Skip to main content

Immunological-Cytochemical Localization of Cell Products in Plant Tissue Culture

  • Chapter
Immunology in Plant Sciences

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 4))

Abstract

One of the most important objectives of those who work with and study plant tissue cultures is to understand the dynamic cell, tissue, and organ differentiation and development that occur in cultured materials. Numerous laboratories, working on crop species especially, often are concerned with testing scores of different culture media and growing and regenerating plants from hundreds of different species and varieties to overcome recalcitrant growth. The immediate goals of such studies are usually twofold. Large-scale studies can exploit the genetic changes, called somaclonal variation, resulting from the process, per se, of culturing tissue (Snowcroft and Larkin 1982), and can select culture lines with superior qualities of interest (stress tolerance, disease resistance, high yield, improved nutritive qualities, etc.). Such studies also seek to identify efficient tissue culture systems to accommodate genetic engineering of important crops, such as rice, corn, and soybean. Of equal importance to such goals, however, is basic research that seeks to understand the developmental process of embryogenesis in vitro, that is, somatic embryo (embryoid) development in culture, as well as to gain knowledge of cell development of specific cell types within embryoids and callus in culture systems. The purpose of the following descriptions and discussions of techniques is to suggest immunocytochemical approaches to developmental studies that may elucidate the process of cultured cell and embryoid development. Such approaches, by virtue of their specificity and sensitivity, will increase our understanding of cell development, in its multiple aspects, in both cultured and zygotic plant tissues, and, such understanding is neccessary, more specifically, to overcome recalcitrant embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Berlyn GP, Mikshe JP (1976) Botanical microtechnique and cytochemistry, 1st edn. The Iowa State University Press, Ames, Iowa

    Google Scholar 

  • Biesboer DD (1984) The detection of cells with a laticifer-like metabolism in Asclepiassyriaca L. suspension cultu res. Plant Cell Rep 2: 137–139

    Article  Google Scholar 

  • Biesboer DD, Mahlberg PG (1979a) Sterol synthesis and identification in cultures of Euphorbia tirucalli L. In: Sala F, Parisi B, Cella R, Cifferri O (eds) Plant cell cultures: results and perspectives. Elsevier/North-Holland Biomedical, Amsterdam

    Google Scholar 

  • Biesboer DD, Mahlberg PG (1979b) The effect of medium modification and selected precursors on sterol production by short-term callus cultures of Euphorbia tirucalli. J Nat Prod (Lloydia) 42: 648–657

    Article  CAS  Google Scholar 

  • Brockbank WJ, Lynn K (1979) Purification and preliminary characterization of two asclepians from the latex of Asclepias syriaca L. (milkweed). Biochim Biophys Acta 578: 13–22

    PubMed  CAS  Google Scholar 

  • Bruni A, Tosi B (1980) A method for localizing embryonal laticifers by combined conventional and fluorescent microscopy. Protoplasma 102: 343–347

    Article  Google Scholar 

  • Bruni A, Dall’Olio G, Mares D (1977) Use of fluorescent labeling methods in morphological and histochemical studies of latex in situ. Caryologia 30: 486–487

    Google Scholar 

  • Bruni A, Vannini GL, Dall’Olio G (1981) Occurence of laticifers in tissue cultures derived from Euphorbia marginata: a study by fluorescence microscopy. Z Pflanzenphysiol 103: 373–377

    Google Scholar 

  • Buehrer T, Benson L (1945) Rubber content of native plants of the southwestern desert. Tech Bull 108, Univ Arizona Agr Exp Station

    Google Scholar 

  • Chaleff RS (1983) Isolation of agronomically useful mutants from plant cell cultures. Science 219: 676–682

    Article  PubMed  CAS  Google Scholar 

  • Chauveaud G (1891) Recherches embryogeniques sur l’appareil laticifere des Euphorbiacées, Urticacees, Apocynacees, et Asclepiadacees. Ann Sci Nat Bot Biol Veg 14: 1161

    Google Scholar 

  • Conger BV, Hanning GE, Gray DJ, McDanial JK (1983) Direct embryogenesis from mesophyll cells of orchardgrass. Science 221: 850–851

    Article  PubMed  CAS  Google Scholar 

  • Coons AH, Kaplan MH (1950) Localization of antigens in tissue cells II. Improvement in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Dall’Olio G, Tosi B, Bruni A (1978) A new rapid fluorescent labeling method for the detection of the latex tissues in Euphorbiaceae plants. Planta Med 34: 183–187

    Article  Google Scholar 

  • DeMay J (1981) Colloidal gold probes in immunocytochemistry. In: Immunocytochemistry. Wright, Boston, pp 82–112

    Google Scholar 

  • DeWaele J, DeMey J, Moerens M, VanCamp B (1981) The immuno-gold staining method: an immunocytochemical procedure for leukocyte characterization by monoclonal antibodies. In: Knapp W (ed) Leukemia markers. Academic Press, London, pp 173–176

    Google Scholar 

  • Dos Santos A, Cutter EG, Davey MR (1983) Origin and development of somatic embryos in Medicago sativa L. (alfalfa). Protoplasma 117: 107–115

    Article  Google Scholar 

  • Dunstan D, Short K, Merrick K, Collin HA (1982) Origin and early growth of celery embryoids. New Phytol 91: 121–128

    Article  Google Scholar 

  • Esau K (1965) Plant anatomy, 2nd edn. Wiley, New York

    Google Scholar 

  • Galbraith DW, Afonso DL, Harkins KR (1984) Flow sorting and culture of protoplasts: Conditions for high-frequency recovery, growth and morphogenesis from sorted protoplasts of suspension cultures of nicotiana. Plant Cell Rep 3: 151–155

    Article  Google Scholar 

  • Geuze HJ, Slot J, VanderLey P, Scheffer C, Griffith J (1981) Use of colloidal gold particles in double labeling immuno-electron microscopy of ultrathin frozen tissue sections. J Cell Biol 89: 653–665

    Article  PubMed  CAS  Google Scholar 

  • Groett S, Kidd G(1981) Somatic embryogenesis and regeneration from milkweed cell cultures. Biomass 1:93–97

    Article  Google Scholar 

  • Haccius B (1978) Question of unicellular origin of non-zygotic embryos in callus cultures. Phytomorphology 28: 74–81

    Google Scholar 

  • Halperin W (1967) Population density effects on embryogenesis in carrot cell cultures. Exp Cell Res 48: 170–173

    Article  PubMed  CAS  Google Scholar 

  • Halperin W, Jensen W (1967) Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastruct Res 18: 428–443

    Article  PubMed  CAS  Google Scholar 

  • Halperin W, Wetherell D (1964) Adventive embryony in tissue culture of wild carrot, Daucus carota. Am J Bot 51: 274–283

    Article  CAS  Google Scholar 

  • Heinrich G (1970) Electronenmikroskopische Untersuchung der Milchröhren von Ficus elastica. Protoplasma 70: 317–323

    Article  Google Scholar 

  • Himmelhoch S, Zuckerman BM (1982) Xiphinema index and Caenorhabditis elegans: preparation and molecular labeling of ultrathin frozen sections. Exp Parasitol 54:250–259

    Article  PubMed  CAS  Google Scholar 

  • Jeffree CE, Yeoman MM, Kilpatric DC (1982) Immunofluorescence in cells. Int Rev Cytol 80: 231–265

    Article  CAS  Google Scholar 

  • Johansen D (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kato H, Takeuchi M (1966) Embryogenesis from the epidermal cells of carrot hypocotyl. Sci Pap Coll Gen Educ Univ Tokyo (Biol Part) 16: 245–253

    Google Scholar 

  • Knox RB (1982) Methods for locating and identifying antigens in plant tissues. In: Bullock GR, Petrusz P (eds) Techniques in immunochemistry, vol 1. Academic Press, London, pp 205–238

    Google Scholar 

  • Knox RB, Clarke AE (1978) Localization of proteins and glycoproteins by binding to labeled antibodies and lectins. In: Hall JL, (ed) Electronmicroscopy and cytochemistry of plant cells. Elsevier/North Holland Biomedical, Amsterdam, pp 149–185

    Google Scholar 

  • Kononowicz H, Kononowicz AK, Janick JJ (1984) Asexual embryogenesis via callus of Theobroma cacao. Z Pflanzenphysio 1113:347–358

    Google Scholar 

  • Mahlberg PG (1968) Growth response of the laticifer and the juvenile shoot apices of Euphorbia marginata. Phytomorphology 17: 429–437

    Google Scholar 

  • Marty F (1968) Infrastructure des laticiferes differencies d’Euphorbia characias. Compt Rend Hebd Seances Acad Sci 267: 299–302

    Google Scholar 

  • Marty F (1970) Role du systeme membranaire vacuolaire dans la differenciation des laticiferes d’Euphorbia characias L. Compt Rend Hebd Seances Acad Sci 271: 2301–2304

    Google Scholar 

  • Marty F (1971) Vesicles autophagiques des laticiferes differencies d’Euphorbia characias L. Compt Rend Hebd Seances Acad Sci 272: 399–402

    Google Scholar 

  • Mayer RJ, Walker JH (1980) Immunochemical methods in the biological sciences: enzymes and proteins. Academic Press, New York

    Google Scholar 

  • McWilliam AA, Smith A, Street H (1974) The origin and development of embryoids in suspension cultures of carrot (Dautus carota). Ann Bot (Lond) 38: 243–250

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Nielsen PE, Nishimura H, Otvos H, Calvin M (1977) Plant crops as a source of fuel and hydrocarbon-like materials. Science 198: 942–944

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H, Philip R, Calvin M (1977) Lipids of Hevea brasiliensis and Euphorbia coerulescens. Phytochemistry (Oxf) 16: 1048–1049

    Article  CAS  Google Scholar 

  • Paul E, Blakers A, Watson R (1943) The rubber hydrocarbon of Asclepias syriaca L. Can J Res 21: 219–223

    Article  Google Scholar 

  • Prabhudesai V, Narayanaswamy S (1974) Organogenesis in tissue cultures of certain Asclepiads. Z Pflanzepphysiol 71: 181–185

    Google Scholar 

  • Rao P, Narayanaswamy S (1972) Morphogenetic investigations in callus cultures of Tylophora indica. Physiol Plant 27: 271–276

    Article  Google Scholar 

  • Rao P, Narayanaswamy S, Benjamin B (1970) Differentiation ex ovulo of embryos and plantlets in stem tissue cultures of Tylophora indica. Physiol Plant 23: 140–144

    Article  Google Scholar 

  • Reuther G (1977) Embryoide Differenzierungsmeister im Kallus der Gattungen Iris und Asparagus. Ber Dtsch Bot Ges 90: 417–437

    Google Scholar 

  • Roman O, Stolinski C, Hughes-Jones N (1974) An antiglobulin reagent labelled with colloidal gold for use in electron microscopy Immunochemistry 11: 521–522

    Google Scholar 

  • Roth J (1982) The protein A-gold (pAg) technique — a qualitative and quantitative approach for antigen localization on thin sections. In: Bullock GR, Petrusz P (eds) Techniques in immunocytochemistry, vol 1. Academic Press, London, pp 107–134

    Google Scholar 

  • Roth J (1983) The colloidal gold marker system for light and electron microscopic cytochemistry. In: Bullock GR, Petrusz P (eds) Techniques in immunocytochemistry, vol 2. Academic Press, London, pp 217–284

    Google Scholar 

  • Schulze C, Schnepf E, Mothes K (1967) Über die Lokalisation der Kautschukpartikel in verschiedenen Typen von Milchrohren. Flora, Abt A 158: 458–460

    Google Scholar 

  • Selber JN, Lee SM, Benson JM (1984) Chemical characteristics and ecological significance of cardenolides in Asclepias syriaca (milkweed) species. In: Ness WD, Fuller G, Tsai LS (eds) Isopentenoids in plants, biochemistry and function. M Dekker, NY, pp 563–589

    Google Scholar 

  • Sharp WR, Sondahl MR, Caldos LS, Maraffer SB (1980) The physiology of in vitro asexual embryogenesis. In: Janick J (ed) Horticultural reviews, vol 2. AVI, Westport, CT, pp 268–230

    Google Scholar 

  • Shukla OP, Murti DR (1971) The biochemistry of plant latex. I Sci Ind Res (India) 30: 640

    CAS  Google Scholar 

  • Snowcroft WR, Larkin PJ (1982) Somaclonal variation: a new option for plant improvement. In: Vasil IK, Snowcroft WR, Frey KJ (eds) Plant improvement and somatic cell genetics. Academic Press, NY, pp 159–178

    Google Scholar 

  • Sternberger L (1979) Immunocytochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Street HE (1978) Differentiation in cell and tissue cultures — regulation at the molecular level. In: Schutte HR, Gross D (eds) Regulation of developmental processes in plants. Fischer, Jena, pp 192–218

    Google Scholar 

  • Sung ZR, Okimoto R (1981) Embryonic proteins in somatic embryos of carrot. Proc Natl Acad Sci USA 78: 3683–3687

    Article  PubMed  CAS  Google Scholar 

  • Sung ZR, Okimoto R (1983) Coordinate gene expression during somatic embryogenesis in carrots. Proc Natl Acad Sci USA 89: 2661–2665

    Article  Google Scholar 

  • Tisserat B, Esan EB, Murashige T (1979) Somatic embryogenesis in angiosperms. In: Janick J (ed) Horticultural reviews, vol 1, Westport, CT, pp 1–78

    Google Scholar 

  • Tizard IR (1984) Immunology, an introduction. Saunders, Philadelphia

    Google Scholar 

  • Wernicke W, Potrykus I, Thomas E (1982) Morphogenesis from cultured leaf tissue of Sorghum bicolor — the morphogenetic pathways. Protoplasma 111: 53–62

    Article  CAS  Google Scholar 

  • Wick SN, Robert W, Osborn M (1981) Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells. J Cell Biol 89: 685–690

    Article  PubMed  CAS  Google Scholar 

  • Wilson K, Ellis B (1982) Preliminary light and electron microscope studies of laticifers in Stapelia bella (Ascelepiadaceae). AIBS Meet — Am Bot Soc, Penn State Univ (abstract )

    Google Scholar 

  • Wilson K, Frantz V (1981) The ultrastructure of nonarticulated branched laticifers in Asclepias tuberosa L. (butterfly weed). Invited paper, Symp Secretory Structures. Am Bot Soc Meet, Bloomington, IN

    Google Scholar 

  • Wilson K, Mahlberg P (1977) Investigations of laticifer differentiation in tissue cultures derived from Asclepias syriaca L. Ann Bot (Lond) 41: 1049–1054

    Google Scholar 

  • Wilson K, Mahlberg P (1980) Ultrastructure of developing and mature nonarticulated laticifers in the milkweed Asclepias syriaca L. ( Asclepiadaceae ). Am J Bot 67: 1160–1170

    Article  Google Scholar 

  • Wilson KJ, Nessler CL, Mahlberg PG (1976) Pectinase in Asclepias latex and its possible role in laticifer growth and development. Am J Bot 63: 1140–1144

    Article  CAS  Google Scholar 

  • Wilson K, Petersen B, Biesboer D (1984) Immunocytochemical identification of laticifers. Protoplasma 122: 86–90

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wilson, K.J. (1986). Immunological-Cytochemical Localization of Cell Products in Plant Tissue Culture. In: Linskens, HF., Jackson, J.F. (eds) Immunology in Plant Sciences. Modern Methods of Plant Analysis, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82853-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82853-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82855-3

  • Online ISBN: 978-3-642-82853-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics