Skip to main content

On the Possibility of Transport-Phase-Transitions in Phonon Systems

  • Chapter
Cooperative Phenomena

Abstract

The Peierls-Boltzmann transport formalism for phonons is re-formulated in such a way that the collision term is represented by the kernel of the master equation. Sequences of transport and statistical postulates lead to higher “golden rules” with non-energy-conserving intermediate states. This reveals the possibility of cumulative excitations by transport, in particular if a high-energy local motion is coupled to the transport system. A practical illustration is given in the example of the monoatomic harmonic chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haken, H.: Laser Theory. Im: Handbuch der Physik (Ed. S. Flügge), Vol. XXV/2C. Berlin-Heidelberg-New York: Springer 1970.

    Google Scholar 

  2. Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations. London: Wiley-Interscience 1971.

    MATH  Google Scholar 

  3. Peierls, R.: Ann. Physik [5] 3, 1055 (1929).

    Article  ADS  MATH  Google Scholar 

  4. Horie, C., Krumhansl, J. A.: Phys. Rev. 136, A 1397 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  5. Kwok, P. C., Martin, P. C.: Phys. Rev. 142, 495 (1966).

    Article  ADS  Google Scholar 

  6. Klein, R., Wehner, R. K.: Phys. Kondens. Materie 10, 1 (1969).

    Article  ADS  Google Scholar 

  7. Hardy, R. J.: Phys. Rev. 132, 168 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Zwanzig, R.: Physica 30, 1109 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  9. Prigogine, I., Résibois, P.: Physica 27, 541 (1961).

    Article  MathSciNet  Google Scholar 

  10. Montroll, E. W.: Lectures in Theoretical Physics (Boulder) 3, 221 (1960).

    Google Scholar 

  11. Carruthers, P.: Rev. Mod. Phys. 33, 92 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Wagner, @M.: Z. Physik (to be published).

    Google Scholar 

  13. Kubo, R.: J. Phys. Soc. Japan 12, 570 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  14. Goldberger, M. L., Adams, E. N.: J. Chem. Phys. 20, 240 (1952).

    Article  MathSciNet  ADS  Google Scholar 

  15. Wagner, M.: Z. Physik 244, 275 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  16. Jancel, R.: Foundations of Classical and Quantum Statistical Mechanics. Oxford etc.: Pergamon 1969.

    Google Scholar 

  17. Wagner, M.: Golden Rules in Transport Theory. Z. Physik (to be published).

    Google Scholar 

  18. Liapunov, A. M.: The General Problem of the Stability of Motion. Khar’kov 1892.

    Google Scholar 

  19. Poincaré, H.: Œuvres. Paris: Gauthier-Villars 1928.

    Google Scholar 

  20. Andronov, A. A., Vitt, A. A., Khaikin, S. E.: Theory of Oscillators. Oxford etc.: Pergamon 1966.

    MATH  Google Scholar 

  21. Wagner, M.: Nonlinear Transport as a Possible Key to Physical Understanding in Biology. In „Synergetics“, ed. H. Haken. Stuttgart: Teubner 1973.

    Google Scholar 

  22. Haken, H.: Proc. 1st Int. Conf. on Theoretical Physics and Biology, Versailles 1967, Ed. M. Marois. Amsterdam: North Holland 1969.

    Google Scholar 

  23. Haken, H.: Introduction to Synergetics, in „Synergetics“, op. cit. (Ref. 21).

    Google Scholar 

  24. Fröhlich, H.: Organization and Long-Range Selective Interaction in Biological and other Pumped Systems. In „Synergetics“, op. cit. (vid. Ref. 21).

    Google Scholar 

  25. Fröhlich, H.: Proc. 3rd Int. Conf. on Theoretical Physics and Biology, Versailles 1971, Ed. M. Marois (to be published).

    Google Scholar 

  26. Fröhlich, H.: Lecture Notes, University of Stuttgart, 1971 (unpublished).

    Google Scholar 

  27. Eisenmenger, W., Dayem, A. H.: Phys. Rev. Letters 18, 125 (1967).

    Article  ADS  Google Scholar 

  28. Kinder, H., Lassmann, K., Eisenmenger, W.: Phys. Letters 31 A, 475 (1970).

    ADS  Google Scholar 

  29. Dynes, R. C, Narayanamurti, V.: High-Frequency Monochromatic Phonon Spectroscopy in Ge: Sb. Int. Conf. on Phonon Scattering in Solids, Paris 1972 (unpublished).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, M. (1973). On the Possibility of Transport-Phase-Transitions in Phonon Systems. In: Haken, H., Wagner, M. (eds) Cooperative Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86003-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86003-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86005-8

  • Online ISBN: 978-3-642-86003-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics