Skip to main content

Quantitative Assessment of Inoculum Production, Dispersal, Deposition, Survival and Infectiousness in Airborne Diseases

  • Chapter
Experimental Techniques in Plant Disease Epidemiology

Abstract

The integrated effects of production, dispersal, deposition, survival and infectiousness of inoculum are manifest in the disease severity it is able to cause under the specific conditions of environmental and host factors. Evaluation of these components and of their integrated effects is often so difficult that they constitute the “black boxes” in many epidemiological analyses. There are no research techniques that will eliminate completely these black boxes. However, there are some direct and indirect approaches that may improve quantitative assessment of the individual components and their integrated action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anon (1983) In: Johnston A, Booth C (eds) Plant pathologist’s pocketbook, 2nd edn. Commonwealth Agriculture Bureaux, Slough, England, pp 408–409

    Google Scholar 

  • Aust HJ, Kranz J (1974) Eine automatische Sporenfalle für den Gebrauch in Klimaschränken. Angew Bot 48: 267–272

    Google Scholar 

  • Aylor DE (1979) Dispersal in time and space: aerial pathogens. In: Horsfall JG, Cowling EB (eds) Plant disease, advanced treatise, vol 2. Academic Press, London, pp 159–180

    Google Scholar 

  • Bainbridge A, Stedman OJ (1979) Dispersal of Erysiphe graminis and Lycopodium clavatum spores near to the source is a barley crop. Ann Appl Biol 91: 187–198

    Article  Google Scholar 

  • Bartlett JT, Bainbridge A (1978) Volumetric sampling of microorganisms in the atmosphere. In: Scott PR, Bainbridge A (eds) Plant disease epidemiology. Blackwell Scientific Publ, Oxford, England, pp 23–30

    Google Scholar 

  • Bashi E, Aylor DE (1983) Survival of detached sporangia of Peronospora destructor and Peronospora tabacina. Phytopathology 73: 1135–1139

    Article  Google Scholar 

  • Bashi E, Ben-Joseph Y, Rotem J (1982) Inoculum of Phytophthora infestans and the development of potato late blight epidemics. Phytopathology 72: 1043–1047

    Article  Google Scholar 

  • Burleigh JR, Romig RW, Roelfs AP (1969) Characterization of wheat rust epidemics by numbers of uredia and numbers of urediospores. Phytopathology 59: 1229–1237

    Google Scholar 

  • Caesar A J, Pearson RC (1983) Environmental factors affecting survival of ascospores of Sclerotinia sclerotiorum. Phytopathology 73: 1024–1030

    Article  Google Scholar 

  • Casselman TW, Berger RD (1970) An improved portable automatic sampling spore trap. Proc Fla State Hortic Soc 83: 191–195

    Google Scholar 

  • Chamberlain AC (1975) The movement of particles in plant communities. In: Monteith JC (ed) Vegetation and the atmosphere: 1. principles. Academic Press, London, pp 155–203

    Google Scholar 

  • Edmonds RL (1972) Collection efficiency of rotorod samplers for sampling fungus spores in the atmosphere. Plant Dis Rep 56: 704–708

    Google Scholar 

  • Edmonds RL, Hinshaw RW, Leslie KB (1984) A 24-hour deposition sampler for spores of Heterobasidion annosum. Phytopathology 74: 1032–1034

    Article  Google Scholar 

  • Eversmeyer MG, Kramer CL, Collins TI (1976) Three suction-type spore samplers compared. Phytopathology 66: 62–64

    Article  Google Scholar 

  • Faulkner MJ, Colhoun J (1977) An automatic spore trap for collecting pycnidiospores of Leptosphaeria nodorum and other fungi from the air during rain and maintaining them in a viable condition. Phytopathol Z 89: 50–59

    Article  Google Scholar 

  • Fitt BDL (1983) Evaluation of samplers for splash-dispersed fungus spores. EPPO Bull 13: 57–61

    Article  Google Scholar 

  • Gadoury DM, MacHardy WE (1983) A recording volumetric spore trap. Phytopathology 73: 1526–1531

    Article  Google Scholar 

  • Gottwald TR, Tedders WL (1985) A spore and pollen trap for use on aerial remotely piloted vehicles. Phytopathology 75: 801–807

    Article  Google Scholar 

  • Gregory PH (1973) The microbiology of the atmosphere, 2nd edn. Leonard Hill, London

    Google Scholar 

  • Hartmann H, Sutton JC, Thurtell GW (1982) An apparatus for accurate control of atmospheric water potentials in studies of foliar plant pathogens. Phytopathology 72: 914–916

    Article  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39: 257–265

    Article  Google Scholar 

  • Hirst JM (1959) Spore liberation and dispersal. In: Holton CS (ed) Plant pathology–problems and progress, 1908–1958. Univ of Wisconsin Press, Madison, WI, pp 529–538

    Google Scholar 

  • Honda Y, Yunoki T (1977) Control of Sclerotinia disease of greenhouse eggplant and cucumber by inhibition of development of apothecia. Plant Dis Rep 61: 1036–1040

    Google Scholar 

  • Husain SM (1963) An automatic suction-impaction type spore trap and its use with onion blotch Alternaria. Phytopathology 53: 382–387

    Google Scholar 

  • Kramer CL, Eversmeyer MG, Collins TI (1976) A new 7-day spore sampler. Phytopathology 66: 60–61

    Article  Google Scholar 

  • Landahl HD, Herrmann RG (1949) Sampling of liquid aerosols by wires, cylinders and slides, and efficiency of impaction of the droplet. J Colloid Sci 4: 103–136

    Article  PubMed  CAS  Google Scholar 

  • May KR (1967) Physical aspects of sampling airborne microbes. In: Gregory PH, Monteith JL (eds) Airborne microbes. Cambridge Univ Press, Cambridge, England, pp 60–88

    Google Scholar 

  • Morris JCT (1982) A simple automatic volumetric spore trap. Bull Br Mycol Soc 16: 151–154

    Article  Google Scholar 

  • Perkins WA (1957) The rotorod sampler. 2nd Semiannual Rep Aerosol Lab, Dept of Chemistry and Chemical Engng, Stanford Univ CA 186, pp 1–66

    Google Scholar 

  • Rotem J (1968) Thermoxerophytic properties of Alternaria porri f. sp. solani. Phytopathology 58: 1284–1287

    Google Scholar 

  • Rotem J, Aylor DE (1984) Development and inoculum potential of Peronospora tabacina in the fall season. Phytopathology 74: 309–313

    Article  Google Scholar 

  • Rotem J, Wooding B, Aylor DE (1985) The role of solar radiation, especially ultraviolet, in the mortality of fungal spores. Phytopathology 75: 510–514

    Article  Google Scholar 

  • Schein RD (1964) Comments on the moisture requirements of fungus germination. Phytopathology 54: 1427

    Google Scholar 

  • Schwarzbach E (1979) A high throughput jet trap for collecting mildew spores on living leaves. Phytopathol Z 94: 165–171

    Article  Google Scholar 

  • Sutton TB, Jones AL (1976) Evaluation of four spores traps for monitoring discharge of ascospores of Venturia inaequalis. Phytopathology 66: 453–456

    Article  Google Scholar 

  • Waggoner PE (1983) The aerial dispersal of the plant pathogens of plant disease. Philos Trans R Soc Lond B Biol Sci 302: 451–462

    Article  Google Scholar 

  • Wili GM (1985) Comparison of the designs of two volumetric spore traps. Phytopathology 75: 380

    Article  Google Scholar 

  • Winston PW, Bates DH (1960) Saturated solutions for the control of humidity in biological research. Ecology 41: 232–237

    Article  Google Scholar 

  • Zuck, MG, Caruso FL (1984) A volumetric spore trap designed for monitoring Venturia inaequalis spore release in apple scab management programs. Phytopathology 74: 796 (abstr)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Heidelberg

About this chapter

Cite this chapter

Rotem, J. (1988). Quantitative Assessment of Inoculum Production, Dispersal, Deposition, Survival and Infectiousness in Airborne Diseases. In: Kranz, J., Rotem, J. (eds) Experimental Techniques in Plant Disease Epidemiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95534-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95534-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95536-5

  • Online ISBN: 978-3-642-95534-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics