Skip to main content

Simulating the Uncertain: Present Status of Operation and Maintenance Simulation for Offshore Wind Farms

  • Conference paper
  • First Online:
Smart Cities/Smart Regions – Technische, wirtschaftliche und gesellschaftliche Innovationen

Zusammenfassung

Erste subventionsfreie Offshore-Windparks in Deutschland sind geplant. Die Realisierung dieser Projekte beruht auf der richtigen Einschätzung von Planungsunsicherheiten und Kosten im Projektlebenszyklus. Betrieb und Wartung erstrecken sich über einen beträchtlichen Zeitraum des Lebenszyklus und haben somit einen hohen Einfluss auf die Gesamtunsicherheiten. Aufgrund mangelnder Erfahrung in der Kostenplanung von Offshore-Windparks wurden bereits 1997 Simulationsmodelle für Betrieb und Wartung entwickelt. Seitdem sind sie zu einem der zentralen Themen bei der Bewertung von Planungsunsicherheiten in Windparkprojekten geworden. Ziel dieser Arbeit ist es, Theorien und Ansätze zur Simulation von Planungsunsicherheiten beim Betrieb und der Instandhaltung von Offshore-Windparks zu überprüfen. Eine strukturierte Literaturrecherche wurde durchgeführt, um einen Überblick über aktuelle Simulationsmodelle zu erhalten und mit Hilfe von Theorien und Ansätzen Planungsunsicherheiten in quantifizierbare Risiken umzuwandeln. Neununddreißig verschiedene Simulationsmodelle, die in einem Zeitraum von zwei Jahrzehnten entwickelt wurden, wurden bewertet und in funktionale Unsicherheitsmodule unterteilt. Die Ergebnisse zeigen eindrucksvoll, dass sich die bisherigen Arbeiten vor allem auf wenige Ansätze konzentriert haben. Darüber hinaus spiegeln sich Bewertungen und Entscheidungspräferenzen von Betriebs- und Wartungsfachleuten nur selten in diesen Tools wider. Es ist noch unklar, ob probabilistische Modelle von der Berücksichtigung von Bewertungen durch Betriebs- und Instandhaltungsfachleute profitieren würden, zukünftige Entwicklungen könnten von einem systemischen Ansatz zur Simulation von Projektunsicherheiten profitieren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    e.g. crew transfer vessel, service operation vessel or helicopter.

References

  1. 4C Offshore Ltd (2015) Global offshore wind farms database. http://www.4coffshore.com/windfarms/. Accessed 2 Dec 2016

  2. Akbari N, Irawan CA, Jones DF, Menachof D (2017) A multi-criteria port suitability assessment for developments in the offshore wind industry. Renew Energy 102:118–133. https://doi.org/10.1016/j.renene.2016.10.035

    Article  Google Scholar 

  3. Akgül FG, Şenoğlu B, Arslan T (2016) An alternative distribution to Weibull for modeling the wind speed data: inverse weibull distribution. Energy Convers Manag 114:234–240. https://doi.org/10.1016/j.enconman.2016.02.026

    Article  Google Scholar 

  4. Baagøe-Engels V, Stentoft J (2016) Operations and maintenance issues in the offshore wind energy sector. Int J of Energy Sector Man 10:245–265. https://doi.org/10.1108/IJESM-04-2015-0012

    Article  Google Scholar 

  5. Bendlin D, Berkhout V, Wolken-Möhlmann G, Marx Gómez J (eds) (2017) Categorization of established methodologies used in operation and maintenance simulations of offshore wind farms, a literature review. In: The 31st edition of EnviroInfo 2017, Luxembourg City, 13–15 September

    Google Scholar 

  6. Besnard F (2013) On maintenance optimization for offshore wind farms. Doktorsavhandlingar vid Chalmers tekniska högskola, ny serie, nr. 3503. Chalmers University of Technology, Gothenburg

    Google Scholar 

  7. Browell J, Dinwoodie I, McMillan D (2016) Forecasting for day-ahead offshore maintenance scheduling under uncertainty. In: Walls L, Revie M, Bedford T (eds) Risk, Reliability and Safety: Innovating Theory and Practice. CRC Press, Taylor & Francis Group, Boca Raton, pp 1137–1144

    Google Scholar 

  8. Carroll J, McDonald A, McMillan D (2016) Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines. Wind Energ 19:1107–1119. https://doi.org/10.1002/we.1887

    Article  Google Scholar 

  9. Dalgic Y, Lazakis I, Dinwoodie I, McMillan D, Revie M, Majumder J (2015) The influence of multiple working shifts for offshore wind farm o&m activities – Strathow-OM tool. In: design & operation of offshore wind farm support vessels: conference, London

    Google Scholar 

  10. Dai L, Ehlers S, Rausand M, Utne IB (2013) Risk of collision between service vessels and offshore wind turbines. Reliab Eng Syst Saf 109:18–31. https://doi.org/10.1016/j.ress.2012.07.008

    Article  Google Scholar 

  11. Dai L, Stålhane M, Utne I (2015) Routing and scheduling of maintenance fleet for offshore wind farms. Wind Eng 39:15–30. https://doi.org/10.1260/0309-524X.39.1.15

    Article  Google Scholar 

  12. Dalgic Y (2015) Development of offshore wind operational expenditure model and investigation of optimum operation and maintenance fleet, University of Strathclyde. Department of Naval Architecture, Ocean and Marine Engineering

    Google Scholar 

  13. Dalgic Y, Lazakis I, Dinwoodie I, McMillan D, Revie M (2015a) Advanced logistics planning for offshore wind farm operation and maintenance activities. Ocean Eng 101:211–226. https://doi.org/10.1016/j.oceaneng.2015.04.040

    Article  Google Scholar 

  14. Dalgic Y, Dinwoodie I, Lazakis I, McMillan D, Revie M (2015b) Optimum CTV fleet selection for offshore wind farm O&M activities. In: Nowakowski T, Młyńczak M, Jodejko-Pietruczuk A, Werbińska-Wojciechowska S (eds) Safety and reliability: methodology and applications, proceedings of the European Safety and Reliability Conference, ESREL 2014, Wrocław, 14–18 September 2014. CRC Press/Balkema, Leiden, pp 1177–1185

    Google Scholar 

  15. Dewan A (2014) Logistic & service optimization for O&M of offshore wind farms: model development and output analysis. Master thesis, TU Delft

    Google Scholar 

  16. Dinwoodie I (2014) Modelling the operation and maintenance of offshore wind farms. Doctoral thesis, University of Strathclyde

    Google Scholar 

  17. Douard F, Domecq C, Lair W (2012) A probabilistic approach to introduce risk measurement indicators to an offshore wind project evaluation: improvement to an existing tool ecume. Energy Procedia 24:255–262. https://doi.org/10.1016/j.egypro.2012.06.107

    Article  Google Scholar 

  18. ECN (2014) Launch ECN O&M system: from big data through decision making. https://www.ecn.nl/news/item/launch-ecn-om-system/

  19. Endrerud O-EV, Liyanage JP, Keseric N (2014) Marine logistics decision support for operation and maintenance of offshore wind parks with a multi method simulation model. In: Tolk A, Diallo SY, Ryzhov IO, Yilmaz L, Buckley S, Miller JA (eds) Proceedings of the 2014 winter simulation conference, Savannah, pp 1712–1722

    Google Scholar 

  20. Endrerud OEV, Austreng KR, Keseric N, Liyanage JP (2015) New vessel concepts for operations and maintenance of offshore wind farms. In: Isope (ed) The twenty-fifth (2015) international ocean and polar engineering conference, Kona, Hawaii Big Island, June 21–27

    Google Scholar 

  21. Faulstich S, Berkhout V, Mayer J, Siebenlist D (2016) Modelling the failure behaviour of wind turbines. J Phys. https://doi.org/10.1088/1742-6596/749/1/012019

    Google Scholar 

  22. Gerdes G, Tiedemann A, Zeelenberg S (2008) Case study: European offshore wind farms – a survey for the analysis of the experiences and lessons learnt by developers of offshore wind farms. Report by Deutsche WindGuard, German Energy Agency (DENA), and University of Groningen, p 158. https://tethys.pnnl.gov/

  23. Haley A (2016) Unlocking offshore wind energy in the United States: applying lessons learned from the United Kingdom and Denmark. Master thesis, Duke University

    Google Scholar 

  24. Hofmann M (2010) State of the art of models for offshore wind farms with an emphasis on O&M strategies. https://www.sintef.no/Projectweb/Nowitech/. Accessed 23 Dec 2010

  25. Hofmann M, Sperstad IB (2013) NOWIcob – a tool for reducing the maintenance costs of offshore wind farms. Energy Procedia. https://doi.org/10.1016/j.egypro.2013.07.171

    Article  Google Scholar 

  26. Irawan CA, Ouelhadj D, Jones D, Stålhane M, Sperstad IB (2017) Optimisation of maintenance routing and scheduling for offshore wind farms. Eur J Oper Res 256:76–89. https://doi.org/10.1016/j.ejor.2016.05.059

    Article  MathSciNet  MATH  Google Scholar 

  27. Joschko P, Widok AH, Page B, Appel S, Greiner S, Albers H (2013) Modelling and simulation of offshore windfarm – mapping and analysis of relevant O&M process. In: Page B, Fleischer AG, Göbel J, Wohlgemuth V (eds) EnviroInfo 2013 – environmental informatics and renewable energies: 27th international conference on informatics for environmental protection; proceedings of the 27th conference on environmenta informatics – informatics for environmental protection, sustainable development and risk management; September 2–4, 2013, University of Hamburg, Germany. Shaker, Aachen, pp 1–12

    Google Scholar 

  28. Kaegi M, Mock R, Kröger W (2009) Analyzing maintenance strategies by agent-based simulations: a feasibility study. Reliab Eng Syst Saf 94:1416–1421. https://doi.org/10.1016/j.ress.2009.02.002

    Article  Google Scholar 

  29. Karyotakis A (2011) On the optimisation of operation and maintenance strategies for offshore wind farms. Doctoral thesis, University College London

    Google Scholar 

  30. Karyotakis A, Bucknall R (2010) Planned intervention as a maintenance and repair strategy for aoffshore wind turbines. J Mar Eng Technol 9:27–35. https://doi.org/10.1080/20464177.2010.11020229

    Article  Google Scholar 

  31. Mojo Maritime Limited (2015) Mermaid ®. http://mojomermaid.com/

  32. Münsterberg T (2016) Simulation-based evaluation of operation and maintenance logistics concepts for offshore wind power plants. Dissertation

    Google Scholar 

  33. Nielsen JS (2013) Risk-based operation and maintenance of offshore wind turbines. River Publishers Niels Jernes Vej 10 9220 Aalborg Ø Denmark

    Google Scholar 

  34. Peterson R (2016) Risk and uncertainty management – Increasing project value. https://www.linkedin.com/pulse/risk-uncertainty-management-increasing-project-value-raya-peterson/. Accessed 14 Mar 2018

  35. Rinaldi G, Thies PR, Johanning L, Walker TA (2016) Computational tool for the pro-active management of offshore farms. In: www.asranet.co.uk (ed) International Conference on Offshore Renewable Energy – CORE, Glasgow

  36. Sagarna I, Uribetxebarria J, Castellano E, Erguido A (2016) After-sales maintenance service strategies optimization. An offshore wind farm case study. IFAC-PapersOnLine 49:156–161. https://doi.org/10.1016/j.ifacol.2016.11.027

    Article  MathSciNet  Google Scholar 

  37. Sarker BR, Faiz TI (2016) Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy. Renew Energy 85:104–113. https://doi.org/10.1016/j.renene.2015.06.030

    Article  Google Scholar 

  38. Sarker BR, Faiz TI (2017) Minimizing transportation and installation costs for turbines in offshore wind farms. Renew Energy 101:667–679. https://doi.org/10.1016/j.renene.2016.09.014

    Article  Google Scholar 

  39. Scheu M, Matha D, Hofmann M, Muskulus M (2012) Maintenance strategies for large offshore wind farms. Energy Procedia 24:281–288. https://doi.org/10.1016/j.egypro.2012.06.110

    Article  Google Scholar 

  40. Scheu MN, Kolios A, Fischer T, Brennan F (2017) Influence of statistical uncertainty of component reliability estimations on offshore wind farm availability. Reliab Eng Syst Saf. https://doi.org/10.1016/j.ress.2017.05.021

    Article  Google Scholar 

  41. Smart G (2017) Moving toward a subsidy free future for offshore wind, Catapult Offshore Renewable Energy (ORE). Available at: https://ore.catapult.org.uk/analysisinsight/moving-toward-a-subsidy-free-future-for-offshore-wind/. Last accessed 5 May 2018

  42. Stanik C (2016) Effizienz-basiertes Analyseverfahren für die strategische Planung maritimer Service- und Versorgungskonzepte im Offshore-Windparkbetrieb. Fakultät V – Verkehrs- und Maschinensysteme der Technischen Universität Berlin

    Google Scholar 

  43. Stiesdal H, Madsen PH (eds) (2005) Design for reliability. Copenhagen Offshore Wind 2005, Copenhagen

    Google Scholar 

  44. Strantzali E, Aravossis K (2016) Decision making in renewable energy investments: a review. Renew Sust Energ Rev 55:885–898. https://doi.org/10.1016/j.rser.2015.11.021

    Article  Google Scholar 

  45. Vom Brocke J, Simons A, Niehaves B, Riemer K, Plattfaut R, Cleven A, others (2009) Reconstructing the giant: On the importance of rigour in documenting the literature search process. In: ECIS, Verona, vol 9, pp 2206–2217

    Google Scholar 

  46. Webster J, Watson RT (2002) Analyzing the past to prepare for the future: writing a literature review. MIS Quarterly, vol 26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Bendlin .

Editor information

Editors and Affiliations

Appendices

Appendices

Table A.1 Classification of simulation methods and their percentage of use

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bendlin, D., Hebig, K., Wolken-Möhlmann, G., Marx Gómez, J. (2019). Simulating the Uncertain: Present Status of Operation and Maintenance Simulation for Offshore Wind Farms. In: Marx Gómez, J., Solsbach, A., Klenke, T., Wohlgemuth, V. (eds) Smart Cities/Smart Regions – Technische, wirtschaftliche und gesellschaftliche Innovationen. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25210-6_46

Download citation

Publish with us

Policies and ethics