Skip to main content

Abstract

Wood can be modified by either physical or chemical means, or their combination. Modifications to be considered in this chapter involve either impregnation with chemicals, densification under heat and pressure, or their combination. Impregnations involve depositing chemicals in the microscopically visible void structure or within the cell walls, or reacting the chemicals with the cell wall components without breaking down the wood structure. These impregnation treatments are made to impart decay resistance, fire retardance and/or dimensional stability to the wood, or to improve specific strength properties. The first two of these objectives can be accomplished by merely depositing either toxic or fire retardant chemicals in the void structure. When water borne chemicals are used they are partially deposited within the cell walls of the wood. Permanent dimensional stability, on the other hand, is imparted to wood only when the chemicals are deposited within the cell walls or chemically react with the cell wall components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature Cited

  • Adzumi, H., (1937) On the flow of gases through a porous wall. Bull. Chem. Soc., Japan 12 (6): 304–312.

    CAS  Google Scholar 

  • Am. Soc. Testing Materials, (1961) Surface burning characteristics of building materials. Part 5, Standard E 84: 1178–1184.

    Google Scholar 

  • Am. Wood Preserver’s Assoc. Proc., (1955) Wood preservation statistics 51: 324.

    Google Scholar 

  • Am. Wood Preserver’s Assoc. Proc., (1967) Wood preservation statistics 60: 246.

    Google Scholar 

  • Anderson, A. B., (1946) Chemistry of western pines. Ind. Eng. Chem. 38: 450–454, 759–761.

    Google Scholar 

  • Anderson, A. B., Fearing, W. B. Jr., (1960) Solvent seasoning of tanoak. For. Prod. J. 10 (5): 234–238.

    Google Scholar 

  • Baechler, R. H., (1953) Effect of treating variables on absorption and distribution of chemicals in pine posts treated by double diffusion. J. For. Prod. Res. Soc. 3 (12): 170–176.

    Google Scholar 

  • Baechler, R. H., (1954) Double diffusion treatment of wood. Chem. Eng. News 32 (Oct. 25) 4288.

    Google Scholar 

  • Baechler, R. H., (1958) How to treat fence posts by double diffusion. U. S. Dept. of Agr. For. Prod. Lab. Report, 1955.

    Google Scholar 

  • Baechler, R. H., (1959) Improving wood’s durability through chemical modification. For. Prod. J. 9 (5): 166–171.

    CAS  Google Scholar 

  • Baechler, R. H., Conway, E., Roth, H. G., (1959) Treating hardwood posts by the double diffusion method. For. Prod. J. 9 (7): 216–220.

    Google Scholar 

  • Baird, B. R., (1969) Dimensional stabilization of wood by vapor phase chemical treatments. Wood and Fiber 1 (1): 54–63.

    Google Scholar 

  • Bariska, M., Skaar, C., Davidson, R. W., (1960) Studies of the wood-anhydrous ammonia system. Wood Sei. 2 (2): 65–72.

    Google Scholar 

  • Barkas, W. W., (1947) A discussion of the swelling stresses and sorption hysteresis of plastic gels. Great Brit. Dept. Sei. Ind. Research, For. Prod. Special Report, No. 6.

    Google Scholar 

  • Barrer, R. M., (1941) Diffusion in and through solids. Cambridge University Press

    Google Scholar 

  • Bateson, B. A., (1939) Chem. Trade J. 105 (8) (2724): 93, 98.

    Google Scholar 

  • Benvenuti, R. R., (1963) An investigation of methods of increasing the permeability of Loblolly pine. M. S. Thesis Dept. Wood Science and Technology, North Carolina State University, Raleigh, N. C.

    Google Scholar 

  • Bescher, R. H., (1968) Process for impregnating wood with pentachlorophenol and composition therefore. U. S. Patent No. 3200003.

    Google Scholar 

  • Brenden, J. J., (1965) Effect of fire-retardant and other inorganic salts on pyrolysis products of ponderosa pine. For. Prod. J. 15 (2): 69–72.

    Google Scholar 

  • Brossman, J. R., (1931) Laminated wood product. U. S. Patent No. 1834895.

    Google Scholar 

  • Browne, F. L., (1933) Effectiveness of paints in retarding moisture absorption by wood. Ind. Eng. Chem. 25: 835–842.

    CAS  Google Scholar 

  • Browne, F. L., (1949) Water-repellent preservatives for wood. Architectural Record, Mar: 131–133.

    Google Scholar 

  • Browne, F. L., Downs, L. E., (1945) A survey of the properties of commercial water repellants and related products. U. S. For. Prod. Lab. Mimeo. R 1495.

    Google Scholar 

  • Burr, H. K., Stan?in, A. J., (194:3) Comparison of commercial water-soluble phenol formaldehyde resinoids for wood impregnation, U. S. For. Prod. Lab. Mimeo 1384.

    Google Scholar 

  • Campbell, G. G., (1966) An investigation of improving the durability of exterior finishes on wood. M. S. Thesis, Dept. Wood and Paper Science, North Carolina State University, Raleigh, North Carolina.

    Google Scholar 

  • Campbell, G. G., (1970) The effect of weathering on the adhesion of selected exterior coatings to wood. Ph. D. Thesis, Department of Wood and Paper Science, North Carolina State University, Raleigh, North Carolina.

    Google Scholar 

  • Chapiro, A., (1962) Radiation chemistry of polymer systems. Interscience Publishing Co., New York

    Google Scholar 

  • Campbell, G. G., Stannett, V. T., (1960) Radiation grafting to hydrophilic polymers, International J. Applied Radiation and Isotopes 8: 164–167.

    Google Scholar 

  • Choong, E. T., Barnes, II. M., (1969) Effect of several wood factors on the dimensional stabilization of southern pine. For. Prod. J. 19 (6): 55–60.

    Google Scholar 

  • Christensen, G. N., (1960) Kinetics of sorption of water vapor by wood. Australian J. Applied Sei. 11: 294–304.

    Google Scholar 

  • Clermont, L. P., Bender, F., (1957) The effect of swelling agents and catalysts on acetylation of wood. For. Prod. J. 7 (5): 167–170.

    Google Scholar 

  • Cohen, W. E., Stamm, A. J., Fahey, D. J., (1959) Dimensional stabilization of paper by catalized heat treatments. TAPP1 42: 904–908.

    CAS  Google Scholar 

  • Cohen, W. E., Stamm, A. J., Fahey, D. J., (1959) Dimensional stabilization of paper by cross-linking with formaldehyde. TAPPI 42: 934–940.

    CAS  Google Scholar 

  • Comstock, G. L., (1963) Moisture diffusion coefficients in wood as calculated from adsorption desorption, and steady state data. For Prod. J. 13 (3): 97–103.

    Google Scholar 

  • Comstock, G. L., (1965) Longitudinal permeability of green eastern hem lock. For. Prod. J. 15 (10): 441–449

    Google Scholar 

  • Comstock, (1967) Longitudinal permeability of wood to gases nonswelling liquids. For. Prod. J. 17 (10): 41–46.

    Google Scholar 

  • Comstock, (1968) The relationship between the permeability of green and dry eastern hemlock. For. Prod. J. 18 (8): 20–23.

    Google Scholar 

  • Comstock, (1970) Directional permeability of softwoods. Wood and Fiber. 1 (4): 283–289.

    Google Scholar 

  • Comstock, Côte, W. A., (1968) Factors affecting permeability and pit aspiration in coniferous softwoods. Wood Sci. and Tech. 2 (4): 279–291.

    Google Scholar 

  • Crank, J., (1956) The mathematics of diffusion. Clarendon Press, London.

    Google Scholar 

  • Daniel, J. H., More, S. T., Segro, N. R., (1962) Graft polymerization of acrylonitrile on cellulose. Tappi 49 (1): 53–57.

    Google Scholar 

  • Ellwood, E., Gilmore, R., Merrill, J. A., Poole, W. K., (1969) An investigation of certain physical and mechanical properties of wood-plastic combinations. U. S. Atomic Energy Commission Report ORO-638 (RTI-2513-T 13 ).

    Google Scholar 

  • Erickson, E. C. O., (1958) Mechanical properties of laminated modified wood. U. S. For. Prod. Lab. Memeo, No. 1639, revised.

    Google Scholar 

  • Erickson, H. D., (1970) Permeability of southern pine wood: a review. Wood Science 2 (2): 149–158.

    CAS  Google Scholar 

  • Erickson, H. D., Rees, L. W., (1940) Effect of several chemicals on the swelling and the crushing strength of wood. J. Agr. Research 60: 593–603.

    CAS  Google Scholar 

  • Eschalier, X., (1906) French Patent No. 374,724 additions 8422 (1906); 9904 (1908); 9905 (1908); 10760 (1909).

    Google Scholar 

  • Esselen, G. J., (1934) Wood Treatment and product. U. S. Patent No. 1952664.

    Google Scholar 

  • Findley, W. N., Worley, W. J., Kacalieff, C. D., (1946) Effect of molding pressure and resin on results of shorttime tests and fatigue tests of compreg. Trans. Am. Soc. Mech. Eng. 68: 317–325.

    Google Scholar 

  • Forest Products Laboratory’s toughness testing machine, (1956) U. S. For. Prod. Lab., Report 1308.

    Google Scholar 

  • Forest Products News Letter,(1961) C. S. I. R. O. (Australia) No. 281.

    Google Scholar 

  • Franzen, A., (1962) Ghost from the depths: the warship Vasa, National Geographic 121 (1): 42–57.

    Google Scholar 

  • Gardner, R. E., (1965) The auxiliary properties of fire-retardant treated wood, For. Prod. J. 15 (9): 365–368.

    Google Scholar 

  • Goldstein, I. S., (1955) The impregnation of wood to import resistance to alkali and acid. For. Prod. J. 5 (4): 263 —267.

    Google Scholar 

  • Goodwin, D. R., Hug, R. E., (1961) A new wood preserving process. For. Prod. J. 11 (11): 504–507.

    Google Scholar 

  • Goring, D. A. I., (1962) The physical chemistry of lignin. Butterworths, London.

    Google Scholar 

  • Goring, D. A. I., (1963) Thermal softening of lignin, hemicellulose and cellulose. Pulp and Paper Mag. Can. 64: T517–527.

    CAS  Google Scholar 

  • Gruntfest, I. J., Geyliardi, D. D., (1948) The modification of cellulose by reaction with formaldehyde. Textile Research J. 18: 643–649.

    CAS  Google Scholar 

  • Guss, C. O., (1945) Acid hydrolysis of waste wood for use in plastics. U. S. For. Prod. Lab. Mimeo R 1481.

    Google Scholar 

  • Henry, W. T., (1963) A new method of impregnating wood with preservatives. Proc. Am. Wood Preserver’s Assoc. 59: 68 —76.

    Google Scholar 

  • Hittmeier, M. E., (1967) Effect of structural direction and initial moisture content on the swelling rate of wood. Wood Sei. and Tech. 1 (2): 109–121.

    Google Scholar 

  • Huang, R. Y. M., Rapsen, W. H., (1963) Grafting polymers onto cellulose by high energy radiation. Effect of swelling agents on the gamma-ray induced direct radiation grafting of styrene onto cellulose. J. Polymer Sci. Part C (2): 169–188.

    Google Scholar 

  • Hudson, M. S., (1942) Treating wood and wood products, apparatus and method for drying wood. U. S. Patents No. 2273039; 2435218; 2435219; 2535925.

    Google Scholar 

  • Hudson, M. S., (1947) Vapor drying: the artificial seasoning of wood in vapor of organic chemicals. For. Prod. Research Soc. Proc. 1: 125–146.

    Google Scholar 

  • Hudson, M. S., (1968) New process for longitudinal treatment of wood. For. Prod. J. 18 (3): 31–35.

    Google Scholar 

  • Hudson, M. S., Shelton, S. V., (1969) Longitudinal flow of liquids in southern pine poles. For. Prod. J. 19 (5): 25–32.

    Google Scholar 

  • Hunt, G. M., (1930) Effectiveness of moisture-excluding coatings on wood U. S. Dept. Agr. Circular No. 128.

    Google Scholar 

  • Hunt, G. M., Garratt, G. A., (1953) Wood preservation. McGraw Hill Book Co. Inc., New York.

    Google Scholar 

  • Jost, W., (1952) Diffusion in solids, liquids and gases. Academic Press Inc., New York.

    Google Scholar 

  • Kelso, W. C., Jr., Gertjejansen, R. A., Hossfeld, R. L., (1963) The effect of air blockage upon the permeability of wood to liquids. University of Minnesota Agr. Exp. Station, Tech. Bull. 242.

    Google Scholar 

  • Kenaga, D. L., (1963) Effect of treating conditions on the dimensional behavior of wood during polyethylene glycol soak treatments. For. Prod. J. 13 (8): 345–349.

    Google Scholar 

  • Kenaga, D. L., (1963) Stabilization of wood products with acryliclike compounds, U. S. Patent No. 3077417.

    Google Scholar 

  • Kenaga, D. L., (1963) Stabilization of wood products with styreneacrylonitrile bis (2 chloroethyl) vinyl phosphate. U. S. Patent 3077419.

    Google Scholar 

  • Kenaga, D. L., (1970) The heat cure of high boiling styrene-type monomers in wood. Wood and Fiber 2 (1): 40–51.

    CAS  Google Scholar 

  • Kenaga, D. L. Fennessey, J. P., Stannett, V. T., (1962) Radiation grafting of vinyl monomers to wood. For. Prod. J. 12 (4): 161–168.

    Google Scholar 

  • Kent, J. A., Winsten, A., Boyle, W. R., (1962) Preparation of wood-plastic combinations using gamma radiation to induce polymerization. U. S. Atomic Energy Commission Report O. R. 0–612.

    Google Scholar 

  • Kent, J. A., Loos, W. E., Ayres, J. E., (1965) Preparation of wood-plastic combinations using gamma radiation to induce polymerization. U. S. Atomic Energy Commission Report O. R. 0.-628.

    Google Scholar 

  • Klinkenberg, L. J., (1944) The permeability of porous media to liquids and gases. Drilling Prod. Pract. 200–213.

    Google Scholar 

  • Kollmann, F. F. P., (1936) Technologie des Holzes. Springer-Verlag, Berlin.

    Google Scholar 

  • Larsen, M. L., Yan, M. M., (1969) Meeting fire hazard requirements with wood-base panel-boards. For. Prod. J. 19 (2): 12–16.

    Google Scholar 

  • Lewin, M., (1968) Israel Patent.

    Google Scholar 

  • Lloyd, R. A., Stamm, A. J., (1958) Effect of resin treatments and compression upon the weathering properties of veneer laminates. For. Prod. J. 8 (8): 230–234.

    Google Scholar 

  • Loos, W. E., (1962) Effect of gamma radiation on the toughness of wood. For. Prod. J. 12 (6): 261–264.

    Google Scholar 

  • Loos, W. E., Robinson, G. L., (1968) Rate of swelling of wood in vinyl monomers. For. Prod. J. 18 (9): 109–112.

    CAS  Google Scholar 

  • Loos, W. E., Walters, R. E., Kent, J. A., (1967) Impregnation of wood with vinyl monomers. For. Prod. J. 17 (5): 40–49.

    CAS  Google Scholar 

  • Loughborough, W. K., (1939) Chemical seasoning of overcup oak. Southern Luberman, Dec. p. 137.

    Google Scholar 

  • Loughborough, W. K., (1942) Process of plasticizing lignocellulose materials. U. S. Patent No. 2298017.

    Google Scholar 

  • Loughborough, W. K., (1943) Process for resinifying lignocellulose materials. U. S. Patent No. 2313953.

    Google Scholar 

  • MacLean, J. D., (1935) Manual of preservative treatment of wood by pressure. U. S. Dept. Agr. Misc. Publ. No. 224, Washington, D.C.

    Google Scholar 

  • Loughborough, W. K., (1962) Preservative treatment of wood by pressure methods. U. S. Dept. Agr. Handbook No. 40, Washington, D. C.

    Google Scholar 

  • Martell, P., (1930) Journal for Applied Chem. Vol. 1930, 257.

    Google Scholar 

  • McMillin, C. W., (1963) Dimensional stabilization with polymerizable vapor of ethylene oxide. For. Prod. J. 13 (2): 56–61.

    Google Scholar 

  • Meyer, J. A., (1965) Treatment of wood-polymer systems using catalyst-heat techniques. For. Prod. J. 15 (9): 362–364.

    Google Scholar 

  • Meyer, J. A., Loos, W. E., (1969) Process of and products from treating southern pine wood for modification of properties. For. Prod. J. 19 (12): 32–38.

    CAS  Google Scholar 

  • Middleton, J. C., Dragaov, S. M., Winters, F. T. Jr., (1965) An evaluation of borates and other inorganic salts as fire retardants for wood products. For. Prod. J. 15 (12): 463–467.

    CAS  Google Scholar 

  • Millett, M. A., Stamm, A. J., (1946) Treatment of wood with urea resin-forming systems: dimensional stability. Modern Plastics 24: 150–153.

    CAS  Google Scholar 

  • Mitchell, H. E., Iversen, E. S., (1961) Seasoning green-wood carvings with polyethylene glycol-1000. For. Prod. J. 11 (1): 6–7.

    Google Scholar 

  • Mitchell, H. E., Wahlgren, H. E., (1959) New chemical treatment curbs shrink and swell of walnut gunstocks. For. Prod. J. 9 (12): 437–441.

    CAS  Google Scholar 

  • Naeser, G., (1960) Umschau 34, 250.

    Google Scholar 

  • Nicholas, D. D., Thomas, R. J., (1968) Influence of steaming on ultrastructure of bordered pit membranes in loblolly pine. For. Prod. J. 18 (1): 57–59.

    Google Scholar 

  • Olesheimer, L. J., (1929) Compressed laminated fibrous product and process of making the same. U. S. Patent No. 1707135.

    Google Scholar 

  • Olson, A. G., (1934) Process of shrinking wood. U. S. Patent No. 1981567.

    Google Scholar 

  • Osnach, N. A., (1961) The permeability of wood. Derev. Prom. 10 (3): 11–13.

    Google Scholar 

  • Perry, R. H., Chilton, C. H., Kirkpatrick, S. D., (1963) Perry’s Chemical engineering Handbook. Ed. 4. McGraw-Hill, New York.

    Google Scholar 

  • Petty, J. A., Puritch, G. S., (1970) Effect of drying on the structure and permeability of the wood of Abies Grandis Wood Sei. and Tech. 4 (2) 140–155.

    Google Scholar 

  • Petty, J. A., Preston, R. D., (1969) The dimensions and number of pit membrane pores in conifer wood Proc. Roy. Soc. B172, 137–151.

    Google Scholar 

  • Prak, A. L., (1970) Unsteady-state gas permeability of wood. Wood Sci. and Tech. 4 (1): 50–69.

    Google Scholar 

  • Ramalinghan, K. V., Werezak, G. N., Hodgins, J. W., (1963) Radiation induced graft polymerization of styrene in wood. J. Polymer Sei. Part C Polymer Symposium No. 2: 153 to 167.

    Google Scholar 

  • Resch, H., (1967) Unsteady-state flow of compressible fluids through wood. For. Prod. J. 17 (3): 48–54.

    CAS  Google Scholar 

  • Resch, H, Eckland, B. A., (1964) Permeability of wood exemplified by measurements on redwood. For. Prod. J., 14 (5): 199–206.

    Google Scholar 

  • Risi, J., Arseneau, D. F., (1957) Dimensional stabilization of wood. For. Prod. J. 7 (6): 210–213.

    CAS  Google Scholar 

  • Risi, J., Arseneau, D. F., (1957) Dimensional stabilization of woods II crotonylation and crolylation. For. Prod. J. 7 (7): 245–247.

    CAS  Google Scholar 

  • Risi, J., Arseneau, D. F., (1957) Dimensional stabilization of wood: III butylation. For. Prod. J. 7 (8): 261–265.

    CAS  Google Scholar 

  • Risi, J., Arseneau, D. F., (1957) Dimensional stabilization of wood: IV allylation. For. Prod. J. 7 (9): 293–295.

    CAS  Google Scholar 

  • Risi, J., Arseneau, D. F., (1958) Dimensional stabilization of wood: V Phthaleylation. For. Prod. J. 8 (9): 252–253.

    CAS  Google Scholar 

  • Scheidegger, A. E., (1960) The physics of flow through porous media. Ed. 2. University of Toronto Press, Canada.

    Google Scholar 

  • Schuerch, C., (1964) Wood plasticization. For. Prod. J. 14 (9): 377–381.

    Google Scholar 

  • Schuerch, C., (1968) Treatment of wood with gaseous reagents. For. Product J. 18 (3): 47–53.

    CAS  Google Scholar 

  • Sears, C. U., (1900) Preparing wood matrices. U. S. Patent No. 646547.

    Google Scholar 

  • Seborg, R. M., Millett, M. A., Stamm, A. J., (1945) Heat-stabilized compressed wood. Staypak. Mech. Eng. 67: 25–31.

    Google Scholar 

  • Seborg, R. M., Stamm, A. J., (1941) The compression of wood. Mech. Eng. 63: 211–213.

    Google Scholar 

  • Seborg, R. M., Tarkow, H., Stamm, A. J., (1953) Effect of heat upon the dimensional stabilization of wood. J. For. Prod. Research Soc. 3 (3): 59–67.

    CAS  Google Scholar 

  • Seborg, R. M., Valuer, A. E., (1954) Applications of Impreg for patterns and die models. J. For. Prod. Research Soc. 4 (5): 305–312.

    Google Scholar 

  • Siau, J. F., (1969) The swelling of basswood by vinyl mensmers. Wood Sei. 1 (4): 250–253.

    CAS  Google Scholar 

  • Seborg, R. M., Meyer, J. A., Skaar, C., (1965) Wood-polymer combinations using radiation techniques. For. Prod. J. 15 (10): 426–434.

    Google Scholar 

  • Smith, D. N., (1963) The permeability of wood to liquids and gases. Fifth F. A. O. Conference on Wood Technology, U. S. For. Prod. Lab., Madison, Wisconsin.

    Google Scholar 

  • Smith, D. N., Lee, E., (1958) The longitudinal permeability of some hardwoods and softwoods. Div. Sei. Ind. Research, For. Prod. Res. Spec. Report No. 13. Her Majesty’s Stationary Office, London.

    Google Scholar 

  • Stamm, A. J., (1932) Effect of chemical treatment upon the permeability of wood. Ind. Eng. Chem. 24: 51–52.

    CAS  Google Scholar 

  • Stamm, A. J., (1934) Effect of inorganic salts upon the swelling and shrinking of wood. J. Am. Chem. Soc. 56: 1195–1204.

    CAS  Google Scholar 

  • Stamm, A. J., (1937) Minimizing wood shrinkage and swelling: treatment with sucrose and invert sugar. Ind. Eng. Chem. 29: 833–836.

    CAS  Google Scholar 

  • Stamm, A. J., (1944) Wood impregnation. U. S. Patent No. 2350135.

    Google Scholar 

  • Stamm, A. J., (1946) Passage of liquids vapors and dissolved materials through softwoods. U. S. Department of Agriculture Tech. Bull. No. 929.

    Google Scholar 

  • Stamm, A. J., (1955) Swelling of wood and fiberboards in liquid ammonia. For. Prod. J. 5 (6): 413–416.

    Google Scholar 

  • Stamm, A. J., (1956) Dimensional stabilization of wood with Carbowaxes. For. Prod. J. 6 (5): 201–204.

    Google Scholar 

  • Stamm, A. J., (1956). Thermal degradation of wood and cellulose. Ind. Eng. Chem. 48: 413–417.

    CAS  Google Scholar 

  • Stamm, A. J., (1959) Bound water diffusion into wood in the fiber direction. For. Prod. J. 9 (1): 27–32.

    CAS  Google Scholar 

  • Stamm, A. J., (1959) Effect of polyethylene glycol treatment upon the dimensional stabilization and other properties of wood. For. Prod. J. 9 (10): 375–381.

    CAS  Google Scholar 

  • Stamm, A. J., (1959) Dimensional stabilization of wood by thermal reactions and formaldehyde cross-linking. Tappi 42: 39–44.

    CAS  Google Scholar 

  • Stamm, A. J., (1959) Dimensional stabilization of paper by catalyzed heat treatment and cross-linking with formaldehyde. Tappi 42: 44–50.

    CAS  Google Scholar 

  • Stamm, A. J., (1962) Stabilization of wood: a review of current methods. For. Prod. J. 12 (4): 158–160.

    Google Scholar 

  • Stamm, A. J., (1962) Wood and cellulose-liquid relationships. North Carolina State Agr. Exp. Station Tech. Bull. 150, Raleigh, North Carolina.

    Google Scholar 

  • Stamm, A. J., (1964) Wood and Cellulose Science. Ronald Press Co., New York.

    Google Scholar 

  • Stamm, A. J., (1966) Maximum pore diameter of film materials. For. Prod. J. 16 (12): 59–63.

    CAS  Google Scholar 

  • Stamm, A. J., (1967) Heating dry wood and drying greenwood in molten polyethylene glycol. For. Prod. J. 17 (9): 91–96.

    Google Scholar 

  • Stamm, A. J., (1967) Movement of fluids in wood: Part I, flow of fluids. Wood Science and Tech. 1 (2): 122–141.

    Google Scholar 

  • Stamm, A. J., (1967) Movement of fluids in wood: Part II, diffusion. Wood Sci. and Tech. 1 (3): 205–230.

    Google Scholar 

  • Stamm, A. J., (1970) Maximum effective pit pore radii of the heartwood and sapwood of six different softwoods as affected by drying and resoaking. Wood and Fiber 1 (4): 263–269.

    Google Scholar 

  • Stamm, A. J., (1970) Variation of maximum tracheid and pit pore dimensions from pith to bark for ponderosa pine and redwood before and after drying determined by liquid displacement. Wood Sci. and Tech. 4, 81–96.

    Google Scholar 

  • Stamm, A. J., Baechler, R. II., (1960) Decay resistance and dimensional stability of five modified woods. For. Prod. J. 10 (1): 22–26.

    CAS  Google Scholar 

  • Stamm, A. J., Beasley, J. IV., (1961) Dimensional stabilization of paper by acetylation. Tappi 44 (4): 271–275.

    CAS  Google Scholar 

  • Stamm, A. J., Burr, H. K., Kline, A. A., (1946) Heat stabilized wood, Staybwood. Ind. Eng. Chem. 38: 630–637.

    CAS  Google Scholar 

  • Stamm, A. J., Clary, S. W., Elliott, W. J., (1968) Effective radii of lumen and pit pores in softwoods. Wood Sci. 1 (2): 93–101.

    Google Scholar 

  • Stamm, A. J., Hansen, L. A., (1935) Minimizing wood shrinkage and swelling: replacing water in wood by non-volatile materials. Ind. Eng. Chem. 27: 148–152.

    Google Scholar 

  • Stamm, A. J., Hansen, L. A., (1937) Minimizing wood shrinkage and swelling: effect of heating in various gases. Ind. Eng. Chem. 29: 831–833.

    CAS  Google Scholar 

  • Stamm, A. J., Harris, E. E., (1953) The Chemical Processing of Wood. Chemical Pub. Co., New York.

    Google Scholar 

  • Stamm, A. J., Seborg, R. M., (1936) Minimizing wood shrinkage and swelling: treatment with synthetic resinforming materials. Ind. Eng. Chem. 28: 1164–1170.

    CAS  Google Scholar 

  • Stamm, A. J., Harris, E. E., (1939) Resin-treated wood Ind. Eng. Chem. 31: 897–992.

    CAS  Google Scholar 

  • Stamm, A. J., Harris, E. E., (1941) Resin-treated, laminated, compressed wood. Trans. Am. Inst. Chem. Eng. 37: 385–397.

    CAS  Google Scholar 

  • Stamm, A. J., Harris, E. E., (1943) Process for making an improved wood. U. S. Patent No. 2321258.

    Google Scholar 

  • Stamm, A. J., Harris, E. E., Millett, M. A., (1948) Method for forming compressed wood structures. U. S. Patent No. 2 453 679.

    Google Scholar 

  • Stamm, A. J., Smith, W. E., (1969) Laminar sorption and swelling theory for wood and cellulose. Wood Sci. and Tech. 3 (4): 301–323.

    CAS  Google Scholar 

  • Stamm, A. J., Tarkow, H., (1947) Dimensional stabilization of wood. J. Phys. and Colloid Chem. 31: 493–505.

    Google Scholar 

  • Stamm, A. J., Tarkow, H., (1951) Method of stabilizing wood, U. S. Patent No. 2570070.

    Google Scholar 

  • Stamm, A. J., Turner, H. D., (1954) Method of molding. U. S. Patent No. 2391489.

    Google Scholar 

  • Staudinger, H., (1936) The insoluble polystyrene. Trans. Faraday Soc. 32: 323–335.

    CAS  Google Scholar 

  • Tarkow, H., Feist, W. C., Southerland, C. F., (1966) Interaction of wood and polymer materials: penetration versus molecular size. For. Prod. J. 16 (10): 61–65.

    CAS  Google Scholar 

  • Tarkow, H., Seborg, R. M., (1968) Surface densification of wood For. Prod. J. 18 (9): 104–107.

    Google Scholar 

  • Tarkow, H., Stamm, A. J., (1953) Effect of formaldehyde treatments upon the dimensional stability wood. J. For. Prod. Research Soc. 3 (3): 33–37.

    CAS  Google Scholar 

  • Tarkow, H., Stamm, A. U., Erickson, E. C. 0., (1955) Acetylated wood. U. S. Dept. Agr. For. Prod. Lab. Mimeo. No. 1593. revised.

    Google Scholar 

  • Truax, T. R.,.Brarchler, R. H., (1935) Experiments in fire proofing wood. Proc. Am. Wood Preserver’s Assoc. 31: 231–248.

    Google Scholar 

  • U. S. Forest Products Lab., (1941) Forest Products Laboratory’s toughness testing machine. U. S. For. Prod. Lab. Report 1308.

    Google Scholar 

  • Van Groenou, H. B., Rischen, H. W. L., Van den Borge, J., (1951) Wood preservation during the last 50 years. A. W. Sijthoff’s Uitgoversmentschappij, N. V. Leiden, Holland.

    Google Scholar 

  • Van Kleeck, A., (1956) Fire-retardant coatings. U. S. For. Prod. Lab. Mimeo 1280, revised.

    Google Scholar 

  • Walker, J. F., (1944) Formaldehyde. Reinhold Pub. Corp., New York.

    Google Scholar 

  • Walsh, F. L., Watts, R. L., (1923) Composit lumber. U. S. Patent No. 1465383.

    Google Scholar 

  • Weathermax, R. C., Erickson, E. C. O., Stamm, A. J., (1948) Modulus of hardness test. Am. Soc. Testing Materials. Bull. No. 153.

    Google Scholar 

  • Weathermax, R. C., Stamm, A.J., (1945) The electrical resistivity of resin-treated wood and laminated hydrolized and paperbase plastics. Elect. Eng. Trans. 64: 833–839.

    Google Scholar 

  • Wood Handbook, (1955) U. S. Dept. Agr. No. 72, Washington, D. C.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag, Berlin/Heidelberg

About this chapter

Cite this chapter

Stamm, A.J. (1975). Solid Modified Woods. In: Principles of Wood Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87931-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87931-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87933-3

  • Online ISBN: 978-3-642-87931-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics