Skip to main content

Experimental Techniques

  • Chapter
Reflectance Spectroscopy

Abstract

To determine the “indicatrix” of a remitting surface (see p. 29) a goniophotometer can be used to measure the radiation flux at various angles of reflection and azimuths, for given (and usually variable) angles of incidence, a. Numerous such photometers have been described239. The older apparatus, naturally, works by the visual photometric principle of measurement with a reference beam. The accuracy of such measurements amounts, therefore — after removal of numerous possible systematic errors — to, at most, 1–2%. Frequently used, for example, was the well-known Pulfrich photometer of Zeiss, with suitable additional equipment240. The position of the sample relative to the optical axis of the photometer could be adjusted with the help of a vertical and a horizontal axis and could be read on the divided circles with a vernier to 1′. In this way a quarter of the indicatrix sphere could be measured. Also, the angle of incidence of the radiation could be changed by shifting the light source on a third axis. The insertion of a nicol prism allows measurements to be made with linearly polarized light. The sample is arranged to give an image on the measuring diaphragm of the Pulfrich photometer so that there is a structureless field of vision. This image then falls on a second nicol prism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e.g., Messerschmidt, J. B.: Ann. Physik 34, 867 (1888).

    Google Scholar 

  2. McNicholas, H. J.: J. Res. Natl. Bur. Std. 1, 29 (1928);

    Google Scholar 

  3. McNicholas, H. J.: J. Res. Natl. Bur. Std. 13, 211 (1934).

    CAS  Google Scholar 

  4. Weigel, R. G., and G. Ott: Z. Instrumentenk. 51, 1,61 (1931).

    Google Scholar 

  5. Slater, J. M.: J. Opt. Soc. Am. 25, 218 (1935).

    Article  Google Scholar 

  6. Moon, P., and J. Laurence: J. Opt. Soc. Am. 31, 130 (1941).

    Article  Google Scholar 

  7. Harrison, V. G. W.: J. Sci. Instr. 24, 21 (1942) and numerous other papers.

    Article  Google Scholar 

  8. Falta, W.: Jenaer Jahrb. 1954.

    Google Scholar 

  9. Cf. Kortüm, G.: Kolorimetrie, Photometrie und Spektrometrie, 4th Ed. Berlin-Göttingen-Heidelberg: Springer 1962;

    Google Scholar 

  10. Kortüm, G., and R. Hamm: Ber. Bunsenges., 72, 1182 (1968).

    Google Scholar 

  11. McNicholas, H. J.: J. Res. Natl. Bur. Std. 1, 29 (1928).

    Google Scholar 

  12. Hunter, R. S.: Modern aspects of reflectance spectroscopy, p. 226 ff. New York: Plenum Press 1968.

    Book  Google Scholar 

  13. Sumpner, W. E.: Proc. Res. Phys. Soc. London 12, 10 (1892).

    Article  Google Scholar 

  14. Ulbricht, T.: Elektrotech. Z. 21, 595 (1900).

    Google Scholar 

  15. For an outstanding summary review of theory, error possibilities, and methods of preparation of a reflecting layer see Wendlandt, W. W., and H. G. Hecht: Reflectance spectroscopy. New York: Interscience Publishers, John Wiley & Sons 1966. Instead of the integrating sphere, a hemisphere can also be used to obtain even more favorable radiation output. In this regard

    Google Scholar 

  16. Derksen, W. L., et al.: J. Opt. Soc. Am. 47, 995 (1957).

    Article  Google Scholar 

  17. If there is no screen in the sphere to prevent directly reflected light from P falling on the measuring surface, the same sum as in Eq. (IV, 126) is calculated, that is Eq. (IV, 127) has an extra term.

    Google Scholar 

  18. In the vacuum-UV (500 to 2000 Å), sodium salicylate is used instead, with a background of a MgO pigment which has a good reflectance in the λ range where the salicylate is strongly fluorescent. See Heaney, J. B.: J. Opt. Soc. Am. 56, 1423 (1966).

    Google Scholar 

  19. Blevin, W. R., and J. Brown: J. Opt. Soc. Am. 51, 129 (1961).

    Article  CAS  Google Scholar 

  20. For a description of the technique of preparing MgO, see Dimitroff, J. M., and D. W. Swanson: J. Opt. Soc. Am. 46, 555 (1956).

    Article  Google Scholar 

  21. Kortüm, G.: Kolorimetrie, Photometrie und Spektrometrie, 4th. ed. Berlin-Göttingen-Heidelberg: Springer 1962.

    Google Scholar 

  22. For the use of the Beckman spectrometer for measuring reflectances, these errors, and the possibility of reducing them have been studied in detail [cf. Hammond, H. K., and J. Nimeroff: J. Opt. Soc. Am. 42, 367 (1952)].

    Article  Google Scholar 

  23. A detailed discussion of sources of error in reflectance measurements is given by Derksen, W. L., et al: J. Opt. Soc. Am. 47, 995 (1967).

    Article  Google Scholar 

  24. Apart from the correctness of the reference standards, the sources of errors are the same as those which play a role in transmission measurements, in particular the limited monochromaticity of the radiation and the effective spectral width (cf. Kortüm, G.: Kolorimetrie, Photometrie und Spektrometrie, 4th Ed. Berlin-Göttingen-Heidelberg: Springer 1962).

    Google Scholar 

  25. Jork, H.: Cosmo Pharma 3, 33 (1967).

    Google Scholar 

  26. Stahl, E., and H. Jork: Zeiss Information Bulletin 16, 52 (1968) and the literature given therein.

    CAS  Google Scholar 

  27. See Savitzky, A., and R. S. Halford: Rev. Sci. Inst. 21, 203 (1950),

    Article  Google Scholar 

  28. and also Kortüm, G.: Kolorimetrie, Photometrie und Spektrometrie, 4th ed., p. 309. Berlin-Göttingen-Heidelberg: Springer 1962.

    Google Scholar 

  29. Hedelman, and W. N. Mitchell: Modern aspects of reflectance spectroscopy, p. 158ff. New York: Plenum Press 1968.

    Book  Google Scholar 

  30. Hardy, A. C.: J. Opt. Soc. Am. 25, 305 (1935).

    Article  Google Scholar 

  31. Gibson, K. S., and H. S. Keegan: J. Opt. Soc. Am. 28, 372 (1938).

    Article  Google Scholar 

  32. van den Akker, I. A.: J. Opt. Soc. Am. 33, 257 (1943).

    Article  Google Scholar 

  33. The diffusely and regularly reflected portions can be separated from each other in a similar way in the reflection attachment to the Perkin Elmer 4000 A and 350. [Anacreon, R. E., and R. H. Noble: Appl. Spectroscopy 14, 29 (1960).]

    Article  CAS  Google Scholar 

  34. Numerous apparatus that almost always operate by the deflection method have been described for the relative or absolute measurement of the regular reflectance of plane surfaces. In this regard, see, for example, Bennett, H. E., and W. F. Koehler: J. Opt. Soc. Am. 50, 1 (1960).

    Article  Google Scholar 

  35. Reid, C. D., and E. D. MacAlister: J. Opt. Soc. Am. 49, 78 (1959).

    Article  Google Scholar 

  36. Shaw, J. E., and W. R. Blevin: J. Opt. Soc. Am. 54, 334 (1964). Preferable methods are those in which the irradiation is perpendicularly incident so that the results of the measurements are independent of the polarization state of the incident radiation.

    Article  Google Scholar 

  37. See Kortüm, G.: Kolorimetrie, Photometrie und Spektrometrie, 4th ed. Berlin-Göttingen-Heidelberg: Springer 1962.

    Google Scholar 

  38. See, e.g. Wendlandt, W., P. H. Franke, and J. P. Smith: Anal. Chem. 35, 105 (1963).

    Article  Google Scholar 

  39. Frei, R. W., and M. M. Frodyma: Anal. Chim. Acta 32, 501 (1965).

    Article  CAS  Google Scholar 

  40. Kortüm, G., and H. Bach: Spectrochim. Acta 21, 1117 (1965).

    Article  Google Scholar 

  41. Kortüm, G., and H. Schöttler: Z. Elektrochem. 57, 353 (1953).

    Google Scholar 

  42. Oelkrug, D.: Ber. Bunsenges. Physik. Chem. 70, 736 (1966);

    CAS  Google Scholar 

  43. Oelkrug, D.: Ber. Bunsenges. Physik. Chem. 71, 697 (1967).

    CAS  Google Scholar 

  44. Symons, M. C. R., and P. A. Trevalioni: Unicam Spectrovision 10, 8 (1961).

    Google Scholar 

  45. Pritchard, B. S., and E. I. Stearns: J. Opt. Soc. Am. 42, 752 (1952).

    Article  CAS  Google Scholar 

  46. See also Derby, R. E.: Am. Dyestuff Rep. 41, 550 (1952); also the Gary spectrometer can be supplied with a F(R ) scale.

    Google Scholar 

  47. See e.g. van den Akker, J. A., et al.: Tappi 35,141 A (1952).

    Google Scholar 

  48. Loof, H.: Zeiss Information Bulletin (in press).

    Google Scholar 

  49. Manufacturer: E. Käsemann, Optische Werkstätten, Oberaudorf/Inn. Type used: Ks-MIK. Recently, UV transmitting polarization filters have been described: Makas, A. S.: J. Opt. Soc. Am. 52, 43 (1962).

    Article  CAS  Google Scholar 

  50. Supplied by the firm, B. Halle, Berlin-Steglitz.

    Google Scholar 

  51. Donaldson, R.: Brit. J. Appl. Physics 5, 210 (1950).

    Article  Google Scholar 

  52. Schnitze, W.: Farbe 2, 13 (1953).

    Google Scholar 

  53. Koch, O., and K. Bunge: Chem. Ing. Techn. 32, 810 (1960).

    Article  Google Scholar 

  54. For example, the “Elrepho” described on p.222. See also Berger, A.: Zeiss Information Bulletin (in press).

    Google Scholar 

  55. Kortüm, G., W. Braun, and G. Herzog: Angew. Chem. 75, 653 (1963);

    Article  Google Scholar 

  56. Kortüm, G., W. Braun, and G. Herzog: Internat. Ed. 2, 333 (1963).

    Article  Google Scholar 

  57. Kortüm, G., J. Vogel, and W. Braun: Angew. Chem. 70, 651 (1958).

    Article  Google Scholar 

  58. See, e.g., Mecaplex AG, Grenchen, Switzerland, sold through Dr. H. Rumm & Co., Augsburg, West Germany.

    Google Scholar 

  59. Suitable ball mills are produced by, e.g., the firms of Ludwig Hormuth, Wiesloch (Baden) and Alfred Fritsch, Idar-Oberstein, West Germany.

    Google Scholar 

  60. Kortürn, G., and G. Schreyer: Angew. Chem. 67, 694 (1955).

    Article  Google Scholar 

  61. v. Arderne, M.: Angew. Chem. 54, 144 (1941);

    Article  Google Scholar 

  62. v. Arderne, M.: Kolloid-Z. 93, 158 (1940).

    Article  Google Scholar 

  63. See also Wagner, E., and H. Brunner: Angew. Chem. 72, 744 (1960). Very fine particle sizes can also be similarly obtained with TiO2.

    Article  CAS  Google Scholar 

  64. In the red spectral region, even this layer thickness is insufficient for the finest aerosil particles.

    Google Scholar 

  65. See Oelkrug, D.: Thesis, Tübingen 1963.

    Google Scholar 

  66. Thus a method, recently given by Caldwell, B. P.: J. Opt. Soc. Am. 58, 755 (1968), for calculating the Kubelka-Munk coefficients (S, K, R , R 0) from transmission measurements on 2 layers with thickness ratio of 1:2, is of limited applicability.

    Article  Google Scholar 

  67. Otherwise, two photometer spheres must be used, which is experimentally rather inconvenient.

    Google Scholar 

  68. Kortüm, G., and W. Braun: Z. Physik. Chem. N.F. 28, 362 (1961).

    Article  Google Scholar 

  69. Briegleb, G., and H. Delle: Z. Physik. Chem. N.F. 24, 359 (1960).

    Article  CAS  Google Scholar 

  70. Weyl, W. A.: Research 3, 230 (1950). — Benson, R. E., and J. E. Castle ; J. Physic. Chem. 1958, 840.

    CAS  Google Scholar 

  71. Kortüm, G., and H. Koffer: Ber. Bunsenges. 67, 67 (1963).

    Google Scholar 

  72. Kortüm, G., and V. Schlichenmaier: Z. Physik. Chem. N. F. 48, 267 (1966). — Kortüm, G., and M. Friz: in press.

    Article  Google Scholar 

  73. Cf. e.g. Hoffmann, B. K.: Chem. Ing. Techn. 35, 55 (1963).

    Article  CAS  Google Scholar 

  74. Cf. e.g. Kortüm, G.: Kolorimetrie, Photometrie und Spektrometrie, 4th ed. Berlin-Göttingen-Heidelberg: Springer 1962.

    Google Scholar 

  75. v. Hirschhausen, H.: Diplomarbeit, Tübingen 1961.

    Google Scholar 

  76. Gier, J. T., et al.: J. Opt. Soc. Am. 44, 558 (1954).

    Article  CAS  Google Scholar 

  77. Starr, W. L., and E. Streed: J. Opt. Soc. Am. 45, 584 (1955).

    Article  Google Scholar 

  78. Details of the hohlraum type infrared reflectance spectrophotometer are given by Keith, R. H.: in “Modern aspects of reflectance spectroscopy”, p. 70ff. New York: Plenum Press 1968.

    Chapter  Google Scholar 

  79. Perkin-Elmer: Instrument News 10 (4), 1 (1959).

    Google Scholar 

  80. Reid, C. D., and E. D. McAlister: J. Opt. Soc. Am. 49, 78 (1959).

    Article  Google Scholar 

  81. Paschen, F.: Ber. Berl. Akad. Wiss. 27 (1899).

    Google Scholar 

  82. Coblentz, W.: Bull. Natl. Bur. Std. 9, 283 (1913).

    Google Scholar 

  83. Sanderson, J. A.: J. Opt. Soc. Am. 37, 771 (1947).

    Article  CAS  Google Scholar 

  84. Derksen, W. L., and T. J. Monahan: J. Opt. Soc. Am. 42, 263 (1952).

    Article  Google Scholar 

  85. Such a device, incorporated in a double beam spectrophotometer, has been produced by Beckman, Inc.

    Google Scholar 

  86. Kronstein, M., et al.: J. Opt. Soc. Am. 53, 458 (1963).

    Article  CAS  Google Scholar 

  87. Kortüm, G., and H. Delfs: Spectrochim. Acta 20, 405 (1964).

    Article  Google Scholar 

  88. A similar arrangement was given by Brandenberg, W. M.: J. Opt. Soc. Am. 54, 1235 (1964). In addition, the focusing characteristics of elliptical and spherical mirrors were investigated.

    Article  Google Scholar 

  89. Philco (Landsdale, Penn., USA).

    Google Scholar 

  90. White, U.: J. Opt. Soc. Am. 54, 1332 (1964);

    Article  CAS  Google Scholar 

  91. see in addition Keegan, H. J., and V. R. Weidner: J. Opt. Soc. Am. 55, 1567 (1965);

    Google Scholar 

  92. see in addition Keegan, H. J., and V. R. Weidner: J. Opt. Soc. Am. 56, 540 A (1966).

    Article  Google Scholar 

  93. Blevin, W. R., and W. J. Brown: J. Sci. Instr. 42, 385 (1965).

    Article  CAS  Google Scholar 

  94. See also Nichols, D. G., and S. E. Orchard: J. Opt. Soc. Am. 55, 162 (1965).

    Article  Google Scholar 

  95. S son Stenius, Å.: Svensk Papperstidning 54, 663, 700 (1951).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Kortüm, G. (1969). Experimental Techniques. In: Reflectance Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88071-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88071-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88073-5

  • Online ISBN: 978-3-642-88071-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics