Skip to main content

The Superfamily: Molecular Modelling

  • Chapter
GTPases in Biology II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 2))

  • 95 Accesses

Abstract

G-protein-coupled receptors (GPCRs) are a diverse family of integral membrane proteins that are believed to share many structural and functional properties. Upon stimulation, these receptors can transmit a signal across the bilayer that results in the activation of enzymes or transport systems via a G-protein. The size of the family is increasing rapidly and includes the neurotransmitter receptors (e.g., adrenergic, muscarinic acetylcholine, neurokinins, dopamine, serotonin) as well as the visual and odorant receptors (e.g., rhodopsin).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Altenbach C, Marti T, Khorana HG, Hubbell WL (1990) Structural studies on transmembrane proteins 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Science 248:1088–1092.

    Article  PubMed  CAS  Google Scholar 

  • Brett M, Findlay JBC (1979) Investigation of the organisation of rhodopsin in sheep photoreceptor membranes using cross-linking agents. Biochem J 117:215–223.

    Google Scholar 

  • Brett M, Findlay JBC (1983) isolation and characterization of the CNBr peptides from the proteolytically derived N terminal fragment of ovine rhodopsin. Biochem J 211:661–670.

    PubMed  CAS  Google Scholar 

  • Cornette JL, Cease KB, Margalit H, Spouge JL, Berzofsky JA, DeLisi C (1987) Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J Mol Biol 195:659–685.

    Article  PubMed  CAS  Google Scholar 

  • Davison MD, Findlay JBC (1986a) Modification of ovine opsin with the photosensitive hydrophobic probe l-azido-4[125I]iodobenzene. Biochem J 234:413–420.

    PubMed  CAS  Google Scholar 

  • Davison MD, Findlay JBC (1986b) Identification of the sites in opsin modified photoactivated l-azido-4[125I]iodobenzene. Biochem J 236:389–395.

    PubMed  CAS  Google Scholar 

  • Donnelly D, Johnson MJ, Blundell TL, Saunders J (1989) An analysis of the periodicity of conserved residues in sequence alignments of G-protein coupled receptors. FEBS Lett 251:109–116.

    Article  PubMed  CAS  Google Scholar 

  • Donnelly D, Overington JP, Ruffle SV, Nugent JHA, Blundell TL (1993) Modelling α-helical transmembrane domains — the calculation and use of substitution tables for lipid facing residues. Protein Sci 2:55–70.

    PubMed  CAS  Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC (1984) The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci USA 81:140–144.

    Article  PubMed  CAS  Google Scholar 

  • Findlay JBC, Brett M, Pappin DJC (1981) Primary structure of C-terminal functional sites in ovine rhodopsin. Nature 293:314–316.

    Article  PubMed  CAS  Google Scholar 

  • Findlay JBC, Pappin DJC (1986) The opsin family of proteins. Biochem J 238: 625–642.

    PubMed  CAS  Google Scholar 

  • Findlay J, Eliopoulos E (1990) Three-dimensional modelling of G protein-linked receptors. TIPS 11:492–499.

    PubMed  CAS  Google Scholar 

  • Gamier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120.

    Article  Google Scholar 

  • Grötzinger J, Engelss M, Jacoby E, Wollmer A, Straßburger W (1991) A model for the C5a receptor and for its interaction with the ligand. Protein Sci 4:767–771.

    Google Scholar 

  • Henderson R, Unwin PTN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32.

    Article  PubMed  CAS  Google Scholar 

  • Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high resolution electron cyro-microscopy. J Mol Biol 213:899–929.

    Article  PubMed  CAS  Google Scholar 

  • Hibert MF, Trumpp-Kallmeyer S, Bruinvels A, Hoflack J (1991) Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. Molecular Pharmacology 40:8–15.

    PubMed  CAS  Google Scholar 

  • Karnik SS, Khorana HG (1990) Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. J Biol Chem 265:17520–17524.

    PubMed  CAS  Google Scholar 

  • Komiya H, Yeates TO, Rees DC, Allen JP, Feher G (1988) Structure of the reaction centre from Rhodobacter sphaeroides R-26 and 2.4.1: symmetry relations and sequence comparisons between different species. Proc Natl Acad Sci USA 85:9012–9016.

    Article  PubMed  CAS  Google Scholar 

  • MaloneyHuss K, Lybrand TP (1992) Three-dimensional structure for the β2 adrenergic receptor protein based on computer modeling studies. J Mol Biol 225:859–871.

    Article  PubMed  CAS  Google Scholar 

  • Ovchinnikov YuA, Abdulaev NG, Bogachuk AS (1988) Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett 230:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Pappin DJC, Eliopoulos E, Brett M, Findlay JBC (1984) A structural model for ovine rhodopsin. Int J Biol Macromol 6:73–76.

    Article  CAS  Google Scholar 

  • Rees DC, DeAntonio L, Eisenberg D (1989) Hydrophobic organization of membrane proteins. Science 245:510–513.

    Article  PubMed  CAS  Google Scholar 

  • Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RAF (1989) Identification of two serine residues involved in agonist activation of the β-adrrenergic receptor. J Biol Chem 264:13572–13578.

    PubMed  CAS  Google Scholar 

  • Strader CD, Gaffney T, Sugg EE, Candlemore MR, Keys R, Patchett AA, Dixon RAF (1991) Allele specific activation of genetically engineered receptors. J Biol Chem 266:5–8.

    PubMed  CAS  Google Scholar 

  • Stubbs GW, Smith HG, Litman BJ (1976) Alkyl glucosides as effective solubilizing agents for bovine rhodopsin — a comparison of several commonly used detergents. Biochim Biophys Acta 246:46–56.

    Google Scholar 

  • Sutcliffe MJ, Haneef I, Carney D, Blundeli TL (1987a) Knowledge-based modelling of homologous proteins 1. Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Prot Engng 1:377–384.

    Article  CAS  Google Scholar 

  • Sutcliffe MJ, Hayes FRF, Blundell TL (1987b) Knowledge-based modelling of homologous proteins 2. Rules for the conformation of substituted sidechains. Prot Engng 1:385–392.

    Article  CAS  Google Scholar 

  • Tadayyon M, Zhang Y, Gnaneshan S, Hunt L, Mehraein-Ghomi F, Broome-Smith JK (1992) β-Lactamase fusion analysis of membrane protein assembly. Biochem Soc Trans 20:598–601.

    PubMed  CAS  Google Scholar 

  • Wang JK, McDowell JHM, Hargrave PA (1980) Site of attachment of 11-cis-retinal in bovine rhodopsin. Biochem 19:5111–5117.

    Article  CAS  Google Scholar 

  • Wang H-y, Lipfert L, Malbon CC, Bahouth S (1989) Sire-directed anti-peptide antibodies define the topography of the β-adrenergic receptor. J Biol Chem 264:14424–14431.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Findlay, J.B.C., Donnelly, D. (1993). The Superfamily: Molecular Modelling. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology II. Handbook of Experimental Pharmacology, vol 108 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78345-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78345-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78347-0

  • Online ISBN: 978-3-642-78345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics