Skip to main content

Signal Transduction Mechanisms in Phytochrome Action

  • Conference paper
Signal Perception and Transduction in Higher Plants

Part of the book series: NATO ASI Series ((ASIH,volume 47))

  • 83 Accesses

Abstract

Phytochrome is a chromoprotein of molecular weight approximately 120–125 000 (depending on the source) with an open chain tetrapyrrole chromophore. There are two stable forms of the molecule in vivo. One, known as Pr, has an Amax at around 660nm: phytochrome is synthesised in this form. Absorption of light by Pr results in phototransformation via a series of intermediates to an equilibrium mixture in which the other stable form, Pfr, which has an Amax at ca. 730nm predominates. This form in turn is photoconvertible back to the Pr form so that light of any spectral quality, monochromatic or broad band, results in the formation of an equilibrium mixture of the two forms which depends on the spectral quality. The range of variation in natural daylight results in maximal variation in this equilibrium, so that phytochrome is an excellent sensor of daylight quality (Figure 1). The function of phytochrome is the detection of such changes and redirection of plant development accordingly: the collective name given to these responses is photomorphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bartley MR, Frankland B (1982) Analysis of the dual role of phytochrome in the photoinhibition of seed germination. Nature 300: 750–752

    Article  CAS  Google Scholar 

  • Bühler B, Drumm H, Mohr H (1978) Investigations on the role of ethylene in phytochrome-mediated photomorphogenesis. I. Anthocyanin synthesis. Planta142 :109–117

    Article  Google Scholar 

  • Blihler B, Drumm H, Mohr H (1978) Investigations on the role of ethylene in phytochrome-mediated photomorphogenesis. II. Enzyme levels and chlorophyll synthesis. Planta 142 :119–122

    Article  Google Scholar 

  • Carr-Smith H, Johnson CB, Thomas B (1989) Action spectrum for floral induction and apex elongation in green, light-grown wheat. Planta (in press)

    Google Scholar 

  • Casai JJ, Smith (1988) Persistent effects of changes in phytochrome status on internode growth in light-grown mustard: occurrence, kinetics and locus of perception. Planta 175 :214–220

    Article  Google Scholar 

  • Casai JJ, Whitelam GC, Smith H (1989) Phytochrome control of extra-cellular peroxidase activity in mustard internodes: correlation with growth and comparison with the effect of wounding. Plant Physiol (in press)

    Google Scholar 

  • Castresana C, Garcia-Luque I, Alonso E, Malik VS, Cashmore AR (1988) Both positive and negative regulatory elements mediate expression of a photo-regulated CAB gene from Nicotiana plumbaginifolia. EMBO J 7 :1929–1936

    PubMed  CAS  Google Scholar 

  • Clarke IE, Fido R, Johnson CB (1989) Nitrate and phytochrome control of nitrate reductase synthesis in seedlings and mature plants of Sinapis alba. Phytochemistry (in press)

    Google Scholar 

  • Dean C, Favreau M, Bond-Nutter D, Bedbrook J, Dunsmuir P (1989) Sequences downstream of translation start regulate quantitative expression of two petunia rbcS genes. Plant Cell 1 :201–208

    Article  PubMed  CAS  Google Scholar 

  • Eisinger W, Short TW, Briggs WR (1989) Light regulation of calcium fluxes in isolated membrane vesicles from pea (Pisum sativum) seedlings. In “Signal Perception and Signal Transduction in Higher Plants” Book of Abstracts of the NATO symposium, Toulouse 1989)

    Google Scholar 

  • Epel BL, Butler WL, Pratt LH, Tokuyasu KT (1980) Immunofluorescence localization studies of the Pr and Pfr forms of phytochrome in the coleoptile tips of oats, corn and wheat. In: De Greef JA (ed) Photoreceptors and plant development. Antwerpen University Press, Antwerpen, pp121–133

    Google Scholar 

  • Ernst D, Oesterhelt D (1984) Purified phytochrome influences in vitro transcription in rye nuclei. EMBO J 3:3075–3078

    PubMed  CAS  Google Scholar 

  • Evans A, Smith H (1976) Localization of phytochrome in etioplasts and its regulation in vitro of gibberellin levels. Proc Natl Acad Sci USA 73:138–142

    Article  PubMed  CAS  Google Scholar 

  • Giuliano G, Pichersky E, Malik, VS, Timko MP, Scolnik PA, Cashmore RA (1988) An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci USA 85:7089–7093

    Article  PubMed  CAS  Google Scholar 

  • Green PJ, Kay SA, Chua N-H (1987) Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J 6 :2543–2549

    PubMed  CAS  Google Scholar 

  • Grolig F, Wagner G (1989) Characterization of the isolated calcium-binding vesicles from the green alga Mougeotia scalaris and their relevance to chloroplast movement. Planta 177 :169–177

    Article  CAS  Google Scholar 

  • Haupt W (1958) Hellrot-dunkelrot-Antagonismus bei der Auflösung der Chloroplastenbewegung. Naturwissenschaften45:273–274

    Article  Google Scholar 

  • Haupt W, Weisenseel MH (1976) Physiological evidence and some thoughts on lo localized responses, intracellular localization and action of phytochrome. In: H. Smith (ed) Light and Plant Development. Butterworths London Boston, pp63–74

    Google Scholar 

  • Hilton JR, Smith H (1980) The presence of phytochrome in purified barley etioplasts and its in vitro regulation of biologically active gibberellin levels in etioplasts. Planta 148:312–318

    Article  CAS  Google Scholar 

  • Jenkins GI (1988) Photoregulation of gene expression in plants. Photochem Photobiol 48:821–832

    Article  CAS  Google Scholar 

  • Johnson CB (1980) The effect of red light in the high irradiance reaction of phytochrome: evidence for an interaction between Pfr and a phytochrome cycling-driven process. Plant Cell Environ 3:45–51

    CAS  Google Scholar 

  • Johnson CB, Tasker R (1979) A scheme to account quantitatively for the action of phytochrome in etiolated and light-grown plants. Plant Cell Environ 2:259–265

    Article  Google Scholar 

  • Johnson CB, Whitelam GC (1983) Enhancement of Pfr-mediated responses by light pretreatments: persistence of the pretreatment effects. Plant Cell Environ 6:89–93

    Article  CAS  Google Scholar 

  • Johnson CB, Allsebrook SM, Thomas B (1989) Sequential phytochrome-mediated synthesis and activation of nitrate reductase in seedlings of Sinapis alba. Phytochemistry (in press)

    Google Scholar 

  • Kachar B, Reese TS (1988) The mechanism of cytoplasmic streaming in characean algal cells: sliding of endoplasmic reticulum along actin filaments. J Cell Biol 106:1545–1552

    Article  PubMed  CAS  Google Scholar 

  • Keller JM, Shanklin J, Vierstra RD, Hershey HP (1989) Expression of a functional monocotyledonous phytochrome in transgenic tobacco. EMBO J 8:1005–1012

    PubMed  CAS  Google Scholar 

  • Kohno T, Shimmen T (1987) Cat+-induced fragmentation of actin filaments in pollen tubes. Protoplasma 141:177–179

    Article  CAS  Google Scholar 

  • Kohno T, Shimrnen T (1988) Accelerated sliding of pollen tube organelles along characeae bundles regulated by Cat+. J Cell Biol 106:1539–1543

    Article  PubMed  CAS  Google Scholar 

  • Lissemore JL, Quail PH (1988) Rapid transcriptional regulation by phytochrome of the genes for phytochrome and chlorophyll a/b-binding protein in Avena sativa. Molecular and Cellular Biology 8:4840–4850

    PubMed  CAS  Google Scholar 

  • Mohr H (1964) The control of plant growth and development by light. Biol Rev 39:87–112

    Article  Google Scholar 

  • Mohr H (1978) Pattern specification and realization in photomorphogenesis. Bot Mag Tokyo (special issue) 1:199–217

    CAS  Google Scholar 

  • Mohr H (1983) An introduction to photomorphogenesis for the general reader. In:Shropshire W Jr, Mohr H (eds) Encyclopedia of Plant Physiology New Series Vol 16. Springer, Berlin Heidelberg New York, pp24–38

    Google Scholar 

  • Morelli G, Nagy F, Fraley RT, Rogers SG, Chua NH (1985) A short conserved sequence is involved in the light inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase in higher plants. Nature 315:200–204

    Article  CAS  Google Scholar 

  • Morgan DC, Smith H (1976) Linear relationship between phytochrome photo-equilibrium and growth in plants under simulated natural radiation. Nature 262:210–212

    Article  Google Scholar 

  • Mösinger E, Batschauer A, Schafer E, Apel K (1985) Phytochrome control of in vitro transcription of specific genes in isolated nuclei from barley (Hordeum vulgare). Eir J Biochem 147:137–142

    Article  Google Scholar 

  • Mösinger E, Batschauer A, Vierstra R, Apel K, Schafer E (1987) Comparison of the effects of exogenous native phytochrome and in vivo irradiation on in vitro transcription in isolated nuclei from barley (Hordeum vulgare). Planta 170:505–514

    Article  Google Scholar 

  • Quail PH (1983) Rapid action of phytochrome in photomorphogenesis. In Encyclopedia of Plant Physiology, New Series, Vol. 16; Shropshire W & Mohr H, eds; Springer-Verlag, Berlin-Heidelberg, pp178–212.

    Google Scholar 

  • Quail PH, Marme D, Schafer E (1973) Particle-bound phytochrome from maize and pumpkin. Nature New Biol 245:189–191

    PubMed  CAS  Google Scholar 

  • Racusen RH (1976) Phytochrome control of electrical potentials and intercellular coupling in oat coleoptile tissue. Planta 132:25–29

    Article  CAS  Google Scholar 

  • Schlfer E (1975) A new approach to explain the “high irradiance responses” of photomorphogenesis on the basis of phytochrome. J. Math Biol 2:41–56

    Article  Google Scholar 

  • Shanklin J, Jabben M, Vierstra RD (1987) Red light induced formation of ubiquitin-phytochrome conjugates: identification of possible intermediates of phytochrome degradation. Proc Natl Acad Sci USA 84:359–363

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1982) Light quality, photoperception, and plant strategy. Ann Rev Plant Physiol 33:481–518

    Article  CAS  Google Scholar 

  • Smith H (1983) Is Pfr the active form of phytochrome? Phil Trans R Soc Lond B 303:443–452

    Article  Google Scholar 

  • Smith H, Evans A, Hilton JR (1978) An in vitro association of soluble phytochrome with a partially purified organelle fraction from barley leaves. Planta 141:71–76

    Article  CAS  Google Scholar 

  • Timko MP, Kausch AP, Castresana C, Fassler J, Herrera-Estrella L, Van den Broeck G, Van Montagu M, Schell J, Cashmore AR (1985) Light regulation of plant gene expression by an upstream enhancer-like element. Nature 318:579–582

    Article  PubMed  CAS  Google Scholar 

  • Viner N, Whitelam GC, Smith H (1988) Calcium and phytochrome control of leaf unrolling in dark-grown barley seedlings. Planta 175:209–213

    Article  CAS  Google Scholar 

  • Wagner G, Rossbacher R (1980) X-ray microanalysis and chlorotetracycline staining of calcium vesicles in the green alga Mougeotia. Planta 149:298–305

    Article  CAS  Google Scholar 

  • Wagner G, Grolig F, Altmüller D (1987) Transduction chain of low irradiance response of chloroplast reorientation in Mougeotia in blue or red light. Photochem Photobiol Suppl 183–189

    Google Scholar 

  • Warner TJ, Ross JD, Coombs J (1981) Phytochrome control of maize coleoptile section elongation: a rapid loss of photoreversibility. Plant Physiol 67:355–357

    Article  PubMed  CAS  Google Scholar 

  • Whitelam GC, Johnson CB (1981) Temporal separation of two components of phytochrome action. Plant Cell Environ 4:53–57

    Article  CAS  Google Scholar 

  • Whitelam GC, Johnson CB (1982) Photomorphogenesis in Impatiens parviflora and other plant species under simulated natural canopy conditions. New Phytol 90:611–618

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johnson, C.B. (1990). Signal Transduction Mechanisms in Phytochrome Action. In: Ranjeva, R., Boudet, A.M. (eds) Signal Perception and Transduction in Higher Plants. NATO ASI Series, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83974-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83974-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83976-4

  • Online ISBN: 978-3-642-83974-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics