation

Publish with us

Policies and ethics