Skip to main content

Beschreibung der Strömung

  • Chapter
Technische Verbrennungssysteme
  • 212 Accesses

Zusammenfassung

Generell läßt sich eine Strömung in zwei verschiedenen Variablensystemen beschreiben (/7.1.9/). Es sind dies:

  • die sogenannten “primitiven” Variablen, die Geschwindigkeitkomponenten ui und der Druck p, sowie

  • die Stromfunktion Ψ und die Wirbelstärke ξ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Strömung allgemein

  1. Görner, K.: Simulation turbulenter Strömungs- und Wärmeübertragungsvorgänge in Großfeuerungsanlagen. VDI Fortschrittberichte, Reihe 6, Nr.201, 1987

    Google Scholar 

  2. Bird, R.B.; Stewart, W.E.; Lightfoot, E.N.: Transport Phenomena. John Wiley and Sons, New York, 1960

    Google Scholar 

  3. Eppler, R.: Strömungsmechanik. Akademische Verlagsgesellschaft, Wiesbaden, 1975

    MATH  Google Scholar 

  4. White, F.M.: Fluid Mechanics. McGraw Hill, New York, 1986

    Google Scholar 

  5. Evett, J.B.; Liu, C.: Fundamentals of Fluid Mechanics. McGraw Hill, New York, 1987

    Google Scholar 

  6. Eck, B.: Technische Strömungslehre (Band 1 u. 2). Springer Verlag, Berlin, 1978

    MATH  Google Scholar 

  7. Prandtl, L.; Oswatitsch, K.; Wieghardt, K.: Führer durch die Strömungslehre. Vieweg und Sohn, Braunschweig, 1984

    MATH  Google Scholar 

  8. Voke, PJL; Collins, M.W.: Forms of Generalised Navier-Stokes Equations. Journal of Engineering Mathematics, 18(1984), S. 219–233

    Google Scholar 

  9. Roache, P.J.: Computational Fluid Dynamics. Hermosa Press, Albuquerque, 1975

    Google Scholar 

  10. Schlichting, H.: Grenzschichttheorie. Verlag G. Braun, Karlsruhe, 1964

    Google Scholar 

  11. Connel, S.D.; Stow, P.: The Pressure Correction Method. Computers and Fluid. 14(1986)No.l, pp 1–10

    Google Scholar 

  12. Welch, J.E.; Harlow, F.H.; Shannon, J.P.; Daly, B J.: The MAC Method - A Computing Technique for Solving Viscous, Incompressible, Transient Fluid Flow Problems Involving Free Surfaces. Los Alamos Report No.3425, 1966

    Google Scholar 

  13. Kremer, H.: Zur Ausbreitung inhomogener turbulenterFreistrahlenund turbulenter Diffusionsflammen. Dissertation, Universität Karlsruhe, 1964

    Google Scholar 

Turbulenz allgemein

  1. Hinze, J.O.: Turbulence. McGraw Hill, New York, 1975

    Google Scholar 

  2. Rotta, J.C.: Turbulente Strömungen. Teubner-Verlag, Stuttgart, 1972

    MATH  Google Scholar 

  3. Bradshaw, P. (Ed.): Turbulence. Springer-Verlag, Berlin, 1978

    Google Scholar 

  4. Leslie, D.C.: Developments in the Theory of Turbulence. Clarendon Press, Oxford, 1983

    MATH  Google Scholar 

  5. Jischa, M.: Konvektiver Impuls-, Wärme und Stoffaustausch. Verlag Vieweg, Braunschweig, 1982

    Google Scholar 

  6. Monin, A.S.; Yaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 1, MIT Press, Cambridge, USA, 1971

    Google Scholar 

  7. Monin, A.S.; Yaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 2, MIT Press, Cambridge, USA, 1975

    Google Scholar 

  8. Tennekes, H.; Lumley, J.L.: A First Course in Turbulence. MIT Press, Cambridge, MA, 1972

    Google Scholar 

  9. Hanjalic, K.: Prediction of Turbulent Flow in Annular Ducts with Differential Transport Model of Turbulence. Wärme- und Stof fübertragung, 7(1974), S. 71–78

    Google Scholar 

  10. Jischa, M.: Zum Impuls-, Wärme- und Stof faustausch in turbulenten Strömungen reagierender Binärgemische. Teil I: Die Reynold’schen Gleichungen und die Transportgleichungen. Wärme- und Stoffübertragung, 9(1976), S. 173–178

    Google Scholar 

  11. Jischa, M.: Zum Impuls-, Wärme- und Stof faustausch in turbulenten Strömungen reagierender Binärgemische. Teil II: Strömungen mit Grenzschichtcharakter. Wärme- und Stoffübertragung, 9(1976), S. 247–257

    Google Scholar 

  12. Jones, W.P.; Whitelaw, J.H.: Modelling and Measurements in Turbulent Combustion. 20th Symp. (Int.) Comb., 1984, pp 233–249

    Google Scholar 

  13. Abou-Arab, T.W.: Zur Modellierung der Turbulenz in eingeschlossenen drallfreien und verdrallten Strömungen. Dissertation., Univ. Stuttgart, 1978

    Google Scholar 

  14. Collins, M.W.: Heat Transfer Predictions for Turbulent Flow Downstream of an Abrupt Pipe Expansion. Proceedings of the HTFS Harwell Research Symp., University of Bath, U.K, 1983

    Google Scholar 

  15. Daly, BJ.; Harlow, F.H.: Transport Equations in Turbulence. The Physics of Fluids, 13(1970)No.11, pp 2634–2649

    Google Scholar 

  16. Mellior, G.L.; Herring, H.J.: A Survey of the Mean Turbulent Field Closure Models. AIAA Journal, 11(1973)No.5, pp 590–599

    Google Scholar 

  17. Spalding, D.B.: The Calculation of the Length Scale of Turbulence in some Shear Flows Remote from Walls. Progress in Heat and Mass Transfer, 18(1975), pp 256–266

    Google Scholar 

  18. Sloan, D.G.; Smith, PJ.; Smoot, L.D.: Modeling of Swirl in Turbulent Flow Systems. Prog. Energy Combust. Sci., 12(1986)No.3, pp 163–250

    Google Scholar 

  19. Hussain, A.K.M.F.: CoherentStructures -Reality and Myth. Phys. Fluids, 26(1983)No.10, pp 2816–2850

    MATH  MathSciNet  Google Scholar 

  20. Hussain, A.K.M.F.: CoherentStructures and Turbulence. J. Fluid Mech., 173(1986), pp 303–356

    Google Scholar 

  21. Zelkowski, J.: Die isothermische Modellierung der Strömung in Brennkammern von Staubkesseln mit Eckbrennern. Mitteilungen der VGB. (1966)H.104, S. 335–344

    Google Scholar 

  22. Favre, A.: Equations des gaz turbulente compressibles. I. Formes generales. Journal de Mecanique, 4(1965)No.3, pp 361–390

    Google Scholar 

  23. Favre, A.: Equations des gaz turbulente compressibles. H. Methode des vitesses moyennes; methode des vitesses macro- scopiques ponderees par la masse volumique. Journal de Mechanique, 4(1965)No.4, pp 391–421

    Google Scholar 

  24. Dibble, R.W.; Kollmann, W.; Schefer, R.W.: Measurements and Predictions of Scalar Dissipation in Turbulent Jet Flames. 20th Symp. (Int.) Comb., 1984, pp 345–352

    Google Scholar 

  25. Elghobashi, S.E.; LaRue, J.C.: The Effect of Mechanical Strain on the Dissipation Rate of a Scalar Variance. 4th Symp. on Turb. Shear Flows, Karlsruhe, 1983

    Google Scholar 

  26. Eriksen, S.; Wittig, S.; Rüd, KP.: Optical Measurements of the Transport Properties in a Highly Cooled Turbulent Boundary Layer at Low Reynolds Number. 4th Symp. on Turb. Shear Flows, Karlsruhe 1983

    Google Scholar 

  27. Ruckenstein, E.: On the Turbulent Field of Temperature or Concentration. Wärme- und Stoffübertragung, 2(1969), S. 105–108

    Google Scholar 

  28. Grossmann, S.: Berechnung von Transportgrößen mit Hilfe der Statistischen Physik: Ein Überblick. (Calculation of Transport Properties in Statistical Physics: A Review.) Wärme- und Stoffübertragung, 3(1970), S. 19–25

    MathSciNet  Google Scholar 

  29. Reynolds, A.J.: The Prediction of Turbulent Prandtl and Schmidt Numbers. Int. J. Heat Mass Transfer, 18(1975), pp 1055–1069

    Google Scholar 

Large-Eddy-Simulation (LES)

  1. Moin, P.; Kim, J.: Numerical Investigation of Turbulent Channel Flow. J. Fluid Mech., 118 (1982), pp 341–377

    MATH  Google Scholar 

  2. Acton, E.: The Modelling of Large Eddies in a Two-Dimensional Shear Layer. J. Fluid Mech., 76 (1976) Part 3, pp 561–592

    MATH  Google Scholar 

  3. Antonopoulos-Domis, M.: Large-Eddy Simulation of a Passive Scalar in Isotropic Turbulence. J. Fluid Mech., 104 (1981), pp 55–79

    MATH  Google Scholar 

  4. Leslie, D.C.; Quarini, G.L.: The Application of Turbulence Theory to the Formulation of Subgrid Modelling Procedures. J. Fluid Mech., 91 (1979) Part 1, pp 65–91

    MATH  Google Scholar 

  5. Voke, P.R.; Collins, M.W.: Large-Eddy Simulations of Turbulent Flow in Plain and Distorted Channels. HTFS Harwell Research Symp., Univ. of Warwick, U.K, 1984

    Google Scholar 

  6. Moin, P.: Numerical Simulation of Wall-Bounded Turbulent Shear Flows. 8th ICNMFD, Aachen, 1982

    Google Scholar 

  7. Moffatt, H.K: Viscous and Resistive Eddies Near a Sharp Comer. Journal of Fluid Mechanics, 1964

    Google Scholar 

Random-Vortex-Method (RVM)

  1. Ghoniem, A.F.; Chorin, AJ.; Oppenheim, A.K.: Numerical Modelling of Turbulent Flow in a Combustion Tunnel. Phil. Trans. R. Soc. Lond. A 304, 1982, pp 303–325

    Google Scholar 

  2. Chorin, AJ.: Numerical Study of Slightly Viscous Flow. J. Fluid. Mech., 57(1973) Part 4, pp 785–796

    MathSciNet  Google Scholar 

  3. Chorin, AJ.: Vortex Models and Boundary Layer Instability. SIAM J. Sci. Stat. Comput., 1(1980)No.1, pp 1–20

    MATH  MathSciNet  Google Scholar 

  4. Ghoniem, A.F.; Chorin, AJ.; Oppenheim, A.K.: Numerical Modelling of Turbulent Flow in a Combustion Tunnel. Phil. Trans. R. Soc. Lond., 304(1982) A, pp 303–325

    MATH  Google Scholar 

  5. Summers, D.M.; Hanson, T.; Wilson, C.B.: A Random Vortex Simulation of Wind Flow Over a Building. Int. J. Num. Meth. Fluids, 5(1985), pp 849–871

    Google Scholar 

Pseudo-Spectral-Method (PSM)

  1. Metcalfe, R.W.; Riley, J.J.: Calculation of Pressure Statistics in Turbulent Free Shear Flows by Direct Numerical Simulation. 8th Int Conf. on Numerical Methods in Fluid Dynamics, Aachen, 1982

    Google Scholar 

Mischiungslāngenmodell (MLM)

  1. Hornby, R.P.; Mistry, J.; Barrow, H.: A Mixing Length Model for Turbulent Flow in Constant Cross Section Ducts. Wärme- und Stoffübertragung, 10(1977), S. 125–129

    Google Scholar 

k-ε-Tnrbulenzmodell (KEM)

  1. Launder, B.E.; Spalding, D.B.: The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, 3(1974), pp 269–289

    MATH  Google Scholar 

  2. Lam, C.K.G.; Bremhorst, K: A Modified Form of the k-ε Model for Predicting Wall Turbulence. Journal of Fluids Engineering, 103 (1981), pp 456–460

    Google Scholar 

  3. Patel, V.C.; Rodi, W.; Scheuerer, G.: Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review. AIAA Journal, 23 (1985) No. 9, pp 1308–1319

    MathSciNet  Google Scholar 

  4. Raizadeh, F.; Dwyer, H.A.: A Use of Sensitivity Analysis in k-ε Turbulent Round Jet Model. 4th Symp. on Turb. Shear Mows, Karlsruhe, Tagungsband, 1983

    Google Scholar 

  5. Lam, C.K.G.; Bremhost, K.: A Modified Form of the k-€ Model for Predicting Wall Turbulence. J. Fluid Eng., 103(1981), pp 456–460

    Google Scholar 

  6. Patel, V.C.; Rodi, W.; Scheuerer, G.: Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review. AIAA J., 23(1985)No. 9, pp 1308–1319

    MathSciNet  Google Scholar 

  7. Benim, A.C.; Zinser, W.: Investigation into the Finite Element Analysis of Confined Turbulent Flows Using a k-ε Model of Turbulence. Computer Methods in Applied Mechanics and Engineering, 51(1985), pp 507–523

    MATH  Google Scholar 

k-W-Turbulenzmodell (KWM)

  1. Spalding, D.B.: A Two-Equation Model of Turbulence. VDI-Forsch. Heft 949, S. 5–15

    Google Scholar 

  2. Ilegbusi, J.O.; Spalding, D.B.: An Improved Version of the k-W Model of Turbulence. J. Heat Transfer, 107(1985), pp 63–69

    Google Scholar 

k-L-Turbulenzmodell (KLM)

  1. Rodi, W.; Spalding, D.B.: A Two-Parameter Model of Turbulence, and its Application to Free Jets. Wärme- und Stoffübertragung, 3(1970), S. 85–95

    Google Scholar 

Reynolds-Stress-Model (RSM)

  1. Gibson, H.M.; Launder, B.E.: Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer. J. Fluid Mech., 86 (1978), p 491

    MATH  Google Scholar 

  2. Naot, D.; Shavit, A.; Wolfshtein, M.: Numerical Calculation of Reynolds Stresses in a Square Duct with Secondary Flow. Wärme- und Stoffübertragung, 7 (1974), S. 151–161

    Google Scholar 

  3. Gibson, M.M.; Rodi, W.: A ReynoldsStress Closure Model of Turbulence Applied to the Calculation of a Highly Curved Mixing Layer. J. Fluid. Mech., 103(1981), pp 161–182

    Google Scholar 

  4. Launder, B.E.; Reece, G.J.; Rodi, W.: Progress in the Development of a Reynolds-Stress Turbulence Closure. J. Fluid Mech., 68(1974) Part 3, pp 537–566

    Google Scholar 

  5. Donaldson, C.; Varma, A.K.: Remarks on the Construction of a Second-Order Closure Description of Turbulent Reacting Flows. Comb. Sci. Tech., 13(1976), pp 55–78

    Google Scholar 

  6. Daly, B.J.; Harlow, F.H.: Transport Equation of Turbulence. Physics of Fluids, 13(1970)11, pp 2634–2649

    Google Scholar 

  7. Janika, J.: A Reynolds-Stress Model for the Prediction of Diffusion Flames. 21st Symp. (Int.) Comb., 1986, pp 1409–1417

    Google Scholar 

  8. Hanjalic, K.; Launder, B.E.: A Reynolds Stress Model of Turbulence and its Application to Thin Shear Flows. J. Fluid Mech., 52(1972), part 4, pp 609–638

    MATH  Google Scholar 

  9. Rodi, W.: The Prediction of Free Turbulent Boundary Layers by Use of a Two-Equation Model of Turbulence. Ph.D. Thesis, University of London, 1972

    Google Scholar 

Algebraic-Stress-Model (ASM)

  1. Rodi, W.: A New Algebraic Relation for Calculating the Reynolds Stresses. Zeitschr.Angew.Mathematik,56(1976), pp 219–221

    Google Scholar 

  2. Wilkes, N.S.; Clarke, D.S.: Turbulent Flow Predictions Using Algebraic Stress Models. Harwell Report, HTFS RS AERE-R 12694, 1987

    Google Scholar 

Eddy-Viscosity-Hypothesis (EVH)

  1. Peck, R.E.; Samuelsen, G.S.: Eddy Viscosity Modeling in the Prediction of Turbulent, Backmixed Combustion Performance. 16th Symp. (Int.) Combust., 1976, pp 1675–1687

    Google Scholar 

  2. Pope, S.B.: A More General Effecti- ve-Viscosity Hypothesis. J. Fluid Mech., 72(1975) Part 2, pp 331–340

    MATH  Google Scholar 

  3. Schnell, U.: Numerische Berechnung turbulenter brennernaher Drallströmungen. Forschung im Ingenieurwesen, 55(1989)Nr.6, S.186–192

    Google Scholar 

Zweiphasenstrōmung

  1. Soo, S.L.: Fluid Dynamics of Multiphase Systems. Blaisdell Publ. Comp., Waltham, MA, 1967

    MATH  Google Scholar 

  2. Meyer, R.E.: Theory of Dispersed Multiphase Flow. Academic Press, New York, 1983

    MATH  Google Scholar 

  3. Hetsroni, G.; Sokolov, M.: Distribution of Mass, Velocity and Intensity of Turbulence in a Two-Phase Turbulent Jet. J. Appl. Mech., 93(1971), pp 315–327

    Google Scholar 

  4. Popper, J.; Abuaf, N.; Hetsroni, G.: Velocity Measurements in a Two-Phase Turbulent Jet. Int. J. Multiphase Flows, 1(1974), pp 715–726

    Google Scholar 

  5. Al Taweel, A.M.; Landau, J.: Turbulence Modulation in Two-Phase Jets. Int. J. Multiphase Flow. 3 (1977), pp 341–351

    Google Scholar 

  6. Owen, P.R.: Pneumatic Transport. J. Fluid Mech., 39 (1969) part 2, pp 407–432

    Google Scholar 

  7. Smoot, L.D.; Pratt, D.T.: Pulv.-Coal Combustion and Gasification. Plenum Press, New York, 1979

    Google Scholar 

  8. Görner, K.; Schnell, U.; Thiele, K.-U.; Spliethoff, H.: Simulation und Messungen zur Zweiphasenströmung von Kohle. Tagungsband: VGB-Konferenz „Forschung in der Kraftwerkstechnik“, 1988

    Google Scholar 

  9. Elghobashi, S.E.; Abou-Arab, T.W.: A Two-Equation Turbulence Model for Two-Phase Flows. Phys. Fluids, 26 (1983) No. 4, pp 931–938

    MATH  Google Scholar 

  10. Mostafa, AA.; Elghobashi, S.E.: A Two- Equation Turbulence Model for Jet Flows Laden with Vaporizing Droplets. Int. J. Multiphase Flow, 11 (1985) No.4, pp 515–533

    Google Scholar 

  11. Hinze, J.O.: Turbulent Fluid and Particle Interaction. In: Progress in Heat and Mass Transfer, (Ed.: Hetsroni), Vol. 6, Pergamon Press, Oxford, 1972, pp 433–452

    Google Scholar 

  12. Melville, W.K.; Bray, K.N.C.: A Model of the Two-Phase Turbulent Jet. J. Heat and Mass Transfer, 22 (1979), pp 647–656

    MATH  Google Scholar 

  13. Hedman, P.O.; Smoot, L.D.: Particle- Gas Dispersion Effects in Confined Coaxial Jets. AIChE Journal, 21 (1975) No. 2, pp 372–379

    Google Scholar 

  14. Migdal, D.; Agosta, V.D.: A Source Flow Model for Continuum Gas-Particle Flow. J. Applied Mech, (1967), pp 860–865

    Google Scholar 

  15. Abbas, A.S.; Koussa, S.S.; Lockwood, F.C.: The Prediction of the Particle Laden Gas Flows. 18th Symp. (Int.) Comb., 1981, pp 1427–1438

    Google Scholar 

  16. Hackler, L.: Berechnung der turbulenten Gas/Feststoffströmung im senkrechten Rohr mit einer Zweiphasenkontinuumstheorie. Dissertation, Universität Clausthal, 1984

    Google Scholar 

  17. Elghobashi, S.;Abou-Arab, T.; Rizk, M. Mostafa, A.: A Two-Equation Turbulence Model for Two-Phase Jets. Proceedings 4th Symp. on Turb. Shear Flows, Karlsruhe, 1983

    Google Scholar 

  18. Brauer, H.: Grundlagen der Einphasen- und Mehrphasenströmungen. Verlag Sauerländer, Aarau, 1971

    Google Scholar 

  19. Durst, F.; Haas, R.; Interthal, W.; Keck, T.: Polymerwirkung in Strömungen - Mechanismen und praktische Anwendungen. Chem.-Ing.-Techn.,54(1982) Nr.3, S. 213–221

    Google Scholar 

  20. Durst, F.; Kleine, R.; Rastogi, A.K: Energieeinsparungen durch hochpolymere Strömungsbeschleuniger. VGB- Konferenz:„ Forschung in der Kraftwerkstechnik“, 1977, S.164–177

    Google Scholar 

  21. Heat Exchanger Design Handbook. Part 2, Chap. 2.3.3: Solid Gas Flow. Hemisphere Publ. Corp., Washington, 1982

    Google Scholar 

  22. Lumley, J.L.: Modeling Turbulent Flux of Passive Scalar Quantities in Inhomogeneous Flows. Phys. Fluids, 18(1975)No.6, pp 619–621

    MATH  Google Scholar 

Regierende Strōmungen

  1. Pope, S.B.: PDF Methods for Turbulent Reactive Flows. Prog. Energy Combust. Sci., 11(1985), pp 119–192

    MathSciNet  Google Scholar 

  2. Oran, E.S.; Boris, J.P.: Detailed Modelling of Combustion Systems. Prog. Energy Combust. Sci., 7(1981), pp 1–72

    Google Scholar 

  3. Williams, F.A.: Combustion Theory, Chap. 10: Theory of Turbulent Flames, Benjamin/CummingsPublishingComp., Inc., California

    Google Scholar 

  4. Peters, N.: Laminar Flamelet Concepts in Turbulent Combustion. 21st Symp. (Int.) on Combust., the Combust. List., 1986, pp 1231–1250

    Google Scholar 

  5. Peters, N.: Das Flammenzonenmodell und seine Anwendungen. Inst, für Allgemeine Mechanik, TH Aachen, Institutsbericht 1973

    Google Scholar 

  6. Rogg, B.; Behrendt, F.; Warnatz, J.: Turbulent Non-Premixed Combustion in Partially Premixed Diffusion Flame- lets with Detailed Chemistry. 21st Symp. (Int.) Combust., München, West Germany, 1986

    Google Scholar 

  7. Oran, E.S.; Boris, J.P.: Detailed Modelling of Combustion Systems. Prog. Energy Combst. Sci. 7(1981), pp 1–72

    Google Scholar 

  8. Libby, PA: On Turbulent Flows with Fast Chemical Reactions. Part III: TwoDimensional Mixing with Highly Dilute Reactants. Combustion Science and Technology, 13(1976), pp.79–98

    Google Scholar 

  9. Doazo, C.; O’Brien, E.E.: Statistical Treatment of Non-Isothermal Chemical Reactions in Turbulence. Combustion Science and Technology, 13(1976), pp 99–122

    Google Scholar 

  10. Chung, P.M.: A Kinetic-Theory Approach to Turbulent Chemically Reacting Flows. Combustion Science and Technology, 13(1976), pp 123–153

    Google Scholar 

  11. Jones, W.P.: Models for Turbulent Flows with Variable Density and Combustion. In: Prediction Methods for Turbulent Flows, W. Kollmann (ed.), Hemisphere Publ. Comp., New York, 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Görner, K. (1991). Beschreibung der Strömung. In: Technische Verbrennungssysteme. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84488-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84488-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53947-6

  • Online ISBN: 978-3-642-84488-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics