Skip to main content

Studies of a Chloroplast-Localized Small Heat Shock Protein in Arabidopsis

  • Conference paper
Biochemical and Cellular Mechanisms of Stress Tolerance in Plants

Part of the book series: NATO ASI Series ((ASIH,volume 86))

Abstract

Thermotolerance, or the ability of organisms to withstand exposure to potentially lethal high temperatures, is thought to be conferred by the induction of heat shock proteins (HSPs) (Lindquist 1986). Several major families of HSPs classified according to molecular weight and amino acid similarity have been defined, although how they contribute to the development of thermotolerance is not well understood. Among the HSPs most highly induced by heat stress in eukaryotes is a class of nuclear-encoded proteins ranging in size from 15 to 30 kD referred to as the small HSPs (sHSPs). Though diverse in size and primary structure, the sHSPs can be identified based on their similar hydropathy profiles and homology to the acrystallin proteins of the eye lens (Lindquist and Craig 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ainley WM, Key JL (1990) Development of a heat shock inducible expression cassette for plants: Characterization of parameters for its use in transient expression assays. Plant Mol Biol 14: 949–967

    Google Scholar 

  • Altschuler M, Mascarenhas JP (1982) Heat shock proteins and effects of heat shock in plants. Plant Mol Biol 1: 103–115

    Article  CAS  Google Scholar 

  • Anderson LO, Borg H, Mikaelsson M (1972) Molecular weight estimation of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett 20: 199–202

    Article  Google Scholar 

  • Arrigo A-P, Welch WJ (1987) Characterization and purification of the small 28,000-dalton mammalian heat shock protein. J Biol Chem 262: 15359–15369

    PubMed  CAS  Google Scholar 

  • Binelli G, Mascarenhas JP (1990) Arabidopsis: Sensitivity of growth to high temperature. Dev Genet 11: 294–298

    Google Scholar 

  • Chen Q (1992) The major chloroplast low molecular weight heat shock protein. PhD Dissertation, University of Arizona, Tucson, AZ

    Google Scholar 

  • Chen Q, Lauzon LM, DeRocher AE, Vierling E (1990) Accumulation, stability, and localization of a major chloroplast heat-shock protein. J Cell Biol 110: 1873–1883

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Vierling E (1991) Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein. Mol Gen Genet 226: 425–431

    Article  PubMed  CAS  Google Scholar 

  • Collier NC, Heuser J, Levy MA, Schlesinger MJ (1988) Ultrastructural and biochemical analysis of the stress granule in chicken embryo fibroblasts. J Cell Biol 106: 1131–1139

    Article  PubMed  CAS  Google Scholar 

  • DeRocher AE, Helm KW, Lauzon LM, Vierling E (1991) Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol 96: 1038–1047

    Article  Google Scholar 

  • Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature 355: 33–45

    Article  PubMed  CAS  Google Scholar 

  • Helm KW, LaFayette PR, Nagao RT, Key JL, Vierling E (1993) Localization of small HSPs to the higher plant endomembrane system. Mol Cell Biol 13: 238–247

    PubMed  CAS  Google Scholar 

  • Horwitz J (1992) a-Crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89:10449–10453

    Google Scholar 

  • Howarth CJ (1991) Molecular reponses of plants to an increased incidence of heat shock. Plant, Cell Environ 14: 831–841

    Article  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268: 1517–1520

    PubMed  CAS  Google Scholar 

  • Kimpel JA, Nagao RT, Goekjian V, Key JL (1990) Regulation of the heat shock response in soybean seedlings. Plant Physiol 94: 988–995

    Article  PubMed  CAS  Google Scholar 

  • Kloppstech K, Meyer G, Schuster G, Ohad I (1985) Synthesis, transport and localization of a nuclear coded 22-kd heatshock protein in the chloroplast membranes of peas and Chlamydomonas reinhardi. EMBO J 4: 1902–1909

    Google Scholar 

  • Lindquist S (1986) The heat shock response. Annu Rev Biochem 45: 39–72

    Google Scholar 

  • Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet 22: 631–677

    Article  PubMed  CAS  Google Scholar 

  • Marton L, Browse J (1991) Facile transformation of Arabidopsis. Plant Cell Reports 10: 235–239

    Article  Google Scholar 

  • Nieto-Sotolo J, Vierling E, Ho T-H D (1990) Cloning, sequence analysis and expression of a cDNA encoding a plastid localized heat shock protein in maize. Plant Physiol 93: 1321–1328

    Article  Google Scholar 

  • Nover L, Scharf K-D, Neumann D (1989) Cytoplasmic heat shock granules are formed from precursor perticles and are associated with a specific set of mRNAs. Mol Cell Biol 9: 1298–1308

    PubMed  CAS  Google Scholar 

  • Odell JT, Nagy F, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung KW, Sundberg H, Vierling E (1993) Poly(A) tail length of a heat shock protein RNA is increased by severe heat stress, but intron splicing is unaffected. Mol Gen Genet, 239: 323–333.

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung KW, Vierling E (1992) Genetic approaches to the function of the chloroplast low molecular weight heat shock protein. In N Murata, ed, Research in Photosynthesis. Kluwer Academic Publishers, Dordrecht, Netherlands Vol IV:129–136

    Google Scholar 

  • Rogers SG, Horsch RB, Fraley RT (1986) Gene transfer in plants: production of transformed plants using Ti plasmid vectors. Methods Enzymol, 118: 627–641

    Article  CAS  Google Scholar 

  • Rogers SG, Klee HJ, Horsch RB, Fraley RT (1987) Improved vectors for plant transformation: Expression cassette vectors and new selectable markers. Meth Enzymol 153: 253–277

    Google Scholar 

  • Sanchez Y, Lindquist SL (1990) HSP104 is required for induced thermotolerance. Science 248: 1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci 85: 5536–5540

    Article  PubMed  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579–620

    Article  CAS  Google Scholar 

  • Vierling E, Mishkind ML, Schmidt GW, Key JL (1986) Specific heat shock proteins are transported into chloroplasts. Proc Natl Acad Sci USA 83: 361–365

    Article  PubMed  CAS  Google Scholar 

  • Vierling E, Nagao RT, DeRocher AE, Harris LM (1988) A heat shock protein localized to chloroplasts is a member of a eukaryotic superfamlily of heat shock proteins. EMBO J 7: 575–581

    PubMed  CAS  Google Scholar 

  • Watson CF, Grierson D (1993) Antisense RNA in plants. In A Hiatt, ed, Transgenic Plants: Fundamentals and Applications. Marcel Dekker, New York, pp 255–281

    Google Scholar 

  • Weng J, Wang Z, Nguyen HT (1991) Nucleotide sequence of a Triticum aestivum cDNA clone which is homologous to the 26 kDa chloroplast-localized heat shock protein gene of maize. Plant Mol Biol 17: 255

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Osteryoung, K.W., Pipes, B., Wehmeyer, N., Vierling, E. (1994). Studies of a Chloroplast-Localized Small Heat Shock Protein in Arabidopsis . In: Cherry, J.H. (eds) Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. NATO ASI Series, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79133-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79133-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79135-2

  • Online ISBN: 978-3-642-79133-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics