Skip to main content

Optimal Therapeutic Strategies for Radioimmunotherapy

  • Conference paper
Systemic Radiotherapy with Monoclonal Antibodies

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 141))

Abstract

Radioimmunotherapy (RIT) is one aspect of a more general therapeutic approach which involves the biological targeting of ionising radiation to tumours. The distinguishing feature of RIT is the use of immunologically based targeting molecules such as antibodies and their fragments. Some useful and encouraging clinical results have been achieved with antibody-targeted therapy (Press et al. 1993; Hird et al. 1993; Riva et al. 1994). There are, however, other possible molecules which may be used for tumour targeting. One of the most promising of these is meta-iodobenzylguanidine (mIBG) which has certain structural similarities to noradrenaline. This agent is in clinical use for the biologically targeted radiotherapy of neuroblastoma and phaeochromocytoma (Voute et al. 1991; Lashford et al. 1992). In the future it is very likely that other classes of targeting molecule will also find application for tumour targeting. Which class of radionuclide to use depends on the manner in which the targeting molecule becomes associated with the targeted tumour cell. At present radionuclides which emit β-particles are used to the virtual exclusion of all others, although the potential of α-emitting radionuclides is also being explored (Junghans et al. 1993; Vaidyanathan and Zalutsky 1992). These are reasonable choices if the targeting molecule is bound to the cell surface or internalised to non-nuclear regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bardiès M, Chatal JF (1994) Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides — beta dosimetry of small spheres. Phys Med Biol 39: 961–981

    Article  PubMed  Google Scholar 

  • Barendsen GW (1982) Dose fractionation, dose-rate and isoeffect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8: 1981–1997

    Article  PubMed  CAS  Google Scholar 

  • Dale RG (1985) The application of the linear quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 58: 515–528

    Article  PubMed  CAS  Google Scholar 

  • Depledge MH, Barrett A, Powles RL (1983) Lung function after bone marrow grafting. Int J Radiat Oncol Biol Phys 9: 145–151

    PubMed  CAS  Google Scholar 

  • DeSombre ER, Shafii B, Hanson RN, Kuivanen PC, Hughes A (1992) Estrogen receptor-directed radiotoxicity with Auger electrons. Cancer Res 52: 5752–5758

    Google Scholar 

  • Fowler JF (1989) The linear quadratic formula and progress in fractionated radiotherapy - a review. Br J Radiol 62: 679–694

    Article  PubMed  CAS  Google Scholar 

  • Hird V, Maraveyas A, Snook D, Dhokia B, Soutter WP, Meares C, Stewart JSW, Mason P, Lambert HE, Epenetos AA (1993) Adjuvant therapy of ovarian cancer with radioactive monoclonal antibody. Br J Cancer 68: 403–406

    Article  PubMed  CAS  Google Scholar 

  • Humm JL (1986) Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med 27: 1490–1497

    PubMed  CAS  Google Scholar 

  • Junghans RP, Dobbs D, Brechbiel MW, Mirzadeh S, Raubitschek AA, Gansow OA, Waldmann TA (1993) Pharmacokinetics and bioactivity of 1,4,7,10-tetraazacylodecane N,N′,N″,N‴-tetraacetic acid (DOTA) -Bismuth-conjugated antitac antibody for alpha-emitter (Bi-212) therapy. Cancer Res 53: 5683–5689

    PubMed  CAS  Google Scholar 

  • Keane TJ, van Dyk J, Rider WD (1981) Idiopathic interstitial pneumonia following bone marrow transplantation: the relationship with total body irradiation. Int J Radiat Oncol Biol Phys 7: 1365–1370

    Article  PubMed  CAS  Google Scholar 

  • Lashford LS, Lewis IJ, Fielding SL, Flower MA et al. (1992) Phase I/II study of 131I meta-iodobenzylguanidine in chemoresistant neuroblastoma — a United Kingdom Childrens Cancer Study Group Investigation. J Clin Oncol 10: 1889–1896

    PubMed  CAS  Google Scholar 

  • Lovqvist A, Lindstrom A, Carlsson J (1993) Binding, internalization and excretion of TGF-alpha-dextran associated radioactivity in cultures human glioma cells. Cancer Biother 8: 345–356

    Article  PubMed  CAS  Google Scholar 

  • Mairs RJ, Gaze MN, Angerson WJ, Babich JW, Murray T, Reid R, McSharry C (1991) The distribution of alternative agents for targeted radiotherapy within human neuroblastoma spheroids. Br J Cancer 63: 404–409

    Article  PubMed  CAS  Google Scholar 

  • Mausner LF, Srivastava SC (1993) Radionuclides for radioimmunotherapy. Med Phys 20: 503–509

    Article  PubMed  CAS  Google Scholar 

  • McShan WM, Kinsey BM (1993) Site-specific cleavage of target DNA by a triplex forming oligonucleotide conjugate containing an Auger electron emitting atom ( Abstr ). FASEB J 7: 1088

    Google Scholar 

  • O’Donoghue J A (1991) Optimal scheduling of combined biologically targeted radiotherapy and total body irradiation with bone marrow rescue for the treatment of systemic malignant disease. Int J Radiat Oncol Biol Phys 21: 1587–1594

    Article  PubMed  Google Scholar 

  • O’Donoghue JA (1994) The impact of tumor cell proliferation in radioimmunotherapy. Cancer 73: 974–980

    Article  PubMed  Google Scholar 

  • Press OW, Eary JF, Appelbaum FR, Martin PJ et al. (1993) Radiolabelled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 329: 1219–1224

    Article  PubMed  CAS  Google Scholar 

  • Riva P, Arista A, Tison V, Sturiale C, Franceschi G, Spinelli A, Riva N, Casi M, Moscatelli G, Frattarelli M (1994) Intralesional radioimmunotherapy of malignant glioma: an effective treatment in recurrent tumors. Cancer 73: 1076–1082

    Article  PubMed  CAS  Google Scholar 

  • Steel GG (ed) (1993) Basic clinical radiobiology. Arnold, Sevenoaks

    Google Scholar 

  • Thames HD, Hendry JH (1987) Fractionation in radiotherapy. Taylor and Francis, London

    Google Scholar 

  • Vaidyanathan G, Zalutsky MR (1992) 1-(m[211At]Astatobenzyl)guanidine: synthesis via Astato demetalation and preliminary in vitro and in vivo evaluation. Bioconj Chem 3:499–503

    Article  CAS  Google Scholar 

  • Voûte PA, Hoefnagel CA, de Kraker J, Valdes Olmos R, Bakker DJ, van de Kleij AJ (1991) Results of treatment with 131I-metaiodobenzylguanidine (131I-mIBG) in patients with neuroblastoma. Future prospects of zetotherapy. In: Evans AE, D’Angio GJ, Knudson AG, Seeger RC (eds) Advances in neuroblastoma research, vol 3. Wiley-Liss, New York, pp 439–445

    Google Scholar 

  • Wessels BW, Rogus RD (1984) Radionuclide selection and model absorbed dose calculations for radiolabeled tumor-associated antibodies. Med Phys 11: 638–645

    Article  PubMed  CAS  Google Scholar 

  • Wessels BW, Vessella RL, Palme DF, Berkopec JM, Smith GK, Bradley EW (1989) Radiobiological comparison of external beam irradiation and radioimmunotherapy in renal cell carcinoma xenografts. Int J Radiat Oncol Biol Phys 17: 1257–1263

    Article  PubMed  CAS  Google Scholar 

  • Yorke ED, Wessels BW, Bradley EW (1991) Absorbed dose averages and dose heterogeneities in radioimmunotherapy. Antibody Immunocon Radiopharm 4: 623–629

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

O’Donoghue, J.A. (1996). Optimal Therapeutic Strategies for Radioimmunotherapy. In: Sautter-Bihl, ML., Bihl, H., Wannenmacher, M. (eds) Systemic Radiotherapy with Monoclonal Antibodies. Recent Results in Cancer Research, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79952-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79952-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79954-9

  • Online ISBN: 978-3-642-79952-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics