Skip to main content

Subunit Interactions of Heterotrimeric G-Proteins

  • Chapter
GTPases in Biology II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 2))

  • 141 Accesses

Abstract

A defining feature of the GTP-binding α subunit of the heterotrimeric G-proteins is its interaction with the βγ subunit. Although the G proteins are heterotrimers, they are functional dimers because the β and γ subunits appear not to dissociate under native conditions. The equilibrium between the associated and dissociated states of a and βγ subunits is controlled by the conformational changes in the α subunit that accompany guanine nucleotide binding and hydrolysis. As diagrammed in Fig. 1, when a guanine nucleoside diphosphate is bound to α, the associated form is favored. When the diphosphate is exchanged for a triphosphate, the equilibrium between α and βγ shifts toward dissociation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Brandt DR, Ross EM (1985) GTPase activity of the stimulatory GTP-binding regulatory protein of adenylate cyclase, Gs. Accumulation and turnover of enzyme-nucleotide intermediates. J Biol Chem 260:266–272.

    PubMed  CAS  Google Scholar 

  • Bubis J, Khorana HG (1990) Sites of interaction in the complex between β-and γ-subunits of transducin. J Biol Chem 265:12995–12999.

    PubMed  CAS  Google Scholar 

  • Buss JE, Mumby SM, Casey PJ, Gilman AG, Sefton BM (1987) Myristoylated α subunits of guanine nucleotide-binding regulatory proteins. Proc Natl Acad Sci USA 84:7493–7497.

    Article  PubMed  CAS  Google Scholar 

  • Casey PJ, Graziano MP, Gilman AG (1989) G protein βγ subunits from bovine brain and retina: equivalent catalytic support of ADP-ribosylation of α subunits by pertussis toxin but differential interactions with G. Biochemistry 28:611–616.

    Article  PubMed  CAS  Google Scholar 

  • Cerione RA, Gierschik P, Staniszewski C, Benovic JL, Codina J, Somers R, Birnbaumer L, Spiegel AM, Lefkowitz RJ, Caron MG (1987) Functional differences in the βγ complexes of transducin and the inhibitory guanine nucleotide regulatory protein. Biochemistry 26:1485–1491.

    Article  PubMed  CAS  Google Scholar 

  • Codina J, Hildebrandt J, Iyengar R, Birnbaumer L, Sekura RD, Manclark CR (1983) Pertussis toxin substrate, the putative Ni component of adenylyl cyclase, is often an β heterodimer regulated by guanine nucleotide and magnesium. Proc Natl Acad Sci USA 80:4276–4280.

    Article  PubMed  CAS  Google Scholar 

  • Codina J, Hildebrandt JD, Sekura RD, Birnbaumer M, Bryan J, Manclark CR, Iyengar R, Birnbaumer L (1984) N and Ni, the stimulatory and inhibitory regulatory components of adenylyl cyclase. J Biol Chem 259:5871–5886.

    PubMed  CAS  Google Scholar 

  • Codina J, Yatani A, Grenet D, Brown AM, Birnbaumer L (1987) The α subunit of Gk opens atrial potassium channels. Science 236:442–445.

    Article  PubMed  CAS  Google Scholar 

  • Deichaite I, Casson LP, Long HP, Resh MD (1988) In vitro synthesis of pp60v−src: myristoylation in a cell-free system. Mol Cell Biol 8:4295–4301.

    PubMed  CAS  Google Scholar 

  • Denker BM, Neer EJ, Schmidt CJ (1992a) Mutagenesis of the amino terminus of the α subunit of the G protein Go. In vitro characterization of αoβγ interactions. J Biol Chem 267:6272–6277.

    PubMed  CAS  Google Scholar 

  • Denker BM, Schmidt CJ, Neer EJ (1992b) Promotion of the GTP-liganded state of the G protein by deletion of the C terminus. J Biol Chem 267:9998–10002.

    PubMed  CAS  Google Scholar 

  • Fawzi AB, Fay DS, Murphy EA, Tamir H, Erdos JJ, Northup JK (1991) Rhodopsin and the retinal G-protein distinguish among G-protein βγ subunit forms. J Biol Chem 266:12194–12200.

    PubMed  CAS  Google Scholar 

  • Florio VA, Sternweis PC (1989) Mechanisms of muscarinic receptor action on Go in reconstituted phospholipid vesicles. J Biol Chem 264:3909–3915.

    PubMed  CAS  Google Scholar 

  • Fong HKW, Amatruda TT III, Birren BW, Simon MI (1987) Distinct forms of the β subunit of GTP-binding regulatory proteins, identified by molecular cloning. Proc Natl Acad Sci USA 84:3792–3796.

    Article  PubMed  CAS  Google Scholar 

  • Fung BKK (1983) Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits. J Biol Chem 258: 10495–10502.

    PubMed  CAS  Google Scholar 

  • Fung BKK, Nash CR (1983) Characterization of transducin from bovine retinal rod outer segments. II. Evidence for distinct binding sites and conformational changes revealed by limited proteolysis with trypsin. J Biol Chem 258:10503–10510.

    PubMed  CAS  Google Scholar 

  • Gao B, Gilman AG, Robishaw JD (1987) A second form of the γ subunit of signal-transducing G proteins. Proc Natl Acad Sci USA 84:6122–6125.

    Article  PubMed  CAS  Google Scholar 

  • Gautam N, Baetscher M, Aebersold R, Simon MI (1989) A G protein gamma subunit shares homology with ras proteins. Science 244:971–974.

    Article  PubMed  CAS  Google Scholar 

  • Gautam N, Northup J, Tamir H, Simon MI (1990) G protein diversity is increased by associations with a variety of γ subunits. Proc Natl Acad Sci USA 87:7973–7977.

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Haga T (1992) Activation by G protein βγ subunits of agonist-or light-dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin. J Biol Chem 267:2222–2227.

    PubMed  CAS  Google Scholar 

  • Hekman M, Feder D, Keenan AK, Gal A, Klein HW, Pfeuffer T, Levitzki A, Helmreich EJ (1984) Reconstitution of β-adrenergic receptor with components of adenylate cyclase. EMBO J 3:3339–3345.

    PubMed  CAS  Google Scholar 

  • Higashijima T, Ferguson KM, Sternweis PC, Smigel MD, Gilman AG (1987) Effects of Mg2+ and the βγ-subunit complex on the interactions of guanine nucleotides with G proteins. J Biol Chem 262:762–766.

    PubMed  CAS  Google Scholar 

  • Hildebrandt JD, Codina J, Rosenthal W, Birnbaumer L, Neer EJ, Yamazaki A, Bitensky MW (1985) Characterization by two-dimensional peptide mapping of the γ subunits of Ns and Ni the regulatory proteins of adenylyl cyclase, and of transducin, the guanine nucleotide-binding protein of rod outer segments of the eye. J Biol Chem 260:14867–14872.

    PubMed  CAS  Google Scholar 

  • Holbrook SR, Kim S-H (1989) Molecular model of the G protein α subunit based on the crystal structure of the HRAS protein. Proc Natl Acad Sci USA 86: 1751–1755.

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC, Gilman AG (1980) Hydrodynamic properties of the regulatory component of adenylate cyclase. J Biol Chem 255:2861–2866.

    PubMed  CAS  Google Scholar 

  • Huff RM, Axton JM, Neer EJ (1985) Physical and immunological characterization of a guanine nucleotide binding protein purified from bovine cerebral cortex. J Biol Chem 260:10864.

    PubMed  CAS  Google Scholar 

  • Huff RM, Neer EJ (1986) Subunit interactions of native and ADP-ribosylated α41 and α39, two guanine nucleotide-binding proteins from bovine cerebral cortex. J Biol Chem 261:1105–1110.

    PubMed  CAS  Google Scholar 

  • Hurley JB, Fong HK, Teplow DB, Dreyer WJ, Simon MI (1984a) Isolation and characterization of a cDNA clone for the α subunit of bovine retinal transducin. Proc Natl Acad Sci USA 81:6948–6952.

    Article  PubMed  CAS  Google Scholar 

  • Hurley JB, Simon MI, Teplow DB, Robishaw JD, Gilman AG (1984b) Homologies between signal transducing G proteins and ras gene products. Science 226: 860–862.

    Article  PubMed  CAS  Google Scholar 

  • Im MJ, Holzhofer A, Bottinger H, Pfeuffer T, Helmreich EJM (1988) Interactions of pure βγ-subunits of G-proteins with purified α1-adrenoceptor. FEBS Lett 227:225–229.

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Tung RT, Sugimoto T, Kobayashi I, Takahashi K, Katada T, Ui M, Kurachi Y (1992) On the mechanism of G protein βγ subunit activation of the muscarinic K+ channel in guinea pig atrial cell membrane. Comparison with the ATP-sensitive K+ channel. J Gen Physiol 99:961–983.

    Article  PubMed  CAS  Google Scholar 

  • Jelsema CL, Axelrod J (1987) Stimulation of phospholipase A2 activity in bovine rod outer segments by the βγ subunits of transducin and its inhibition by the α subunit. Proc Natl Acad Sci USA 84:3623.

    Article  PubMed  CAS  Google Scholar 

  • Jones TLZ, Simonds WF, Meredino JJ Jr, Brann MR, Spiegel AM (1990) Myristoylation of an inhibitory GTP-binding protein α subunit is essential for its membrane attachment. Proc Natl Acad Sci USA 87:568–572.

    Article  PubMed  CAS  Google Scholar 

  • Journot L, Pantaloni C, Bockaert J, Audigier Y (1991) Deletion within the amino terminal region of G impairs its ability to interact with βγ subunits and to activate adenylate cyclase. J Biol Chem 266:9009–9015.

    PubMed  CAS  Google Scholar 

  • Kahn RA, Gilman AG (1984) ADP-ribosylation of Gs promotes the dissociation of its α and β subunits. J Biol Chem 259:6235–6240.

    PubMed  CAS  Google Scholar 

  • Katada T, Bokoch GM, Smigel MD, Ui M, Gilman AG (1984) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and the inhibition of adenylate cyclase in S49 lymphoma cyc and wild type membranes. J Biol Chem 259:3586–3595.

    PubMed  CAS  Google Scholar 

  • Katz A, Wu D, Simon MI (1992) Subunits βγ of heterotrimeric G protein activate α2 isoform of phospholipase C. Nature 360:686–689.

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE (1989) G-protein βγ subunits activate the cardiac muscarinic K+-channel via phospholipase A2. Nature 337:557–560.

    Article  PubMed  CAS  Google Scholar 

  • Lee E, Taussig R, Gilman AG (1992) The G226A mutant G highlights the requirement for dissociation of G protein subunits. J Biol Chem 267:1212–1218.

    PubMed  CAS  Google Scholar 

  • Levine MA, Smallwood PM, Moen PT Jr, Helman LJ, Ahn TG (1990) Molecular cloning of beta 3 subunit, a third form of the G protein beta-subunit polypeptide. Proc Natl Acad Sci USA 87:2329–2333.

    Article  PubMed  CAS  Google Scholar 

  • Linder ME, Pang I-H, Duronio RJ, Gordon JI, Sternweis PC, Gilman AG (1991) Lipid modifications of G protein subunits. Myristoylation of G increases its affinity for βγ. J Biol Chem 266:4654–4659.

    PubMed  CAS  Google Scholar 

  • Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326.

    Article  PubMed  CAS  Google Scholar 

  • Logothetis DE, Kim D, Northup JK, Neer EJ, Clapham DE (1988) Specificity of action of guanine nucleotide-binding regulatory protein subunits on the cardiac muscarinic K+ channel. Proc Natl Acad Sci USA 85:5815–5818.

    Article  Google Scholar 

  • Mattera R, Codina J, Sekura RD, Birnbaumer L (1987) Guanosine 5′-0′ (3-thiotriphosphate) reduces ADP-ribosylation of the inhibitory guanine nucleotide-binding regulatory protein of adenylyl cyclase (Ni) by pertussis toxin without causing dissociation of the subunits of Ni. J Biol Chem 262:11247–11251.

    PubMed  CAS  Google Scholar 

  • Mazzoni MR, Hamm HE (1989) Effect of monoclonal antibody binding on αβγ subunit interactions in the rod outer segment G protein, Gt. Biochemistry 28:9873–9880.

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni MR, Malinski JA, Hamm HE (1991) Structural analysis of rod GTP-binding protein, Gt. Limited proteolytic digestion pattern of Gt with four proteases defines monoclonal antibody epitope. J Biol Chem 266:14072–14081.

    PubMed  CAS  Google Scholar 

  • Mumby SM, Heukeroth RO, Gordon I, Gilman AG (1990) G-protein α-subunit expression, myristoylation, and membrane association in COS cells. Proc Natl Acad Sci USA 87:728–732.

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Simonds WF, Spiegel AM (1992) Site-specific antibodies directed against G protein β and γ subunits: effects on α and βγ subunit interaction. Biochemistry 31:2905–2911.

    Article  PubMed  CAS  Google Scholar 

  • Navon SE, Fung BD (1987) Characterization of transducin from bovine retinal rod outer segments. Participation of the amino-terminal region of Tα in subunit interaction. J Biol Chem 262:15746–15751.

    PubMed  CAS  Google Scholar 

  • Navon SE, Fung BK-K (1988) Characterization of transducin from bovine retinal rod outer segments. Use of monoclonal antibodies to probe the structure and function of the α subunit. J Biol Chem 263:489–496.

    PubMed  CAS  Google Scholar 

  • Neer EJ, Lok JM, Wolf LG (1984) Purification and properties of the inhibitory guanine nucleotide regulation unit of brain adenylate cyclase. J Biol Chem 259:14222–14229.

    PubMed  CAS  Google Scholar 

  • Neer EJ, Pulsifer L, Wolf LG (1988) The amino terminus of G protein α subunits is required for interaction with βγ. J Biol Chem 263:8996–9000.

    PubMed  CAS  Google Scholar 

  • Neer EJ, Wolf LG, Gill DM (1987) The stimulatory guanine-nucleotide regulatory unit of adenylate cyclase from bovine cerebral cortex. Biochem J 241:325–336.

    PubMed  CAS  Google Scholar 

  • Neer EJ (1993) G proteins: Critical control points for transmembrane signals. Protein Sci (In Press).

    Google Scholar 

  • Northup JK, Sternweis PC, Gilman AG (1983a) The subunits of the stimulatory regulatory component of adenylate cyclase. J Biol Chem 258:11361–11368.

    PubMed  CAS  Google Scholar 

  • Northup JK, Smigel H, Sternweis PC, Gilman AG (1983b) The subunits of the stimulatory regulatory component of adenylate cyclase. J Biol Chem 258: 11369–11376.

    PubMed  CAS  Google Scholar 

  • Osawa S, Dhanasekaran N, Woon CW, Johnson GL (1990) Gαis chimeras define the function of α chain domains in control of G protein activation and βγ subunit complex interactions. Cell 63:697–706.

    Article  PubMed  CAS  Google Scholar 

  • Pfeuffer T (1979) Guanine nucleotide-controlled interactions between components of adenylate cyclase. FEBS Lett 101:85–89.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, Benovic JL, Kwatra MM, Caron MG, Lefkowitz RJ (1992) Role of βγ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors Science 257:1264–1267.

    Article  PubMed  CAS  Google Scholar 

  • Robishaw JD, Kaiman VK, Moomaw CR, Slaughter CA (1989) Existence of two γ subunits of the G proteins in brain. J Biol Chem 264:15758–15761.

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Neer EJ (1991) In vitro synthesis of G protein βγ dimers. J Biol Chem 266:4538–4544.

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Thomas TC, Levine MA, Neer EJ (1992) Specificity of G protein βγ subunit interactions. J Biol Chem 267:13807–13810.

    PubMed  CAS  Google Scholar 

  • Smrcka AV, Hepler JR, Brown KO, Sternweis PC (1991) Regulation of poly-phosphoinositide-specific phospholipase C activity by purified Gq. Science 251: 804–807.

    Article  PubMed  CAS  Google Scholar 

  • Sternweis PC, Northup JK, Smigel MD, Gilman AG (1981) The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem 256: 11517–11526.

    PubMed  CAS  Google Scholar 

  • Tang WJ, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254:1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Thomas TC, Sladek T, Yi F, Smith T, Neer EJ (1993) Structural analysis of the G protein βγ subunit, Biochemistry (In Press).

    Google Scholar 

  • Tsai SC, Adamik R, Kanaho Y, Hewlett EL, Moss J (1984) Effects of guanyl nucleotides and rhodopsin on ADP-ribosylation of the inhibitory GTP-binding component of adenylate cyclase by pertussis toxin. J Biol Chem 259:15320–15323.

    PubMed  CAS  Google Scholar 

  • Van Dop C, Medynski D, Sullivan K, Wu AM, Fung BKK, Bourne HR (1984) Partial cDNA sequence of the β subunit of transducin. Biochem Biophys Res Commun 124:250–255.

    Article  PubMed  Google Scholar 

  • von Weizsäcker E, Strathmann MP, Simon MI (1992) Diversity among the beta subunits of heterotrimeric GTP-binding proteins: characterization of a novel beta-subunit cDNA. Biochem Biophys Res Commun 183:350–356.

    Article  Google Scholar 

  • Yamazaki A, Tatsumi M, Torney DC, Bitensky MW (1987) The GTP-binding protein of rod outer segments. I. Role of each subunit in the GTP hydrolytic cycle. J Biol Chem 262:9316–9323.

    PubMed  CAS  Google Scholar 

  • Yatsunami K, Pandya BV, Oprian DD, Khorana HG (1985) cDNA-derived amino acid sequence of the β subunit of GTPase from bovine rod outer segments. Proc Natl Acad Sci USA 82:1936–1940.

    Article  PubMed  CAS  Google Scholar 

  • Yi F, Denker BM, Neer EJ (1991) Structural and functional studies of cross-linked Go protein subunits. J Biol Chem 266:3900–3906.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neer, E.J. (1993). Subunit Interactions of Heterotrimeric G-Proteins. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology II. Handbook of Experimental Pharmacology, vol 108 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78345-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78345-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78347-0

  • Online ISBN: 978-3-642-78345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics