Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 86))

Abstract

Plant cells respond, as do the cells of all living organisms, to transient increases in temperature by inducing or enhancing the synthesis of a characteristic set of heat shock proteins (hsps). At the same time, there is in most organisms at least a partial suppression of normal cellular protein synthesis. This is done, presumably, to focus the cell’s activities on addressing the physiological and biochemical changes which ensue with such stress; however, the precise function that these hsps perform in heat-shocked cells is not yet fully understood (for a recent review see Vierling 1991). In heat shock each cell responds to heat shock as a single cell; there is no system-wide, coordinated response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bartlett GR (1959) Phosphorous assay in column chromatography. J Biol Chem 234: 466–468

    PubMed  CAS  Google Scholar 

  • Belanger FC, Brodl MR, Ho T-hD (1986) Heat shock causes destabilization of specific mRNAs and destruction of endoplasmic reticulum in barley aleurone cells. Proc Natl Acad Sci USA 83: 1354–1358

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of protein utilizing the principle of protein dye-binding. Anal Biochem 86: 142–146

    Google Scholar 

  • Brodl MR (1989) Expression of heat shock and normal cellular proteins in heat-shocked plant secretory cells. Physiol Plant 75: 439–443

    Article  CAS  Google Scholar 

  • Brodl MR, Ho T-hD (1991) Heat shock causes selective destabilization of secretory protein mRNAs in barley aleurone cells. Plant Physiol 96: 1048–1052

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-R, Chou M, Ren S-S, Chen Y-M, Lin C-Y (1988) Observations of soybean root meristematic cells in response to heat shock. Protoplasma 144: 1–9

    Article  Google Scholar 

  • Chirgwin JM, Pryzbyla AE, McDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochem 18: 5294–5299

    Article  CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Cooper PS, Ho T-hD (1983) Heat shock proteins in maize. Plant Physiol 71: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Fiske CH, SubbaRow Y (1925) The colorimetric determination of phosphorous. J Biol Chem 66: 375–400

    CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 266: 497–505

    Google Scholar 

  • Geer BW, McKechnie SW, Langevin ML (1986) The effect of dietary ethanol on the composition of lipids of Drosophila melanogaster larvae. Biochem Genet 24: 51–69

    Article  PubMed  CAS  Google Scholar 

  • Gilfillan MA, Chu AJ, Smart DA, Rooney SA (1983) Single plate separation of lung phospholipids including disaturated phosphatidylcholine. J Lipid Res 24: 1651–1656

    PubMed  CAS  Google Scholar 

  • Hayat MA (1989) Principles and techniques of electron microscopy, 3rd ed. CRC Press, Boca Raton, FL

    Google Scholar 

  • Hugly S, Kunst L, Browse J, Somerville C (1989) Enhanced thermotolerance and altered chloroplast ultrastructure in a mutant of Arabidopsis deficient in lipid unsaturation. Plant Physiol 90: 1134–1142

    Article  PubMed  CAS  Google Scholar 

  • Johnson KD, Kende H (1971) Hormonal regulation of lecithin synthesis in barley aleurone cells: Regulation of the CDP-choline pathway by gibberellin. Proc Natl Acad Sci USA 68: 2674–2677

    Google Scholar 

  • Jones R L (1980) The isolation of endoplasmic reticulum from barley aleurone layers. Planta 150: 58–69

    Article  CAS  Google Scholar 

  • Jones R L (1985) Endoplasmic reticulum. In HF Linskens, JF Jackson, eds, Modern Methods of Plant Analysis (N. S.). Springer-Verlag, New York, pp. 304–330

    Google Scholar 

  • Kloppstech K, Meyer G, Schuster G, Ohad, I (1985) Synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein in the chloroplast membranes of peas and Chlamydomonas reinhardi. EMBO J 4: 1901–1909

    PubMed  CAS  Google Scholar 

  • Koehler DE, Varner JE (1973) Hormonal control of orthophosphate incorporation into phospholipids of barley aleurone layers. Plant Physiol 52: 208–214

    Article  PubMed  CAS  Google Scholar 

  • Kunst L, Browse J, Somerville C (1989) Enhanced thermal tolerance in a mutant of Arabidopsis deficient in palmitic acid unsaturation. Plant Physiol 91: 401–408

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Leathers RR, Scragg AH (1989) The effect of different temperatures on the growth, lipid content and fatty acid composition of Theobroma cacao cell suspension cultures. Plant Sci 62: 217–227

    Article  CAS  Google Scholar 

  • Lindquist S (1981) Regulation of protein synthesis during heat shock. Nature 294: 311–314

    Article  Google Scholar 

  • Lindquist S, DiDomenico BJ (1985) Coordinate and noncoordinate gene expression during heat shock: A model for regulation. In: Changes in eukaryotic gene expression in response to environmental stress, pp 71–90, Atkinson, B. G., Walden, D. B., eds. Academic Press, New York

    Google Scholar 

  • Lord JM, Kagawa T, Moore TS, Beevers H (1973) Endoplasmic reticulum as the site of lecithin formation in castor bean endosperm. J Cell Biol 57: 659–667

    Article  PubMed  CAS  Google Scholar 

  • MacCarthy J J, Stumpf PK (1980) The effect of different temperatures on fatty acid synthesis and polyunsaturation in cell suspension cultures. Planta 147: 389–395

    Article  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Moore TS (1987) Regulation of phospholipid head group composition in castor bean endosperm. In P Stumpf, JB Mudd, WD Nes, eds, The Metabolism, Structure and Function of Plant Lipids. Plenum Press, New York, pp 265–272

    Google Scholar 

  • Muthukrishnan S, Chandra GR, Albaugh GP (1983) Modulation by abscisic acid and 5,2-aminoethyl-cystiene of α-amylase mRNA in barley aleurone cells. Plant Mol Biol 2: 249–258

    Article  CAS  Google Scholar 

  • Nagahashi J, Kane AP (1984) Triton-stimulated nucleoside diphosphatase activity: subcellular localization in corn root homogenates. Protoplasma 112: 167–173

    Article  Google Scholar 

  • Pearcy RW (1978) Effect of growth temperature on the fatty acid composition of the leaf lipids in Atriplex lentiformis (Torr.) Wats. Plant Physiol 61: 484–486

    Article  PubMed  CAS  Google Scholar 

  • Quinn PJ (1984) Polar lipid structures and the stability of cell membranes. In P-A Siegenthaler, W Eichenberger, eds, Structure, Function and Metabolism of Plant Lipids. Elsevier Science Publishers, Amsterdam, pp. 331–338

    Google Scholar 

  • Raison JK, Roberts JKM, Berry J A (1982) Correlations between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant, Nerium oleander, to growth temperature. Biochim Biophys Acta 688: 218–228

    Google Scholar 

  • Ringo DL, Cota-Robles EH, Humphrey BJ (1979) Low viscosity embedding resins for transmission electron microscopy. Annu Proc Electron Microsc Soc Amer 37: 348–349

    Google Scholar 

  • Rogers JC, Milliman C (1983) Isolation and sequence analysis of a barley alpha-amylase cDNA clone. J Biol Chem 258: 8169–8174

    PubMed  CAS  Google Scholar 

  • Scott MP, Pardue ML (1981) Translational control in lysates of Drosophila melanogaster cells. Proc Natl Acad Sci USA 78: 3353–3357

    Article  PubMed  CAS  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation - A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71: 522–525

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Balsamo RA, Arvinte T, Lynch DV (1988) Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. Proc Natl Acad Sci USA 85: 9026–9030

    Article  PubMed  CAS  Google Scholar 

  • Sze H (1984) H+-translocating ATPases of the plasmamembrane and tonoplast of plant cells. Physiol Plant 61: 683–691

    Article  CAS  Google Scholar 

  • Terasaki M, Chen LB, Fujiwara K (1986) Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol 103: 1557–1568

    Article  PubMed  CAS  Google Scholar 

  • Tanguay RM (1985) Intracellular localizations and possible functions of heat shock proteins. MBG Atkinson, DB Walden DB, eds, Changes in Eukaryotic Gene Expression in Response to Environmental Stress. Academic Press, New York, pp 91–113

    Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Molec Biol 42: 579–620

    Article  CAS  Google Scholar 

  • Vogl AW, Linck RW, Dym M (1983) Colchicine-induced changes in the cytoskeleton of the goldenmantled ground squirrel ( Spermophilous lateralis) Sertoli cells. Am J Anat 168: 99–108

    Google Scholar 

  • Welch WJ (1990) The mammalian stress response: Cell physiology and biochemistry of stress proteins. In RI Morimoto, A Tissifcres, C Georgopoulos, eds, Stress Proteins in Biology and Medicine. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 223–278

    Google Scholar 

  • Yoshida S (1984) Studies on freezing injury of plant cells. Plant Physiol 75: 38–42

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brodl, M.R., Campbell, J.D., Grindstaff, K.K., Fielding, L. (1994). Normal Cellular Protein Synthesis and Heat Shock. In: Cherry, J.H. (eds) Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. NATO ASI Series, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79133-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79133-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79135-2

  • Online ISBN: 978-3-642-79133-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics